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Abstract 

Breast cancer (BC) is the second most common cancer and cause of death in women. In recent years many studies 
investigated the association of long non-coding RNAs (lncRNAs), as novel genetic factors, on BC risk, survival, clinical 
and pathological features. Recent studies also investigated the roles of metformin treatment as the firstline treatment 
for type 2 diabetes (T2D) played in lncRNAs expression/regulation or BC incidence, outcome, mortality and survival, 
separately. This comprehensive study aimed to review lncRNAs associated with BC features and identify metformin-
regulated lncRNAs and their mechanisms of action on BC or other types of cancers. Finally, metformin affects BC by 
regulating five BC-associated lncRNAs including GAS5, HOTAIR, MALAT1, and H19, by several molecular mechanisms 
have been described in this review. In addition, metformin action on other types of cancers by regulating ten lncRNAs 
including AC006160.1, Loc100506691, lncRNA-AF085935, SNHG7, HULC, UCA1, H19, MALAT1, AFAP1-AS1, AC026904.1 
is described.

Introduction
Breast cancer (BC) is one of the most important cancers 
in women [1]. Different types of genetics and epigenetics 
factors are associated with BC initiation, development, 
aggressiveness, and treatment. The long non-coding RNA 
(lncRNA) is the latest significant genetic factor affecting 
BC. Many studies investigated the oncogenic or tumor 
suppressor effects of different lncRNAs on BC features, 

for example, H19 is an oncogenic lncRNA that dysregu-
lates in BC and affects different BC features including 
proliferation, invasion, migration, cell cycle arrest, apop-
tosis, metastasis, tumor values, steroid receptor status, 
tumor size, nodal status, disease-free survival, prog-
nosis, stemness, mesenchymal-to-epithelial transition 
(MET), epithelial-to-mesenchymal transition (EMT) 
(Table 1 and Additional file 1: Table S1). However, while 
there are several studies on the role of lncRNA in BC, 
they investigated some limited number of BC-associated 
lncRNAs and there is no comprehensive review on the 
roles of BC-associated lncRNAs. In addition, the role of 
metformin (1, 1-dimethyl biguanide hydrochloride), as 
an anti-hyperglycemic drug, on the risk of cancers was 
investigated in previous studies. The protective effect 
of metformin on cancers and its potential use in cancer 
treatment or in combination with chemotherapy and 
radiation therapy were investigated in previous studies 
[2–4]. It is associated with apoptosis, cell cycle, incidence 
and growth of tumors [5]. Several inhibitory mecha-
nisms of metformin are associated with BC [6, 7]. Thus, 
this comprehensive review examines the relationship and 
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Table 1  lncRNAs associated with BC

LncRNA/ID (ensemble/NCBI) Dysregulation of 
lncRNA (promote/
inhibit)

Oncogene/
tumor 
suppressor

Effect on BC References

AC026904.1 (LINC02599)/
ENSG00000233858

Upregulation/promote Oncogene Metastasis, EMT [111]

AFAP1-AS1/ENSG00000272620 Upregulation/promote Oncogene Chemoresistance, proliferation, migration, 
invasion

[112]

ANCR/ENSG00000226950 Upregulation/inhibit Tumor suppressor Invasion, metastasis, migration, EMT [113]

DANCR/ENSG00000226950 Upregulation/promote Oncogene Proliferation, invasion, tumor growth [114]

ARNILA/ENSG00000235072 Upregulation/promote Oncogene Progression-free survival, EMT, invasion, 
metastasis

[115]

ATB (LNCRNA-ATB)/Gene ID: 114004396 Upregulation/promote Oncogene EMT, drug resistance, anti-apoptosis, prolif-
eration, invasion, metastasis

[116]

BC200 (BCYRN1)/ENSG00000236824 Upregulation/promote Oncogene Proliferation, migration, invasion, tumor size [117]

BCAR4/ENSG00000262117 Upregulation/promote Oncogene Migration, invasion, metastasis [118]

BDNF-AS/ENSG00000245573 Upregulation/promote Oncogene Prognostic predictor for poor survival, pro-
liferation, endocrine resistance, progression

[119]

BLACAT1/ENSG00000281406 Upregulation/promote Oncogene Migration, invasion, metastasis, cell survival, 
proliferation

[120]

BORG Upregulation/promote Oncogene Invasion, metastasis, disease recurrence [121]

CASC2/ENSG00000177640 Upregulation/inhibit Tumor suppressor Proliferation, metastasis, cell cycle arrest, 
apoptosis, migration

[122]

CCAT1/Gene ID: 100507056 Upregulation/promote Oncogene Cell proliferation, migration, invasion, 
tumor growth, progression

[123]

CCAT2/ENSG00000280997 Upregulation/promote Oncogene Migration, invasion, metastasis, cancer 
growth, cell cycle, apoptosis, proliferation

[124]

EPIC1/ENSG00000224271 Upregulation/promote Oncogene Cell cycle, progression, prognosis, tumor 
growth

[125]

ES1 (LINC01108)/ENSG00000226673 Upregulation/promote Oncogene Stemness, proliferation, cell cycle progres-
sion, apoptosis, migration, EMT

[126]

EZR-AS1/ENSG00000233893 Upregulation/promote Oncogene Tumor growth, metastasis, prognosis, pro-
liferation, cell cycle progression, apoptosis, 
migration, invasion

[127]

FEZF1-AS1/ENSG00000230316 Upregulation/promote Oncogene Stemness, tumorigenesis, proliferation, 
migration, invasion, cells growth

[128]

FGF13-AS1/ENSG00000226031 Upregulation/inhibit Tumor suppressor Stemness, proliferation, migration, invasion, 
prognosis

[129]

GACAT3/ENSG00000236289 Upregulation/promote Oncogene Prognosis, preoperative MRI perfusion-
related diffusion reduction and elevated 
perfusion fraction

[130]

GAS5/ENSG00000234741 Upregulation/inhibit Tumor suppressor Metastasis, proliferation, drug resistance [131]

GHET1/ENSG00000281189 Upregulation/promote Oncogene Proliferation, invasion, migration, apoptosis, 
EMT

[132]

H19/ENSG00000130600 Upregulation/promote Oncogene Proliferation, invasion, migration, cell cycle 
arrest, apoptosis, metastasis

[133]

HIF1A-AS2/Gene ID: 100750247 Upregulation/promote Oncogene Prognosis, migration, invasion, overall 
survival

[134]

HOST2 (CERNA2)/ENSG00000285972 Upregulation/promote Oncogene Cell motility, migration, invasion [135]

HOTAIR/ENSG00000228630 Upregulation/promote Oncogene Proliferation, invasion, EMT, metastasis, 
drug resistance

[136]

ITGB2-AS1/ENSG00000227039 Upregulation/promote Oncogene Migration, invasion [137]

LET Upregulation/inhibit Tumor suppressor Proliferation, invasion, migration, apoptosis [138]

LIMT (LINC01089)/ENSG00000212694 Downregulation/promote Tumor suppressor Migration, invasion, metastasis, prognosis [139]

LINC00115/ENSG00000225880 Upregulation/promote Oncogene Metastasis, migration, invasion [140]

LINC00152 (CYTOR)/ENSG00000222041 Upregulation/promote Oncogene Invasion, migration, tumorigenesis, colony 
growth, tumor growth, apoptosis

[141]

LINC00461/ENSG00000245526 Upregulation/promote Oncogene Invasion, migration, differentiation [142]
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Table 1  (continued)

