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Abstract 

Background  Prostate cancer is one of the most common cancers in men with notable interpatient heterogeneity. 
Implications of the immune microenvironment in predicting the biochemical recurrence-free survival (BCRFS) after 
radical prostatectomy and the efficacy of systemic therapies in prostate cancer remain ambiguous.

Methods  The tumor immune contexture score (TICS) involving eight immune contexture-related signatures was 
developed using seven cohorts of 1120 patients treated with radical prostatectomy (training: GSE46602, GSE54460, 
GSE70769, and GSE94767; validation: GSE70768, DKFZ2018, and TCGA). The association between the TICS and 
treatment efficacy was investigated in GSE111177 (androgen deprivation therapy [ADT]) and EGAS00001004050 
(ipilimumab).

Results  A high TICS was associated with prolonged BCRFS after radical prostatectomy in the training (HR = 0.32, 95% 
CI 0.24–0.45, P < 0.001) and the validation cohorts (HR = 0.45, 95% CI 0.32–0.62, P < 0.001). The TICS showed stable 
prognostic power independent of tumor stage, surgical margin, pre-treatment prostatic specific antigen (PSA), and 
Gleason score (multivariable HR = 0.50, 95% CI 0.39–0.63, P < 0.001). Adding the TICS into the prognostic model con-
structed using clinicopathological features significantly improved its 1/2/3/4/5-year area under curve (P < 0.05). A low 
TICS was associated with high homologous recombination deficiency scores, abnormally activated pathways con-
cerning DNA replication, cell cycle, steroid hormone biosynthesis, and drug metabolism, and fewer tumor-infiltrating 
immune cells (P < 0.05). The patients with a high TICS had favorable BCRFS with ADT (HR = 0.25, 95% CI 0.06–0.99, 
P = 0.034) or ipilimumab monotherapy (HR = 0.23, 95% CI 0.06–0.81, P = 0.012).

Conclusions  Our study delineates the associations of tumor immune contexture with molecular features, recurrence 
after radical prostatectomy, and the efficacy of ADT and immunotherapy. The TICS may improve the existing risk strati-
fication systems and serve as a patient-selection tool for ADT and immunotherapy in prostate cancer.

†Sujun Han, Taoping Shi and Yuchen Liao contributed equally to this work

*Correspondence:
Xu Zhang
xzhang@foxmail.com
Nianzeng Xing
nianzeng2006@vip.sina.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-022-03827-4&domain=pdf


Page 2 of 14Han et al. Journal of Translational Medicine          (2023) 21:194 

Keywords  Prostate cancer, Tumor immune microenvironment, Biochemical recurrence, Androgen deprivation 
therapy, Immunotherapy

Introduction
Prostate cancer is a malignant tumor with high inci-
dence and mortality worldwide [1]. It is character-
ized by a long and varied course of the disease and 
high intra- and inter-tumor heterogeneity [2]. Prostate 
cancer is an androgen-dependent disease, and most 
prostate cancer patients initially respond to andro-
gen deprivation therapy (ADT) [3]. However, most 
androgen-sensitive prostate cancer patients eventually 
become resistant to ADT and develop castration-resist-
ant prostate cancer (CRPC) [4].

The tumor immune microenvironment (TIME) is 
mainly composed of tumor cells, immune cells, various 
signaling molecules, and extracellular matrix [5]. TIME 
was closely associated with survival outcome and treat-
ment response [6]. Several pieces of evidence have indi-
cated that TIME plays a key role in the development of 
prostate cancer and the response to anti-tumor therapy 
[7, 8]. T-cell infiltration was related to tumor progres-
sion and cancer-specific survival in both localized and 
metastatic prostate cancer patients [9, 10]. For instance, 
T helper (Th) cells activated antigen-specific effector cells 
and recruited immune cells such as macrophages and 
mast cells, which could play crucial roles in the adaptive 
immune response to tumor cells [11, 12]. Th17 cells are 
a subgroup of CD4+ helper T cells, which can secrete 
interleukin (IL)-17 and IL-22, and play a critical role in 
the occurrence and development of prostate cancer [13]. 
The preponderance of Th17-mediated inflammation has 
been negatively correlated with Gleason score in pros-
tate cancer patients [14], and blocking the IL-17 pathway 
inhibited the formation of microinvasive prostate can-
cer in animal models [15]. Given this, we speculated that 
TIME might be used to predict the biochemical recur-
rence-free survival (BCRFS) of prostate cancer.

As for immunotherapy, the anti-tumor effects of pem-
brolizumab and ipilimumab against prostate cancer have 
been demonstrated in clinical trials [16–18]. Immune 
checkpoint inhibitors (ICIs) such as the antibodies tar-
geting cytotoxic T lymphocyte antigen-4 (CTLA-4) and 
programmed cell death 1 (PD-1)/programmed cell death-
ligand 1 (PD-L1) could regulate the TIME and influence 
immune cells to promote anti-tumor immune responses 
[17, 19]. TIME might presumably also be a predictor for 
the ICI-induced antitumor activity in prostate cancer.

In this study, the multi-dimensional data of 1120 pros-
tate cancer patients from The Cancer Genome Atlas-
prostate adenocarcinoma (TCGA-PRAD) cohort and 

6 Gene Expression Omnibus (GEO) cohorts were ana-
lyzed. In the training cohorts, we first evaluated the 
prognostic effects of 92 immune contexture-related sig-
natures and constructed a tumor immune contexture 
score (TICS) based on the 8 signatures with prognostic 
effects. Then, the TICS was tested successfully in the vali-
dation cohorts. The TICS showed consistent prognostic 
effects across the prostate cancer patients with different 
clinicopathological characteristics (e.g., TNM stage, pre-
treatment prostatic specific antigen [PSA], and Gleason 
score) and this score was an independent prognostic fac-
tor of BCRFS. Compared with the prognostic model con-
structed by the clinicopathological features without the 
TICS, the model with the TICS had a significantly higher 
power of prognostication. In addition, the correlations 
between the TICS with cancer-related signaling pathways 
and immunotherapy efficacy were also explored, which 
might provide promising insight into the individualized 
treatment of prostate cancer patients.

Methods
Prostate cancer datasets and pre‑processing
Transcriptome profiles and clinicopathological character-
istics of seven datasets of localized prostate cancer were 
downloaded from TCGA and GEO databases, including 
GSE46602, GSE54460, GSE70768, GSE70769, GSE94767, 
DKFZ2018, and TCGA-PRAD [20–24]. The Affymetrix 
microarray data from GSE46602 and GSE94767 were 
normalized using the robust multiarray analysis (RMA) 
algorithm. The Illumina microarray data from GSE70768 
and GSE70769 were normalized using the quantile 
algorithm and log2 transformed. The RNA-seq data of 
GSE54460, DKFZ2018, TCGA-PRAD, GSE111177, and 
EGAS00001004050 produced by the Illumina HiSeq 
or TruSeq platform were normalized as Fragments Per 
Kilobase of exon model per Million mapped fragments 
(FPKM) or Reads Per Kilobase per Million mapped reads 
(RPKM) format and were transformed to log2 scale (for 
details, see Additional file  1: Table  S1). The patients 
who had not received radical prostatectomy (RP) or had 
no BCRFS data were excluded. The seven PRAD data-
sets were split into the training set and the validation 
set based on techniques and platforms, ensuring that 
the training and validation sets each have datasets using 
microarray and RNA-seq (Additional file 1: Table S1).

To assess the utility of the TICS in predicting out-
comes of patients receiving ADT, a cohort consisting of 
the pre-ADT samples from 20 prostate cancer patients 
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was obtained from the GEO database (GSE111177) [25]. 
For immunotherapy, the data of 18 metastatic castration-
resistant prostate cancer (mCRPC) patients treated with 
ipilimumab were obtained from the work of Subudhi 
et al. (EGAS00001004050 at the European Genome-phe-
nome Archive) [26].