LncRNA/ID (ensemble/NCBI) Dysregulation of 
lncRNA (promote/
inhibit)

Oncogene/
tumor 
suppressor

Effect on BC References

LINC00511/Gene ID: 400619 Upregulation/promote Oncogene Proliferation, invasion, stemness, tumouri-
genesis

[143]

LINC00628/ENSG00000280924 Upregulation/inhibit Tumor suppressor Proliferation, invasion, migration, cell 
growth, metastasis, apoptosis

[144]

LINC00673/Gene ID: 100499467 Upregulation/promote Oncogene Proliferation, metastasis [145]

LINC00899/ENSG00000231711 Upregulation/inhibit Tumor suppressor Proliferation, migration, invasion, progres-
sion

[146]

LINC01133/ENSG00000224259 Upregulation/inhibit Tumor suppressor Migration, invasion, metastasis [147]

LINC01296 (DUXAP9)/ENSG00000225210 Upregulation/promote Oncogene Proliferation, prognosis, metastasis, apop-
tosis

[148]

LINC01787/ENSG00000231987 Upregulation/promote Oncogene Proliferation, migration [149]

LINC01857/ENSG00000224137 Upregulation/promote Oncogene Invasion, migration [150]

LincIN Downregulation/inhibit Oncogene Migration, invasion, metastasis [151]

Linc-ITGB1 (IATPR)/ENSG00000233387 Upregulation/promote Oncogene Invasion, migration, proliferation [152]

Linc-ROR/ENSG00000258609 Upregulation/promote Oncogene Tumorigenesis, migration, invasion, metas-
tasis, growth

[153]

LINP1/ENSG00000223784 Upregulation/promote Oncogene Apoptosis, mobility, EMT, drug resistance, 
migration, invasion, tumor growth

[154]

Lnc015192 Upregulation/promote Oncogene Migration, invasion, EMT, metastasis [155]

Lnc01638/ENSG00000233521 Upregulation/promote Oncogene Proliferation, tumor growth, invasion, colo-
nization, metastasis

[156]

Lnc-BM Upregulation/promote Oncogene Metastasis [157]

LncKLHDC7B/ENSG00000226738 Downregulation/promote Tumor suppressor Invasion, migration, apoptosis [158]

LncRNA 91H Upregulation/promote Oncogene Cell growth, migration, invasion, tumor 
growth

[159]

lncRNA HIT Upregulation/promote Oncogene Migration, invasion, tumor growth, metas-
tasis, EMT

[160]

LncRNA RP1/ENST00000420172 Upregulation/promote Oncogene Prognosis, proliferation, metastasis, EMT, 
stemness

[161]

LncRNA-ATB/Gene ID: 114004396 Upregulation/promote Oncogene Drug resistance, invasion-metastasis 
cascade

[162]

lncRNA-Hh (GAS1RR)/ENSG00000226237 Upregulation/promote Oncogene Tumorigenesis [163]

Lnc-SLC4A1-1 Downregulation/inhibit Oncogene Apoptosis, proliferation, migration, invasion [164]

MAGI2-AS3/ENSG00000234456 Upregulation/inhibit Tumor suppressor Cell growth, proliferation, cell viability, 
colony formation, apoptosis

[165]

MALAT1/ENSG00000251562 Upregulation/inhibit Tumor suppressor Migration, invasion [166]

Upregulation/promote Oncogene Migration, progression, proliferation, dif-
ferentiation, metastasis

[167]

MAYA (MNX1-AS1)/ENSG00000243479 Upregulation/promote Oncogene EMT, proliferation, migration, invasion [168]

MEG3/ENSG00000214548 Upregulation/inhibit Tumor suppressor Proliferation, Migration, Invasion, Apoptosis [169]

MIR100HG/ENSG00000255248 Upregulation/promote Oncogene Proliferation, cell arrest in the G1 [170]

MT1JP/ENSG00000255986 Upregulation/inhibit Tumor suppressor Proliferation, invasion, drug sensitivity [171]

NBAT1/ENSG00000260455 Upregulation/inhibit Tumor suppressor Migration, invasion, metastasis, prognosis [172]

NEAT1/ENSG00000245532 Upregulation/promote Oncogene Tumor size, prognosis, proliferation, metas-
tasis, EMT

[173]

LncRNA NEF (LNCNEF)/ENSG00000237396 Upregulation/inhibit Tumor suppressor Invasion, migration [174]

NKILA/ENSG00000278709 Upregulation/inhibit Tumor suppressor EMT, metastasis [175]

NLIPMT/ENSG00000278709 Upregulation/inhibit Tumor suppressor Proliferation, motility, progression [176]

NNT-AS1/ENSG00000248092 Upregulation/promote Oncogene Migration, invasion, progression, EMT, 
proliferation

[177]

NORAD/ENSG00000260032 Downregulation/promote Tumor suppressor Migration, invasion, metastasis [178]
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Table 1  (continued)

LncRNA/ID (ensemble/NCBI) Dysregulation of 
lncRNA (promote/
inhibit)

Oncogene/
tumor 
suppressor

Effect on BC References

P10247 (lncRNA-BCHE)/ENSG00000114200 Upregulation/promote Oncogene Metastasis, growth, migration, invasion [179]

PDCD4-AS1/ENSG00000203497 Upregulation/inhibit Tumor suppressor Progression [180]

PRLB (SIRLNT)/ENSG00000253802 Upregulation/promote Oncogene Proliferation, chemoresistance, metastasis, 
survival, invasion

[181]

PTENP1/ENSG00000237984 Upregulation/inhibit Tumor suppressor Proliferation, invasion, tumorigenesis, 
tumor growth, metastasis, apoptosis, 
chemoresistance

[182]

PVT1/ENSG00000249859 Upregulation/promote Oncogene Proliferation, colony formation, tumor 
growth

[183]

PITPNA-AS1/ENSG00000236618 Downregulation/inhibit Oncogene Cell viability, proliferation, migration, inva-
sion

[184]

SPRY4-IT1/GeneID:100642175 Upregulation/promote Oncogene Proliferation, migration, invasion, cell cycle, 
apoptosis

[185]

SUMO1P3/ENSG00000235082 Downregulation/inhibit Oncogene Progression, survival, proliferation, migra-
tion, invasion

[186]

TFAP2A-AS1/ENSG00000229950 Upregulation/inhibit Tumor suppressor Invasion, migration, proliferation, cell cycle 
arrest, apoptosis, ability, tumor growth

[187]

TINCR/ENSG00000223573 Upregulation/promote Oncogene Migration, invasion, tumor growth, prolif-
eration, apoptosis

[188]

TUG1/ENSG00000253352 Downregulation/promote Tumor suppressor Apoptosis, proliferation, metastasis, inva-
sion

[189]

Downregulation/inhibit Oncogene Proliferation, metastasis, tumor size, TNM 
staging, migration, invasion, apoptosis

[190]

TUNAR/ENSG00000250366 Upregulation/promote Oncogene Stemness, motility, invasion, EMT [191]

UCA1/ENSG00000214049 Upregulation/promote Oncogene Apoptosis, drug resistance [192]

XIST/ENSG00000229807 Downregulation/promote Tumor suppressor Cell growth, migration, invasion [193]

LINC02095(ROCR)/ENSG00000228639 Upregulation/promote Oncogene Proliferation [194]

WT1-AS/ENSG00000183242 Upregulation/inhibit Tumor suppressor Clinical stages, migration, invasion [195]