In total, 1158 prostate cancer patients were included in 
this study. The detailed baseline characteristics are dem-
onstrated in Additional file  1: Table  S1. In microarray 
datasets, probes were replaced with matched gene sym-
bols in later analysis (the first one was selected if multi-
ple genes were matched), while the probes that did not 
match any gene were discarded. For all datasets, multi-
ple rows with the same gene symbol were ordered by the 
median expression value, and the max one was selected 
for further analysis.

Prognosis‑related markers selection and the development 
of the TICS algorithm
In total, 92 immune-related signatures were obtained 
from a previous work [27], and the single sample gene 
set enrichment analysis (ssGSEA) algorithm was applied 
to calculate the enrichment score (ES) of these immune-
related signatures in the above cohorts. Based on the 
expression of all genes, the normalized Z-score value 
of mRNA expression profiles was used to calculate the 
score. Each signature was transformed into binary varia-
bles with the cutoff of median value in four training data-
sets (GSE46602, GSE54460, GSE70769, and GSE94767). 
The univariable Cox regression analysis was applied to 
identify the prognostic efficacy of ES stratification in 
each training set, then the meta-analysis was performed 
to estimate the hazard ratios (HRs) of four training sets 
for each signature. The signatures significantly associ-
ated with prognosis (P < 0.05) in the meta-analysis were 
selected to develop the TICS. The TICS was calculated by 
the following formula:

where HRi was the hazard ratio of ith signature from 
meta-analysis, and ssGSEA score represented the enrich-
ment score of the corresponding signature.

To validate the prognostic performance of the TICS, 
three datasets (GSE70768, DKFZ2018, and TCGA-
PRAD) were used as independent validation cohorts. The 
robustness and independence of the TICS as a predictor 
of BCRFS were evaluated by subgroup analysis and uni-
variable/multivariable Cox regression. The added value 
of TICS to traditional prognostic factors such as pre-
treatment PSA and Gleason score was evaluated by com-
paring the prognostic utility of two models constructed 

TICS =

n∑

i=1

(
1−HRi

SE(HR)
∗ ssGSEA score)

based on multivariable Cox regression. The first model 
consisted of pT, pN, surgical margin, PSA, Gleason score, 
and the TICS (continuous variable), and the second 
model involved all except the TICS.

Identification of biological characteristics related 
to the TICS
We compared genetic features between the high- and 
low-risk groups, including microsatellite instability (MSI) 
score, tumor mutation burden (TMB), tumor purity, 
and genomic scar signatures [28]. Meanwhile, the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) gene set 
(c2.cp.kegg.v7.5.1.symbols.gmt) was downloaded from 
MSigDB to investigate the potential difference in the bio-
logical function between the high- and low-TICS sub-
groups using the gene set enrichment analysis (GSEA) 
method. Additionally, the ssGSEA analysis based on pub-
lished mitogenic-related gene sets was used to quantify 
the relative abundance in the TCGA-PRAD dataset [29].

Statistical analyses
All data analyses and graph plotting were conducted in 
R software (version 4.1.2), SPSS (version 20.0.0), and 
GraphPad Prism (version 8.0.2). The meta-analysis was 
performed by the “meta” R package. The Kaplan–Meier 
method was used to access the survival of different sub-
groups, and the log-rank (Mantel–Cox) test was used to 
measure the statistical significance. The univariable and 
multivariable Cox proportional hazards regression analy-
ses were performed using the “ezcox” R package. Time-
dependent receiver operating characteristic (tROC) 
curves, concordance index (C-index), and calibration 
curves were calculated by the “timeROC” package to 
evaluate the predictive power of the TICS. Mann–Whit-
ney U test and Chi-square test were used to assess the 
statistical difference between the two groups. Spearman’s 
correlation analysis was used for correlational analyses. 
The “ComplexHeatmap” package was used to visualize 
the mutation landscape. Unless otherwise stated, P values 
of less than 0.05 were considered statistically significant.

Results
Construction of the scoring algorithm based 
on recurrence‑associated immune signatures
In total, 92 immune contexture-related signatures com-
piled in a previous study were investigated in our study 
and the genes in each signature are demonstrated in 
Additional file 1: Table S2. In the training cohorts (clini-
cal information demonstrated in Additional file  1: 
Table  S1), the association between BCRFS and the 
ssGSEA enrichment score of each signature as dichot-
omous variables according to the median value was 
analyzed. Then the mixed effects in the four training 
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cohorts were calculated by meta-analysis. The prognostic 
effects of the 92 immune signatures in the training sets 
are demonstrated in Additional file  2: Fig. S1. Among 
these immune signatures, eight signatures showed a 
consistent association with BCRFS (Fig.  1A and Addi-
tional file  1: Table  S3). In detail, the signatures related 
to type 17T helper cells, immature dendritic cells, cell 
death (Rotterdam_ERneg_PCA_15721472), and immu-
noglobulin (IGG_Cluster_21214954) heralded a long 
BCRFS (P < 0.05) [30, 31], while the signatures concern-
ing CD56dim natural killer (NK) cell, wound healing 
(CHANG_CORE_SERUM_RESPONSE_UP), interferon 
signaling (Module3_IFN_score), and proliferation (Mud-
ule11_Prolif_score) were associated with a poor BCRFS 
(P < 0.05) [32, 33]. The ssGSEA enrichment score for 
the eight signatures are demonstrated in Fig.  1B, show-
ing comparable scores between the training cohorts. We 
also checked the overlap of the genes involved in these 
eight signatures and only 11 genes were repeated in the 
signatures of CHANG_CORE_SERUM_RESPONSE_UP 
(212 genes) and Mudule11_Prolif_score (120 genes). In 
addition, low multicollinearity was observed among the 
scores of these eight signatures (variance inflation factor 
[VIF] < 10 and kappa < 100, Additional file  1: Table  S4), 
which infers the feasibility of constructing a prognostic 
model based on these eight signatures.

According to the HR values of the mixed effects, we 
calculated the coefficients of the eight signatures (shown 
on the left in Fig.  1B) and calculated the TICS by sum-
ming the products of each signature score and its coef-
ficient. According to the TICS, samples were divided 
into two groups with the median value in each train-
ing cohort, and the patients in the high-TICS group 
had a more favorable BCRFS than the corresponding 
low-TICS group (GSE46602: P = 0.040, HR = 0.41, 95% 
CI 0.17–0.99; GSE54460: P < 0.001, HR = 0.31, 95% CI 
0.17–0.55; GSE70769: P < 0.001, HR = 0.31, 95% CI 0.16–
0.58; GSE94767: P < 0.001, HR = 0.33, 95% CI 0.18–0.59; 
Fig. 1C–F).

To further evaluate the prognostic power of the TICS, 
three additional independent cohorts (GSE70768, 
DKFZ2018, and TCGA-PRAD) were utilized for valida-
tion (clinical information demonstrated in Additional 
file  1: Table  S1). The ssGSEA enrichment score for the 
eight signatures are also demonstrated in Fig. 1G. Among 
these cohorts, the two groups divided by the median 
value of the TICS also showed significant differences in 
BCRFS (GSE70768: P = 0.006, HR = 0.26, 95% CI 0.09–
0.72; GSE54460: P = 0.019, HR = 0.28, 95% CI 0.09–
0.87; TCGA: P < 0.001, HR = 0.51, 95% CI 0.35–0.73; 
Fig.  1H–J). The AUCs were 0.64–0.80 and the c-indices 
were 0.63–0.78 for all the included cohorts (Fig. 1K and 
Additional file 1: Table S5), revealing that the TICS was 

likely to be a robust prognostic marker for the BCRFS 
after RP. Pooled analysis revealed consistent results in the 
training cohorts (HR = 0.32, 95% CI 0.24–0.45, P < 0.001) 
and in the validation cohorts (HR = 0.45, 95% CI 0.32–
0.62, P < 0.001, Fig. 1L). Altogether these results suggest 
the robust utility of the TICS in predicting biochemical 
recurrence in prostate cancers.