LINC00096(TP53TG1)/ENSG00000182165 Upregulation/promote Oncogene Proliferation, invasion, metastasis [196]

HEIH/ENSG00000278970 Downregulation/inhibit Oncogene Proliferation, apoptosis [197]

LUCAT1/ENSG00000248323 Upregulation/promote Oncogene Proliferation, cell cycle progression, metas-
tasis, apoptosis

[198]

ASRPS(LINC00908)/ENSG00000266256 Downregulation/promote Tumor suppressor Angiogenesis, tumor growth [199]

HAND2-AS1/ENSG00000237125 Upregulation/inhibit Tumor suppressor Proliferation [200]

LINC01096/ENSG00000246095 Downregulation/inhibit Oncogene Proliferation, migration, invasion; apoptosis, 
cell viability

[201]

PANDA(PANDAR)/ENSG00000281450 Upregulation/promote Oncogene Apoptosis [202]

TP73-AS1/ENSG00000227372 Upregulation/promote Oncogene Proliferation, invasion, migration [203]

CRNDE/ENSG00000245694 Upregulation/promote Oncogene Proliferation, migration, invasion [204]

HCP5/ENSG00000206337 Downregulation/promote Tumor suppressor Drug resistance [205]

ADAMTS9-AS2/ENSG00000241684 Downregulation/promote Tumor suppressor Drug resistance, apoptosis, viability [206]

TMPO-AS1/ENSG00000257167 Upregulation/promote Oncogene Proliferation, viability, apoptosis, drug 
resistance

[207]

DSCAM-AS1/ENSG00000235123 Downregulation/inhibit Oncogene Proliferation, colony formation [208]

MAFG-AS1(MILIP)/ENSG00000265688 Downregulation/inhibit Oncogene Proliferation, apoptosis, drug resistance [209]

DILA1(MIR99AHG)/ENSG00000215386 Upregulation/promote Oncogene Drug resistance, proliferation, prognosis, 
tumor growth

[210]

DLX6-AS1/ENSG00000231764 Upregulation/promote Oncogene Apoptosis, migration, drug resistance, EMT [211]

SNHG7/ENSG00000233016 Upregulation/promote Oncogene Viability, drug resistance [212]

DCST1-AS1/ENSG00000232093 Upregulation/promote Oncogene Drug resistance, EMT, chemoresistance [213]

LINC00472/ENSG00000233237 Downregulation/promote Tumor suppressor Growth, aggressiveness [214]
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effects of metformin, lncRNAs, and BC on each other as 
shown in Fig. 1. In the first section, prevalence, mortal-
ity, types, risk factors and molecular markers of BC will 
be described. In the second section, history, medical uses 
side effects, and antitumor mechanisms of metformin 
will be stated. In the third section, lncRNAs history, con-
servation, and functions will be discussed. In the fourth 
section, the effects of metformin on BC incidence, mor-
tality, survival, and outcomes will be assessed. In the fifth 
section, the role of lncRNAs on BC will be assessed. In 
the final section the association of metformin, lncRNAs, 
and BC is investigated and discussed.

BC
The first evidence of BC dates back to 2500–3000 BC. 
There is also evidence of BC in Hippocrates’ manuscripts. 
It is the second most common type of cancer in women 
in the United States [1]. The lifetime risk of developing 
BC is one out of every eight women [8]. About 264,000 
new cases of BC in women are diagnosed in the United 
States every year [1]. After lung cancer, it is the second 
cause of death from cancers in women. The number of 
deaths from this cancer in women is about 42,000 each 
year [1], and 15% of women deaths between the age of 20 
to 59 years occur due to BC [9]. Male BC is not common 
and makes up only one percent of all patients with BC. 
Although the incidence of BC is lower in men, the prog-
nosis is worse [10].

Based on the cell origin, BC is carcinoma or sar-
coma. Carcinomas arise from the epithelial components 

including the cells that line the lobules and ducts respon-
sible for milk production. Sarcomas, a rarer form, arise 
from the stromal components including myofibroblasts 
and blood vessel cells [11]. Based on the criteria of patho-
logical characteristics and aggressiveness, BC is graded as 
non-invasive/preinvasive (intraductal carcinoma, most 
common type), invasive, and metastatic. There are two 
ductal and lobular types of BC. The ductal form involves 
milk ducts. But in the lobular form, the milk-producing 
glands are involved. These types are also divided into 
invasive (or infiltrating) and in-situ forms based on their 
spread pattern. Unlike the in-situ form, the invasive 
form invades the surrounding tissues [12]. The invasive 
ductal carcinoma (80% of BC) includes tubular, medul-
lary, mucinous, papillary, and cribriform carcinoma sub-
types, while invasive lobular carcinoma (10–15% BC) is 
reported more in women with increasing age [11]. Also, 
there are two special invasive types of BC including tri-
ple-negative and inflammatory. In triple-negative BC 
(TNBC), cancerous cells do not have estrogen receptor 
(ER), progesterone receptor (PR), and human epider-
mal growth factor receptor (EGFR) which leads to poor 
survival outcomes [13]. TNBC common treatments are 
lumpectomy, mastectomy, radiation therapy, and chemo-
therapy. The human epidermal growth factor receptor 2 
(HER2) is not present in these cells [10]. In the inflamma-
tory form, lymphatic vessels are also blocked, which is a 
very aggressive form [14].

The breast completes its development in puberty and 
pregnancy through alterations in breast differentiation 

Table 1  (continued)

LncRNA/ID (ensemble/NCBI) Dysregulation of 
lncRNA (promote/
inhibit)

Oncogene/
tumor 
suppressor

Effect on BC References

AGAP2-AS1/ENSG00000255737 Upregulation/promote Oncogene Tumor growth, apoptosis, chemoresistance, 
drug resistance

[215]

SNHG14/ENSG00000224078 Upregulation/promote Oncogene Proliferation, invasion, drug resistance [216]

MAPT-AS1/ENSG00000264589 Downregulation/inhibit Oncogene Drug resistance, migration, invasion, 
proliferation

[217]

Linc00518/ENSG00000183674 Upregulation/promote Oncogene Drug resistance [218]

FTH1P3/ENSG00000213453 Downregulation/inhibit Oncogene Drug resistance [219]

FGF14-AS2/ENSG00000272143 Downregulation/promote Tumor suppressor Progression, prognosis, tumor size, lymph 
node metastasis, clinical stage, overall 
survival

[220]

PAPAS Upregulation/promote Oncogene Migration, invasion [221]

lncMat2B Upregulation/promote Oncogene Drug resistance [222]

LOL Downregulation/inhibit Oncogene Apoptosis, proliferation, drug resistance [223]

BC032585 Downregulation/promote Tumor suppressor Drug resistance [224]

NONHSAT101069 Upregulation/promote Oncogene Drug sensitivity, metastasis, migration, 
invasion

[225]

DRHC Downregulation/promote Tumor suppressor Proliferation [226]
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and proliferation with more ductal branching and lobu-
loalveolar growth. The balance between differentiation, 
proliferation, and apoptosis is critical for the normal 
development and homeostasis of breast cells. The pre-
malignant stages change this balance and the regulatory 
biomarkers of the cell cycle. Change in this may lead to 
the accumulation of mutations in BC [15]. Uncontrolled 
cell proliferation in tumors is associated with lower 
apoptosis. Apoptosis is a marker of prognosis, the low 
level of apoptosis is a poor prognostic feature while high 
levels of apoptosis in tumors have been correlated with 
the absence of estrogen receptors and worse survival 
[15]. The apoptosis-associated proteins are involved in 
BC and its treatment. The Bad, Bak, Bax, and Bcl-xs are 
pro-apoptotic proteins and Bcl-2 and Bcl-xL are anti-
apoptotic proteins. Tumor Protein 53 (P53) is associated 
with a poor prognosis of BC and poor response to chem-
otherapy. The XIAP, NIAP, cIAP1, cIAP2, and survivin 
proteins prevent apoptosis by directly inhibiting caspases 
[15].