Furthermore, we compared the TICS with several pre-
viously published multi-gene signatures with exposed 
formulas [34–37]. In the three datasets in the valida-
tion set, the TICS showed a numerically higher C-index 
for predicting BCRFS than other signatures (Additional 
file  1: Table  S6 and Additional file  2: Fig. S2), elucidat-
ing the superiority of the TICS over previously published 
signatures.

The added value of the TICS for prognostication in prostate 
cancer
We then assessed the associations between the TICS and 
clinicopathological features. The patients of all cohorts 
were grouped according to clinicopathological features, 
and the TICS were compared among different sub-
groups. A lower TICS was observed in elderly patients 
(≥ 60, P = 0.017), patients with advanced disease (pT3/4, 
P < 0.001; pN1, P < 0.001), patients with positive surgical 
margin (R1/2, P < 0.001), a higher pre-treatment prostate-
specific antigen (PSA, P = 0.004), and a poorer Gleason 
score (P < 0.001, Fig. 2A).

Given the association between the TICS and prognos-
tic indicators such as pathological stage, pre-treatment 
PSA, and Gleason score, we further performed a sub-
group analysis of the association between the TICS and 
BCRFS. In the subgroups stratified by age, stage, surgi-
cal margin, PSA, and Gleason score, similar trends of the 
association between a high TICS and long BCRFS were 
observed (Fig. 2B), indicating the robustness of its prog-
nostic utility. Furthermore, multivariable Cox regression 
analysis identified the TICS as an independent predictor 
of BCRFS, whether the TICS was treated as a categori-
cal variable (grouped by the median value, multivariable 
HR = 0.50, 95% CI 0.39–0.63, P < 0.001) or as a continu-
ous variable (multivariable HR = 0.61, 95% CI 0.53–0.70, 
P < 0.001, Fig. 2C), suggesting that the TICS was a prog-
nostic factor independent of clinicopathological features.

We constructed two models by multivariable regression 
with or without the TICS to estimate the added value of 
the TICS. The first model consisting of pT, pN, surgical 
margin, PSA, Gleason score, and the TICS (continuous 
variable) achieved a bootstrap Dxy of 0.443. By contrast to 
this model, the second model involving all the above vari-
ables except the TICS yielded a relatively lower bootstrap 
Dxy of 0.387. The calibration curves of these two models 
are shown in Fig. 2D, in which the model with the TICS 
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cohort. G Clinicopathological features and the expression pattern of immune signatures in validation cohorts. H–J Kaplan–Meier analysis of the 
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showed better agreement between the predicted and 
observed 1-, 3-, and 5-year BCRFS. Moreover, the addi-
tion of the TICS significantly improved the 1-year (0.790 

vs. 0.757, P = 0.004), 2-year (0.759 vs. 0.716, P < 0.001), 
3-year (0.745 vs. 0.709, P < 0.001), 4-year (0.753 vs. 0.729, 
P = 0.015), and 5-year AUC (0.752 vs. 0.730, P = 0.048, 

Univariable HR (95% CI) P Multivariable-1 HR (95% CI) P Multivariable-2 HR (95% CI) P
Age (≥60 vs. <60) 1.17 (0.91-1.52) 0.23
pT (3/4 vs. 1/2) 1.88 (1.51-2.35) <0.001 1.45 (1.11-1.88) 0.006 1.38 (1.06-1.79) 0.017
pN (1 vs. 0) 1.66 (1.07-2.57) 0.023 0.85 (0.54-1.33) 0.48 0.75 (0.48-1.19) 0.22
Surgery margin (R1/2 vs. R0) 1.96 (1.53-2.50) <0.001 1.45 (1.12-1.89) 0.005 1.49 (1.14-1.94) 0.003
PSA (dummy variable) <0.001 <0.001 <0.001
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Fig.  2E). Adding the TICS into the model constructed 
by traditional prognostic markers markedly improved 
its prognostic utility, indicating the added value of the 
TICS for the prognostication based on the traditional 
indicators.

Genetic profiles of the prostate cancer in different TICS 
groups
Based on the TCGA dataset, we analyzed the somatic 
alterations of the cancerous samples in the high- and 
low-TICS groups (Fig. 3A). The frequency of the somatic 
mutations of homologous recombination (HR) genes and 
mismatch repair (MMR) genes trended higher in the low-
TICS group (e.g., BRCA2 [P = 0.013], BRIP1 [P = 0.007], 
and MSH6 [P = 0.062], Fig.  3A). In addition, somatic 
alterations in other key genes were also investigated 
(Fig. 3A). TP53, FOXA1, and PTEN were reported to be 
involved in the regulation of cell survival and prolifera-
tion, and their somatic mutations were associated with 
cancer progression in prostate cancer [38–40]. In our 
study, mutation events of these three genes were signifi-
cantly increased in the low-TICS group (TP53, P = 0.002; 
FOXA1, P = 0.016; PTEN, P < 0.001). Other genes associ-
ated with tumorigenesis of prostate cancer, such as ATM, 
MKI67, and SPOP [39, 41–44], showed non-significant 
increases in somatic mutation frequency in the low-TICS 
group.

As for the indices concerning genomic alterations, the 
low-TICS group had a high aneuploidy score (P < 0.001, 
Fig.  3B) and non-synonymous TMB (P < 0.001, Fig.  3C), 
indicating genomic instability. Based on the approval of 
poly-ADP ribose polymerase inhibitor (PARPi) in pros-
tate cancer, we further analyzed the scores related to 
DNA damage repair. Consistent with the numerically 
more mutations of MMR and HR genes in the low-TICS 
group, the samples with a low TICS trended to have a 
high MSI score (P = 0.058, Fig.  3D) and high homolo-
gous recombination deficiency (HRD)-associated scores 
including telomeric allelic imbalance (NtAI, P < 0.001, 
Fig.  3E), large-scale state transitions (LST, P < 0.001, 
Fig. 3F), loss of heterozygosity (LOH, P < 0.001, Fig. 3G), 
and the total HRD score (P < 0.001, Fig. 3H).

The TICS represented alterations of cancer‑related 
pathways
Based on the gene sets embodied in the KEGG database, 
we analyzed the changes in pathway activity between the 
high- and low-TICS groups by GSEA (Fig. 4A and Addi-
tional file  1: Table  S7). Tumors in the high-TICS group 
had higher activity of the Hedgehog signaling, second 
messenger signaling, and cell–matrix adhesion-related 
pathways, while the high expression of the IL-17 family 
may indicate an intense inflammatory response (Fig. 4B). 

On the other side, the abnormal expression of genes 
involved in DNA replication and cell cycle in the low-
TICS group suggested the endogenous aggressiveness of 
tumors, and the activation of steroid hormone biosynthe-
sis and drug metabolism may lead to resistance to ADT 
and other treatments (Fig. 4B).

Further, we analyzed the alterations of the previously 
reported oncogenic signaling pathways by Sanchez-Vega 
et  al. [29]. The TICS was negatively correlated with the 
scores related to cell cycle (Rho = − 0.37, P < 0.001), p53 
(Rho = − 0.37, P < 0.001), PI3K (Rho = − 0.25, P < 0.001), 
and Myc (Rho = − 0.12, P = 0.0058) pathways while 
positively correlated with the scores concerning Wnt 
(Rho = 0.21, P < 0.001), RTK/RAS (Rho = 0.15, P < 0.001), 
and Hippo (Rho = 0.15, P < 0.001) pathways (Fig.  4C, 
D). These results suggest that the TICS may represent 
the biological heterogeneity among different prostate 
cancers.