Metastasis is associated with most cases of cancer mor-
tality which genetically leads migration of cancerous cells 

to other organs by the blood and lymphatic vessels [9, 
16]. It is associated with processes including MET, EMT, 
cancer cell migration, invasion, proliferation, stemness, 
angiogenesis, anoikis [16], endothelial cells, mac-
rophages, extracellular matrix, stem cells [17] and cancer-
associated fibroblasts [18]. The microvascular production 
increase in tumor cells and is associated with poor prog-
nosis of BC. The hypoxia and genetic changes in the 
tumor cells are related to an increase in angiogenic fac-
tors [19]. The hypoxic tumor HIF-1α induces the expres-
sion of proangiogenic mediators [20]. Different factors 
such as Hypoxia, HIF-1α, HER2, and matrix metallopro-
teinase 9 (MMP-9) increase the expression of VEGF in 
BC, and VEGF is associated with angiogenesis in breast 
tumors. VEGF is involved in the initial BC tumor growth 
while bFGF is increased during further tumor growth. 
The FGF/FGFR signaling as an angiogenic driver is asso-
ciated with BC therapeutic perspectives [21]. In general, 
different tissues are different in the angiogenic response.

Several risk factors have been identified for BC. How-
ever, more than 50% of affected people had no risk fac-
tors except for increasing age and female gender [10]. In 

Fig. 1  Study process
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general, these risk factors can be classified into two cate-
gories: changeable and non-changeable. The most impor-
tant non-changeable risk factors are genetics, increasing 
age, female gender, race, taller height, first-degree fam-
ily history of BC, benign BC, early menarche less than 
12 years old, or late menopause older than 55 years old. 
The most important changeable risk factors include risk 
factors related to lifestyle and personal behavior, long-
term hormone replacement therapy, chest wall irradia-
tion, obesity, high-fat diet, and environmental chemicals. 
Although a variety of risk factors have been discovered, 
the exact causes of breast cancer are not yet entirely 
understood.

The “tumor biomarker” is a possible indicator of the 
onset, development, and progression of cancer. We must 
examine these biomarkers deeper and work to under-
stand the underlying processes of tumor formation to 
improve treatment and personalized medicine [22]. The 
predictive and prognostic biomarkers, such as circulat-
ing tumor cells (CTCs), DNA, RNA, and miRNA, have 
been connected to probable clinical outcomes and treat-
ment effectiveness of BC. Intact cells and larger mol-
ecules such as nucleic acids, genetic changes, and protein 
molecules are used as molecular, histological, radio-
graphical, or physiological biomarkers in the detection 
of cancer [23]. Investigating molecular markers leads to 
the improvement of BC screening, diagnosis, and treat-
ment processes. BC biomarkers are classified into two 
tumors or blood categories. Different regulatory noncod-
ing RNAs such as miRNAs, lncRNAs, and piRNAs play 
non-invasive biomarkers roles in BC development, diag-
nosis, and prognosis. Inappropriate circulating mRNAs 
expression is associated with BC as a tumor marker, for 
example 5T4 circulating RNA may potentially be used 
to identify patients who can benefit from a 5T4 therapy 
utility of circulating RNA [24], or circulating circular 
RNA hsa_circ_0001785 upregulation in BC which could 
be a biomarker for BC diagnosis and progress [25]. The 
circulating cell-free miRNAs in the serum of BC patients 
emerged as a promising new noninvasive biomarker for 
the early detection of tumors and for predicting their 
molecular classifications. These miRNAs target mRNA 
that encodes proteins involved in different molecular 
pathways such as, proliferation, cell adhesion, and migra-
tion [26]. miRNA:mRNA interactions are associated with 
the invasiveness of BC [27]. miRNAs are suggested to be 
associated with BC therapeutic approaches [28], prog-
nosis [29], progression, and metastasis [30]. P-element-
induced wimpy testis (PIWI) interacting RNAs (piRNAs) 
are a novel type of non-coding RNAs, with act on both 
transcription and post-transcription. Upregulation of 
piR-021285, piRNA-823, piRNA-932, piR-016658, piR-
651, piR-4987, piR-20365, piR-20485, and piR-20582 

were associated with EMT, invasiveness, metastasis, 
lymph node metastasis, while downregulation of piR-
36712, piR-016975, piR-FTH1 in BC tissue were related 
to EMT, chemosensitivity, and chemoresistance [31]. 
PiRNA-mediated epigenetic mechanism and altered 
DNA methylation are involved in BC tumorigenesis [32]. 
The function and mechanism of many piRNAs in can-
cers is unclear. The role of lncRNAs as one of the most 
important noncoding RNAs in BC will be fully discussed 
in “lncRNAs in BC” section.

Antitumor mechanisms of metformin in BC
Metformin is a synthetic derivative of galegine and/or 
guanidine and belongs to a group of compounds called 
biguanides. galegine synthesize from Gallega officinalis, 
a plant that has been used for centuries in Europe to 
treat diabetes [33]. Metformin works by improving insu-
lin sensitivity in patients with type 2 diabetes (T2D) due 
to its biguanide properties [34]. For the first time, met-
formin was used to treat T2D in the 1950s, but from 1995 
it became widely used in the United States as a first-line 
treatment [35]. It is an anti-hyperglycemic drug (lowering 
blood sugar level) and the first line of treatment for T2D. 
The reduction of blood sugar level is done by inhibiting 
hepatic glucose production, increasing glucose absorp-
tion, and its consumption by skeletal muscles [36]. In 
addition, Metformin reduces insulin resistance in the 
surrounding tissue and suppresses gluconeogenesis in 
the liver.

Metformin has pleiotropic effects and is beneficial in 
the treatment of diabetes in various diseases, including 
prediabetes, and type 1 diabetes mellitus [37]. Many pre-
vious studies, demonstrate the safety and well-tolerance 
of metformin, along with potential nephroprotective 
and cardioprotective effects [38]. There are several other 
indications for metformin that are not FDA-approved, 
including the treatment of gestational diabetes, the treat-
ment of weight gain caused by antipsychotics, the pre-
vention of type 2 diabetes, as well as the treatment and 
prevention of polycystic ovary syndrome [39]. How-
ever, in some specific populations, such as patients with 
renal or hepatic impairment, pregnant or breastfeeding 
women, and pediatric or geriatric patients, metformin 
usage may not be commonly safe. The primary potential 
of lactic acidosis production made it unsafe in some cir-
cumstances [40]. It is important to understand the ben-
efit-risk balance of metformin treatment when it comes 
to elderly patients who are highly likely to have stable 
renal impairment, congestive heart failure, and/or coro-
nary artery disease due to the high prevalence of these 
conditions.
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Although no serious complications of metformin have 
been observed, this drug has some side effects like any 
other drug. There may be symptoms such as dizziness, 
severe drowsiness, muscle pain, tiredness, chills, blue/
cold skin, rapid or difficult breathing, slow heartbeat, 
stomach pain associated with diarrhea, and a feeling of 
nausea and vomiting. In most cases, lactic acidosis is 
caused by an overdose of medication or is the result of 
some contraindications. Metformin rarely causes hypo-
glycemia, however, if it is used in conjunction with other 
anti-diabetic medications, low blood sugar may develop. 
In rare cases, it leads to a serious allergic reaction. The 
product contains inactive components that may cause 
reactions or other problems when administered to 
patients.

The risk of developing cancer in diabetic patients tak-
ing metformin is reduced compared to other people, and 
its protective effect increases with exposure to a higher 
dose of metformin [2]. Metformin reduces cell prolifera-
tion, induces apoptosis, stops the cell cycle in vitro, and 
also reduces the incidence and growth of tumors in vivo 
[3]. It can be used as a sensitizing agent or in combina-
tion with chemotherapy and radiation therapy to fight 
cancer [4]. There are several mechanisms by which met-
formin inhibits the proliferation of malignant cells, such 
as activation of AMP-activated protein kinase (AMPK) 
or Mitogen-activated protein kinases (MAPK), decrease 
in mechanistic target of rapamycin (mTOR) signaling, 
increase in p27 expression, protein synthesis, EGFR, Src, 
and expression of Cyclins. Controlling the expression 
levels of proteins that are necessary for the transition 
between the G1 and S cell cycle, including cyclin D1, cyc-
lin E1, and E2F transcription factor 1 [6, 7]. Metformin 
inhibits Cyclin-dependent kinases and causes the cell 
cycle to stop in the G1 phase [41]. The ability to deacti-
vate biosynthetic mitochondrial nodes in cells with the 
BRCA1 gene is a potential mechanism of action of met-
formin for suppressing the BC formation in cell types 
affected by BRCA1 [42]. It was also proven that BRCA1 
haploinsufficiency leads to the activation of AKT/mTOR-
mediated protein synthesis driven by hyperphosphoryla-
tion of the BRCA1 substrate rich in proline through AKT 
activity. Another interesting function of metformin is the 
disruption of AKT/mTOR-signaling network in BRCA1 
haploinsufficient cells [43]. Decreasing insulin and insu-
lin-like growth factor levels inhibit signaling that involve 
phosphoinositide 3-kinase, AKT, and mTOR, it may be 
related to the inhibition of mTOR signaling by activating 
AMPK [39]. A major target of metformin therapy is the 
regulation of AMPK through an AMP-dependent signal-
ing pathway. AMPK activation inhibits cell mitosis and 
proliferation [44]. Metformin exerts its anti-neoplastic 
effects by stimulating AMPK through up-regulation of 

p53–p21 and down-regulation of Cyclin D1 levels. The 
activation of AMPK, through inhibition of the mTOR, 
activity, fatty acid synthesis signaling pathways, as well as 
stimulating the apoptotic pathway (p53/p21) is responsi-
ble for regulating tumor cell survival and tumor growth 
[5]. The neoadjuvant metformin administration in BC 
decreased insulin receptors, phosphorylation of protein 
kinase B (PKB)/Akt, AMPK, and extracellular signal-reg-
ulated kinase1/2. This insulin-dependent effect of met-
formin is consistent with its anticancer properties [45]. 
Metformin has numerous beneficial properties in both 
normal and cancerous cells, including reduced insulin 
levels, inhibition of insulin/IGF signaling pathways, as 
well as modulation of cellular metabolism [46]. There are 
several roles played by insulin/IGF-1 in the regulation of 
glucose uptake, as well as the regulation of carcinogenesis 
through the upregulation of signaling pathways associ-
ated with insulin/IGF receptors [47]. The signal through 
the insulin receptor substrate phosphorylates (but does 
not activate) mTORC1. Furthermore, through growth 
factor receptor-bound protein 2, insulin signals are trans-
mitted to Ras/Raf/ERK pathway which is responsible for 
regulating cell growth [48]. Several studies have indicated 
that these pathways play a significant role in the changes 
that occur in the metabolism of cancer cells [49]. A sig-
nificant decrease in IGF-1/insulin receptor activity, Akt, 
extracellular signal-regulated kinase (ERK) activity, and 
AMPK activity is observed with metformin use with-
out activation of AMPK by this drug [46]. It has been 
shown that metformin inhibits mTOR signaling in Dros-
ophila cells when AMPK is absent. There is an alterna-
tive pathway mediated by the RAG GTPase associated 
with tuberous sclerosis protein (TSC1/2-mTOR) which is 
AMPK independent [50]. On the other hand, as a result 
of decreasing the levels of HER2 in breast cancer cells, 
metformin can inhibit breast carcinoma cell growth, and 
inhibition of p70S6K1, an effector of the mTOR pathway, 
can mediate this effect [51].

Hyperglycemia induces oxidative stress both directly 
and indirectly in BC cells in part by increasing levels of 
insulin/IGF-1 as well as inflammatory cytokines [52]. 
Furthermore, the activation of nuclear factor kappa 
(NFκB), signal transducer activator of transcription 
3 (STAT3), and the hypoxia-inducible factor 1-alpha 
(HIF1α) are involved [53]. Through anti-inflammatory 
effects in cell models, metformin inhibits the compo-
nents of the NFκB pathway that are essential for the 
transformation of stem cells and the formation of cancer 
stem cells. Metformin also prevents phosphorylation of 
STAT3 in cancer stem cells [54, 55]. The suppression of 
chronic inflammatory response by metformin is related 
to the inhibition of TNF-α production in human mono-
cytes and chronic inflammation provides a basis for 
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cancer development [56]. Metformin decreases cellular-
Myc (c-Myc) and increases double-stranded RNA spe-
cific endoribonuclease (DICER) in AMPK signaling [57]. 
Metformin leads to reprograming of lipid metabolism, as 
a hallmark of cancer, by increase in acetyl-CoA carboxy-
lase (ACC) and fatty acid synthase (FASN), and miRNA 
regulation [58]. It also inhibits Complex I of the mito-
chondria and increases the AMP/ATP ratio which leads 
to further AMPK activation [59]. The anti-BC effects of 
metformin have been illustrated in Fig. 2.

Autophagy is another way to prevent the growth of 
malignant cells. Autophagy initiates the formation of 
membrane structures, including autophagosomes, by 
recruiting a family of autophagy-related (ATG) proteins 
[60]. It has been suggested that metformin may have anti-
tumor effects in part due to its ability to increase levels of 
ATG3, ATG5, and LC3-II in cells treated with metformin 
[61]. In order to repurpose metformin for the treatment 
of BC, epigenetic regulators would be modulated. Previ-
ous studies showed that metformin treatment altered the 
abundance of RBBP4, G9a, acH3K9, and acH3K18, sug-
gesting that histone modifiers may play an important role 
in metformin cancer treatment [62].

Obesity, diabetes, and hyperinsulinemia are associ-
ated with an increased risk of BC [63]. Fat distribution 

in the body, BMI, and weight changes are among the 
factors affecting BC [64]. Several factors such as adi-
pokines, IGFs (IGF-1 as mitogens), dyslipidemia, 
hyperglycemia, hyperinsulinemia, and inflammatory 
cytokines link BC with obesity and diabetes [63]. IGF-1 
gene expression increases in people with breast cancer 
compared to healthy people, while the circulating levels 
of Insulin-like growth factor binding protein 3 (IGFBP-
3) will decrease [65]. The level of circulating insulin 
decreases in diabetes while it increases in obesity and 
cancers [66]. Insulin resistance is involved in obesity 
and diabetes and contributes to the development of BC. 
Metformin decreases insulin resistance, while obesity 
and diabetes both induce insulin resistance which leads 
to hyperinsulinemia. Hyperinsulinemia increases IGF-1 
and decreases IGFBP1/2 (that finally cause dyslipidemia 
or increased bioavailable estrogen), or induce β-cells 
failure and hyperglycemia to finally increase BC cell 
growth [63]. Hyperglycemia increases the production 
of free radicals, damage and mutations in oncogenes 
and tumor suppressor genes and finally proliferation 
of cancer cells [67]. In addition, obesity and diabetes 
increase BC cell growth by upregulation of inflamma-
tory cytokines such as IL-6, IL-1β, TNF-α [63].