Associations between TICS and the efficacy of ADT 
and immunotherapy
Considering the association between the TICS and ster-
oid hormone biosynthesis pathway, we hypothesized that 
the TICS might predict the response to ADT. To evalu-
ate the relationship between the TICS and ADT efficacy, 
an independent cohort (GSE111177) of 20 patients with 
clinical stage Ic to IIIa prostate cancer was analyzed 
(Fig.  5A). Neither pre-treatment PSA (< 10 vs. ≥ 10, or 
< 20 vs. ≥ 20) nor Gleason score (≤ 6 vs. > 6) was able 
to distinguish BCRFS effectively, while the TICS-based 
dichotomy based on median value yielded two groups 
with significantly different BCRFS (P = 0.034, HR = 0.25, 
95% CI 0.06–0.99; Fig.  5A). Taken together, the TICS 
rather than pre-treatment PSA and Gleason score might 
be an effective marker to identify patients susceptible to 
castration resistance to ADT.

As a score reflecting immune contexture, the TICS 
should be theoretically associated with immunotherapy 
efficacy, which was studied in a cohort consisting of 18 
CRPC patients treated with ipilimumab monotherapy [26]. 
First, based on the ROC curve illustrating the association 
between the TICS and disease control (Fig. 5B), an optimal 
cut-off was determined when the Youden’s index reached 
the maximum. According to this cut-off, the cohort was 
stratified into the high-TICS (n = 13) and the low-TICS 
groups (n = 5). Patients in the high-TICS group had sig-
nificantly favorable BCRFS (P = 0.012, HR = 0.23, 95% CI 
0.06–0.81), radiographic progression-free survival (rPFS, 
P = 0.003, HR = 0.17, 95% CI 0.04–0.65), and overall sur-
vival (OS, P = 0.018, HR = 0.23, 95% CI 0.06–0.87) com-
pared to the low-TICS patients (Fig. 5C). We also analyzed 
the immune cell composition in the tumor tissues between 
both groups and found that the tumors in the high-TICS 
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group were infiltrated with more T cells (P = 0.003, par-
ticularly cytotoxic T cells [P = 0.003] and memory T cells 
[P = 0.007]), B cells (P = 0.014), NK cells (P = 0.003) and 
dendritic cells (P = 0.046, Fig. 5D, E). These results indicate 
that the tumors with a low TICS may undergo the “immune 
desert” state, which is difficult to benefit from ICIs.

Discussion
The recurrence of prostate cancer after RP is a serious 
threat, and the precise prediction of the risk of recur-
rence may facilitate appropriate personalized manage-
ment. In the present study, we analyzed the expression 
profile of resected tumor samples and constructed 
a novel score to predict BCRFS based on the eight 

expression signatures related to immune contexture. The 
TICS was effective across the four training sets and the 
three validation sets and showed consistent prognostic 
effects in the subgroups stratified by key clinicopatholog-
ical characteristics (e.g., TNM stage, pre-treatment PSA, 
and Gleason score). The TICS was further identified to be 
an independent predictor of BCRFS. Based on the prog-
nostic model constructed by key clinicopathological fea-
tures, adding the TICS significantly improved the power 
of prognostication. Moreover, the TICS may represent 
intrinsic discrepancies of prostate cancers at genomic 
and transcriptomic levels and possess the ability to pre-
dict the efficacy of ADT and ICI treatment.
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In previous studies, the biological functions related to 
some of the signatures involved in the TICS calculation 
have been suggested to be associated with the progno-
sis. Inflammation mediated by Th17 was correlated with 
a low Gleason score [14], while the infiltration of den-
dritic cells conferred improved distant metastasis-free 
survival of patients [45, 46]. Prostate cancer at the onset 
of hormone resistance revealed an increased prolifera-
tive rate and a decreased apoptotic rate compared with 
hormone-responsive cancer [47], and the expression 
of genes involved in cell cycle progression was useful to 
predict biochemical recurrence [48]. Nevertheless, there 
are also some signatures involved in the TICS that had 
inconsistent results with previous studies. Low NK cell 
activity was associated with positive surgical margins in 
51 postoperative patients [49], while highly effective NK 
cells revealed a good prognosis in a study including 18 
patients with metastatic cancer [50], but the high expres-
sion of CD56dim NK cell signature led to a decline of the 
TICS. Interferon-γ may suppress the invasive capacity of 
prostate cancer cells in vitro [51], and a low interferon-β 
level was an indicator to distinguish high-risk patients 
with localized cancer [52], but the Module3_IFN_score 
signature was negatively correlated with the TICS. These 
abnormalities may be related to the spatial and temporal 
distribution of cells with corresponding expression signa-
tures in prostate cancer tissue, which will be elucidated in 
further studies.