Fig. 2  Anti-BC effects of metformin
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Despite the fact that BC is well known to be associ-
ated with metabolic characteristics of T2D, including 
hyperglycemia, hyperinsulinemia, inflammation, oxi-
dative stress, and obesity, randomized controlled trials 
show opposite results for metformin as an insulin sen-
sitizer [59]. Considering that glucose is a crucial cellular 
metabolic substrate and insulin signaling has mutagenic 
effects on BC, growing and spreading BC are intimately 
linked to glucose metabolism [68]. The growing evidence 
suggests that metformin may play a preventative role in 
BC. Metformin counteracts insulin-stimulatory effects 
and leads to anti-proliferative and anti-migratory effects 
in primary breast cancer cells [69]. The first evidence that 
metformin might have antitumor properties was discov-
ered by Evanns et al. in 2005 after they found that T2D 
patients who were taking metformin had a lower risk of 
malignancy [70].

In the meta-analyses on the association between met-
formin use and BC incidence, the preventive effect of 
metformin was observed in Col 2012 and Zhang 2013 
meta-analyses [71]. However, the protective effect of 
metformin on BC prevention was not confirmed in sub-
sequent meta-analyses [72–75]. The results are shown in 
Fig. 3.

In a systematic review and meta-analysis conducted 
by Tang et al., the protective effect of metformin against 
BC mortality in patients with type 2 diabetes has been 
assessed. An approximate total of 3400 metformin users 
and 3000 non-metformin users were included. In the 
metformin user group, they found a 45% lower risk for 
all-cause mortality (HR = 0.55; 95% CI 0.44 to 0.70). 
However overall certainty of the evidence was very low 
and the included studies were only observational stud-
ies [73]. In a similar study conducted by Xu et  al., the 
BC-specific survival time was better in the metformin 
user group (HR: 0.89; 95% CI 0.79 to 1.00). In diabetic 
patients who used metformin after BC diagnosis, a 36% 
risk reduction for cancer-specific mortality was reported 
(HR = 0.64; 95% CI 0.45 to 0.90). Also in BC patients 
who consumed metformin, a significant risk reduction 

of all-cause mortality compared with their non-diabetic 
parallel was observed (HR = 0.63; 95% CI 0.51 to 0.78) 
[42]. Overall, most studies demonstrate that metformin 
reduces BC mortality, especially in early-stage cancers. 
Nonetheless, caution is in order, as all of these studies 
were observational, and the results were heterogene-
ous. Despite observational systematic reviews and meta-
analyses indicating better outcomes for metformin than 
placebo in BC patients (Fig. 4A) [42, 73–78], the adjuvant 
role of metformin was never confirmed in interventional 
systematic reviews and meta-analyses (Figs.  4B and 5) 
[78–82].

In an interventional systematic review and meta-
analysis conducted by Farkhondeh and colleagues for 
BC molecular markers, they discovered that metformin 
had no considerable effect on Ki-67 concentration 
(SMD = 0.08, 95% CI − 0.14 to 0.30) in the metformin 
group versus the placebo group [83]. In contrast, a simi-
lar study by Rahmani et  al. showed a significant reduc-
tion in Ki-67 concentration (weighted MD = − 4.06, 95% 
CI − 7.59 to − 0.54) for the metformin group [84]. This 
inconsistency may relate to the different inclusion criteria 
of these studies.

Survival benefits of metformin in BC cohort studies 
have been reported in patients with positive ER or PR, 
HER2 overexpression, and high IGF-I receptor expres-
sion on the tumor cell surface [85]. According to a study 
conducted by Park et  al. on 44,541 women, metformin 

Fig. 3  Meta-analyses on the association between metformin and BC 
incidence in diabetic patients. OR odds ratio, RR risk ratio

Fig. 4  Observational meta-analyses on the association of 
metformin with all-cause mortality in BC patients. A metformin vs. 
non-metformin groups, B metformin vs. placebo, RR risk ratio, HR 
hazard ratio
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was given to the majority of the diabetic population in the 
study (61%) as part of their treatment, they did not find 
any correlation between the use of metformin and the 
overall risk of BC after a median follow-up of 6–8 years. 
However, based on their findings, metformin therapy was 
associated with a reduced risk of estrogen receptor-pos-
itive (ER-positive) BC, and this inverse association was 
even more pronounced in a longer period (e.g., 10 years) 
treatment. The results of this study suggest that there is 
a T2D-dependent link between ER status and BC, and 
long-term metformin use might be able to reduce the 
association between T2D and ER-positive BC [86]. Also, 
an observational study from 23 Spanish hospitals found 
that metformin had a protective effect against ER-posi-
tive/HER2-negative BC when used as a daily treatment 
[87].

Finally, a large multicenter phase 3 RCT (the MA.32 
RCT) for determining the adjuvant effect of metformin 
in patients with BC but without diabetes has been con-
ducted recently. To the best of our knowledge, this study 
has the largest sample size for this topic even more 
than systematic reviews and meta-analyses (with 3649 
enrolled patients and eight years of follow-up). The anal-
ysis demonstrated overall survival will not change with 
the addition of metformin vs placebo to the standard BC 
regimen (HR = 1.10; 95% CI 0.86 to 1.41; P = 0.47) [88].

LncRNAs in BC
The term lncRNAs refers to RNA molecules that contain 
over 200 nucleotides without encoding proteins. Many 
lncRNAs have a 5′ cap that makes their RNA structure 
more stable. The polyadenylation of the 3′ end of the 
lncRNA can also affect the stabilization of the structure 
of the lncRNA, but this can only be observed at certain 
points in the molecule [89]. The H19 and Xist genes 
were the first identified lncRNAs, classified as mRNAs 
at the time of their discovery [90]. It has been shown 
that lncRNA with long exons contains a number of exon 

regions, which allows the creation of different forms of 
this RNA family by splicing them together. In addition to 
their different functions, these forms may perform a vari-
ety of clinical roles as well [89]. The structure of lncRNAs 
allows them to escape the evolutionary limitations asso-
ciated with poor interspecies conservation. Furthermore, 
the low conservation of the lncRNA sequence is likely to 
allow the structure of the lncRNA to be variable, to acti-
vate lncRNA functions and specializations as regulators 
within the cell [91]. The fact that lncRNAs have a high 
degree of specificity can be attributed to their key role in 
regulating organism function as well as in repairing dis-
ease processes in different conditions [92].

Originally, lncRNAs were thought to be genomic noise 
without any biological function. Recently, researchers 
have begun focusing their attention on the role lncRNAs. 
The interaction between RNA–protein, RNA–RNA, and 
DNA–RNA can be associated with lncRNA and form dif-
ferent functional complexes. As a result of their ability 
to regulate mRNA stability, translation, and cell signal-
ing pathways, lncRNA can perform a variety of functions 
within the cell [93]. LncRNAs can be classified into five 
groups based on their closest protein-coding transcripts: 
sense, antisense, bidirectional, intronic, and intergenic 
[9]. In general, lncRNAs act in four distinct ways as sig-
nal, decoy, guide, and scaffold molecules [94]. lncRNAs 
are often thought to regulate downstream gene tran-
scription as signal molecules, for example, lincRNA-p21 
regulates JAK2/STAT3, Notch signaling. Occasionally, 
lncRNAs can also act as a decoy molecule to block certain 
molecular pathways. lncRNAs can inhibit the expression 
of mRNA by interacting with certain proteins. Decoying 
transcriptional factors or miRNAs, RNA interference, 
targeting of transcriptional factors, or chromatin modi-
fier proteins to specific genomic loci, and transcriptional 
regulation in cis or trans [16]. In order to regulate gene 
transcription, lncRNAs can also act as a guide mole-
cule that interacts with transcription factors on specific 
sequences of DNA and recruit chromatin-modifying 
enzymes for target genes, chromatin remodeling, and 
their epigenetic regulation [16, 95]. In addition, lncRNAs 
as scaffold molecules facilitate the assembly of various 
kinds of macromolecular complexes, promoting infor-
mation, integration, and convergence [96]. Regulation of 
stabilized ribonucleoprotein complexes such as signaling 
molecules and nuclear structures is considered among 
the scaffolding activities of lncRNAs. The expression 
of genes can be regulated by lncRNAs at several levels, 
including epigenetics, transcription, and post-transcrip-
tional regulation [97]. Contrary to mRNA, lncRNAs are 
found throughout the cell, not only in the nucleus but 
also in the cytoplasm and mitochondria [98]. There has 
been evidence that diseases linked to single-nucleotide 

Fig. 5  International meta-analyses on the association of metformin 
with progression-free survival of BC patients metformin vs. placebo. 
HR hazard ratio
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polymorphisms within lncRNA genes and their promot-
ers are associated with change in lncRNA expression 
which highlights their significance in the pathogenesis 
of the disease. The lncRNAs act as guides, scaffolds, or 
stabilizers that affect chromatin architecture and gene 
expression through interactions with epigenetic remod-
elers, transcription factors, and spliceosomes in the 
nucleus [99]. As lncRNA decoys, cytoplasmic lncR-
NAs regulate the stability of mRNA by directly regulat-
ing de-adenylation [93]. Xist is an important example of 
nuclear lncRNA which play an important role in females’ 
X chromosome by directing methyltransferases to the X 
chromosome. Xist facilitates macrophage polarization 
in breast and ovarian cancer. This function could be due 
to the regulation of C/EBPα and KLF6 by miR-101 [100]. 
There have been numerous studies on the association 
of lncRNAs and different types of cancers which make 
lncRNAs interesting targets for unique therapeutic and 
diagnostic pathways. LncRNAs play important role in 
cancer by regulating transcription and chromatin remod-
eling through interactions with chromatin remodelers 
like polycomb complex. For example, in BC, lncRNA 
PANDAR plays a key role in G1 to S phase regulation 
[101]. Regarding metastatic breast carcinomas, HOTAIR 
has changed the pattern of PRC2 occupancy, causing it to 
shift from breast epithelial cells to embryonic fibroblasts 
due to its ability to alter chromatin [102].

Normal development of breast stem cells is driven by 
some of the same signaling pathways, including estro-
gen receptors, HER2, and Wnt/b-catenin signaling 
pathways that control stem cell proliferation, cell death, 
cell differentiation, and cell motility. Regulation of BC 
heterogeneity and plasticity is one of the most urgent 
issues for treatment. Studies confirm that epigenetic 
regulation and non-coding RNAs may play an impor-
tant role in BC development and may contribute to the 
heterogeneous and metastatic aspects of BC, especially 
triple-negative BC [11]. Many studies have investigated 
the association between lncRNAs and BC. In addition 
to basic research, the clinical application of lncRNAs is 
also an emerging research field [16]. lncRNAs expressed 
in cancers play essential roles in cancer-related biologi-
cal processes and signaling pathways, regulating gene 
expression, post-transcriptional processes, chromatin 
changes, and regulation of protein function. Studies show 
that the distribution and activity of lncRNAs and their 
role in human cancers can be confirmed by transcription 
profiling studies [103]. Most of the activity of lncRNA is 
related to transcription. These activities include the for-
mation of chromatin-modifying complexes, transcription 
activators, and chromatin ring regulators. Regulating the 
transcription of tumor suppressor and oncogene genes 
is one of the functions related to lncRNA oncology 

[103]. Some lncRNAs target DICER or pre-miRNA and 
hinder miRNA biogenesis that influences BC metasta-
sis. For example overexpression of oncogenic lncRNA 
LINC01787 promotes BC cell proliferation, migration, 
and BC xenograft growth in vivo by repressing the mat-
uration of miR-125b. The upregulation of LINC00899 
represses the proliferation, migration, and invasion of 
BC cells by inhibiting miR-425 [9]. One of the main 
causes of death associated with BC is the metastasis of 
the primary tumor. lncRNAs are additional transcripts 
related to metastasis and cancer progression. Due to the 
necessary advances in transcriptome analysis technol-
ogy, many articles confirm the expression of lncRNA in 
tumors and their correlation with metastatic conditions 
[104]. Since lncRNAs have a variable expression in cancer 
tissues compared to normal tissues, it raises the poten-
tial of these molecules as biomarkers for disease diagno-
sis. lncRNAs can alter multiple signaling pathways and 
regulate metastasis-related factors, alter the proteins, 
and transcription factors involved in metastasis. They 
can be used as an early diagnostic and therapeutic target 
for BC metastasis and therapy. For example, anti-meta-
static lncRNAs can target oncogenes and inhibit metas-
tasis whereas some prometastatic lncRNA reduce the 
expression of tumor suppressor genes and induce inva-
sion and metastasis. Antisense oligonucleotides (ASOs) 
can reduce the expression of oncogenic lncRNAs and 
inhibit BC metastasis by degrading lncRNAs, cleaving 
endogenous RNaseH1, or regulating RNA–protein inter-
actions [9]. Different novel technologies target lncRNAs 
in cancer therapy by small molecule inhibitors which are 
new directions in anti-tumor drug development, includ-
ing targeting cytoplasmic and nuclear lncRNA by ASOs 
through RNaseH-dependent degradation to knock out 
lncRNAs, nanomedicine role of lncRNAs is associated 
with nano-carrier-absorbed on nano-drugs that target 
sub-nucleus lncRNAs to gain desired therapeutic effect 
and in cancer cell chemical resistance to different types 
of drugs. Other approaches include knock-out of lncRNA 
via specific gDNA by CRISPR/cas9 as a technology with 
extensive application in cancer treatment, and finally 
targeting lncRNAs by virus therapies including encapsu-
lated shRNA to target tumor suppressor lncRNAs or nat-
ural antisense RNAs (NATs)-mediated technique [105, 
106].

Generally, BC cells associated lncRNAs can be classified 
into two groups of enhance or attenuate the aggressive-
ness of BC cells, for example, DANCR, H19, HOTAIR, 
LINC00152, LINC00461, NEAT1, and LINC01857 cause 
invasion and migration of BC cells, H19, HOTAIR, 
HIF1A-AS2, RP1, and MALAT1 promote distant metas-
tasis of BC cells, GAS5, MT1JP, NEF, NKILA, LET, 
TFAP2A-AS1, LncKLHDC7B prevent the invasion and 
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migration of BC cells, MALAT1, MEG3, NLIPMT, and 
XIST inhibit distant metastasis of BC cells [16]. Also, in 
some studies, immune-related lncRNA signatures were 
associated with survival of BC [107–109], or the sig-
nificant dysregulation of lncRNAs in BC was not asso-
ciated with any of the clinical features [110]. Our study 
investigated the role of lncRNAs on BC in more than 
40 general effects including metastasis, migration, inva-
sion, progression, tumor growth, apoptosis, stemness, 
EMT, survival, histological grade, tumor size, tumor 
stage, proliferation, chemoresistance, radioresistance, 
drug resistance, endocrine resistance, disease recurrence, 
viability, differentiation, tumor initiation, aggressive-
ness, cell cycle, prognosis, diagnosis, tumor values, ster-
oid receptor status, hormone negativity, tumourigenesis, 
colonization, invasion-metastasis cascade, colony forma-
tion, angiogenesis, motility, mobility, biological activities 
of BC cells, pathogenesis, clinicopathological features, 
clinical outcome, tumorigenic properties. Finally, 116 
lncRNAs associated with these BC features were identi-
fied. In general most of lncRNAs were associated with 
invasion, migration, metastasis, and proliferation. The 
detailed results are presented in Table 1 and Additional 
file 1: Table S1.

Metformin action on lncRNAs in BC
Some of the lncRNAs listed in Table 1 including GAS5, 
HOTAIR, TUG1, MALAT1, and H19 are also associ-
ated with the effect of metformin on BC. As described 
in the antitumor mechanisms of metformin, it effects on 
mTOR signaling pathway. The inhibition of the mTOR is 
responsible for regulating tumor growth [48]. mTOR is 
related to liver kinase B1 (LKB1), a major downstream 
kinase of AMPK. There has been evidence that deletion 
of LKB1 function in tumor cells accelerated their prolif-
eration and resulted in them becoming more sensitive 
to AMPK pathway activators, such as biguanide (met-
formin) in both in  vitro and in  vivo studies [227, 228]. 
Metformin inhibits the over-activation of this pathway 
through upregulating lncRNA GAS5 expression, and 
finally induces apoptosis and inhibits the growth of BC 
cells [229]. As GAS5 is associated with invasion, growth, 
tumor promotion, proliferation, and apoptosis of BC 
(Table 1 and Additional file 1: Table S1), metformin can 
regulate these features by GAS5 antitumor activity. Met-
formin reverses EMT by inducing DNA methylation of 
the CpG-rich sequence at the gene downstream region 
in HOTAIR and downregulating the HOTAIR oncogenic 
expression in MDA-MB-231 BC cells [230]. The HOTAIR 
is associated with progression, metastasis, prognosis, 
cell growth, migration, invasion, apoptosis, and EMT 
in BC (Table  1 and Additional file  1: Table  S1), so met-
formin can regulate these features by changing HOTAIR 

expression. Crosstalk between autophagy and Wnt/β-
catenin signaling is frequent and is directly related to cell 
homeostasis [231]. There is also strong evidence from the 
current studies that inhibiting EMT results in the inac-
tivation of Wnt/β-catenin, a primary mediator of EMT 
[232]. In breast cancer cells, metformin might also inhibit 
cell migration by inactivating Wnt/β-catenin [233]. Met-
formin treatment resulted in elevated endoplasmic retic-
ulum stress, which was further intensified by knocking 
down MALAT1 expression [234]. MALAT1 is involved 
in metformin inhibitory role in the BC cells prolifera-
tion. Metformin increases the expression of HOTAIR, 
MALAT1, TUG1, LINC01121, and DICER1-AS1 in BC 
cells. MALAT1 knock-down in metformin-treated BC 
cells will increase the Bax/Bcl2 ratio and p21, Beclin1, 
VDAC1, LC3-II, CHOP and Bip expressions will decrease 
cyclin B1 [62]. As MALAT1 and TUG1 are associated 
with migration, invasion, metastasis, progression, EMT, 
relapse-free survival, proliferation, angiogenesis, motility, 
apoptosis, tumor growth, and tumor size of BC (Table 1 
and Additional file 1: Table S1), metformin can regulate 
these features by MALAT1 and TUG1 activities. H19 
is a transcription product of the H19 gene. H19 poten-
tially influences gene expression in BC on several levels, 
including epigenetic regulation, transcriptional regula-
tion, and posttranscriptional regulation. In BC tumo-
rigenesis and progression, abnormal expression of H19 is 
governed by a number of molecular mechanisms, includ-
ing microRNA-675 encoding, competing with endog-
enous RNA regulation, and interacting with Myc [235, 
236]. Angiogenesis, cell death, inflammation, and apop-
tosis are some of the features that H19 stimulates [237]. 
There is growing evidence that ferroptosis, an emerging 
form of cell death that suppresses drug resistance and 
enhances the immune system’s ability to combat tumors, 
could be considered a new form of programmed cell 
death. In terms of cell necrosis, ferroptosis is defined as a 
process that depends on iron [238]. In case of ferroptosis, 
the membrane structure can be damaged owing to the 
formation of lipid peroxidation, which results in oxidative 
damage to the phospholipids, and in addition, there can 
be a high concentration of unsaturated fatty acids in the 
membrane [239]. One of the most common symptoms of 
ferroptosis is the excess of reactive oxygen species (ROS), 
which can be caused by metformin [240]. Metformin may 
induce ferroptosis by inhibiting autophagy via lncRNA 
H19 in BC subjects [238]. The effect of metformin on 
H19 lead to change in proliferation, invasion, migration, 
metastasis, cell cycle arrest, apoptosis, steroid recep-
tor status, tumor size, disease-free survival, prognosis, 
stemness, EMT, and MET features of BC patients.

lncRNAs UCA1, H19, MALAT1, AFAP1-AS1, 
AC026904.1, and SNHG7 presented in Table  1 are 
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associated with the effect of metformin on other types of 
cancer. Metformin promotes apoptosis and inhibits the 
proliferation of colon cancer cells by inhibiting UCA1 
expression [241]. Metformin inhibits tumor cell inva-
sion and migration partly by H19 downregulation [242] 
and decreases the expression of H19 in Endometrial 
Cancer [243]. Metformin decreases migration and inva-
sion of cervical cancer cells by suppressing MALAT1 
and disrupting of MALAT1/miR-142-3p sponge [244]. 
Metformin suppresses lung adenocarcinoma by down-
regulating AFAP1-AS1 and regulating the AFAP1-AS1/
miR-3163/SPP1/PI3K/Akt/mTOR axis. [245]. Metformin 
suppresses hypopharyngeal cancer growth by decreasing 
SNHG7 expression through activating SAHH [246].

Other lncRNAs including AC006160.1, Loc100506691, 
lncRNA-AF085935, and HULC are also associated with 
cancers and metformin. Bladder cancer patients with 
high expression of AC006160.1 are sensitive to metformin 
[247]. Metformin anti-proliferative effects in gastric can-
cer may be associated with suppression of Loc100506691 
(an oncogenic lncRNA) and Loc100506691-miR-26a-5p/
miR-330-5p-CHAC1 axis [248]. In HepG2cells, met-
formin and EGCG combination shows anticarcinogenic 
effects by changes in proliferation, lncRNA-AF085935 
expression, and apoptosis [249]. Metformin reduces 
HULC overexpression to inhibit HBV-induced hepato-
cellular carcinoma tumorigenesis [250].
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