Tumor stage, PSA level, and Gleason score have been 
used for prostate cancer risk stratification and are widely 
recommended in guidelines [53, 54]. However, each fea-
ture has its disadvantages, such as poor specificity [55], 
interobserver variation, and sampling problems [56], 
resulting in different manifestations among patients in 
the same risk group. The TICS in the present study pre-
dicted different outcomes in patients with similar TNM 
stage, PSA level, or Gleason score, and demonstrated 
its independence in multivariable analysis, indicating its 
ability as a novel prognostic biomarker. The prognostic 
model with the TICS performed better than the model 
constructed by clinicopathological features alone, sug-
gesting the added value of the TICS to the existing risk 
stratification system. In addition, the TICS showed better 
performance compared with previously published mod-
els [34–37], indicating its added value.

Although existing studies have identified several factors 
associated with ADT response (such as the expression of 
PTEN or specific miRNAs) [57, 58], a clinical prognos-
tic system to predict the outcomes of ADT is absent to 
date. ADT may cause remodeling of the immune micro-
environment in prostate cancer and affect the patient’s 
relapse-free survival [59], which inspired us to try to pre-
dict patients’ response to ADT with the TICS. The TICS 

demonstrated better prognostic efficacy than the PSA 
level or the Gleason score in a limited cohort, and this 
encouraging result needs to be validated on a larger scale. 
In previous clinical trials, few of the unselected patients 
benefited from treatment with ICIs, while several gener-
ally acknowledged immunotherapy biomarkers (i.e., high 
TMB, alterations in DNA damage repair [DDR] genes, or 
high-expression PD-L1) yielded controversial results in 
the different trials [26, 60–62]. Patients with low TICS 
revealed poor outcomes in the investigated cohort with 
CTLA-4 antibody treatment, while TMB or DDR gene 
mutations failed to make effective discrimination, sug-
gesting that TICS may have a unique value in excluding 
patients who may not benefit from immunotherapy.

In our study, the transcriptomic data were from dif-
ferent platforms, which may lead to potential adverse 
effects on data analysis and the generalizability of results. 
Despite the lack of batch correction in our study, we did 
the following to minimize this disadvantage in develop-
ing a robust TICS. First, the seven PRAD datasets were 
split into the training set and the validation set based on 
platforms, ensuring that the training and validation sets 
each have datasets using microarray and RNA-seq. Sec-
ond, the TICS was calculated by the rank-based ssGSEA 
method, suitable for cross-platform transcriptome meas-
urements. In the xCell study using ssGSEA to estimate 
immune cell infiltration, the authors showed that their 
scores reliably predicted enrichment when using dif-
ferent RNA-seq techniques and different microarray 
platforms [63]. The xCell scores were agnostic to nor-
malization methods or concerns related to batch effects, 
making them robust to both technical and biological 
noise [63]. Third, in the training set, the signature scores 
of different datasets were not directly combined. Instead, 
the prognostic value of each signature in each dataset 
independently was assessed by comparing the BCR of 
two subgroups classified by the median value of each 
signature in each dataset. Fourth, in model training, the 
coefficient of each signature score in the algorithm of the 
TICS was decided by the pooled HR by meta-analysis, 
reflecting the combined effect among the four datasets 
in the training set using different platforms. In validation, 
the TICS showed great performance in each of the three 
datasets in the validation set, including one using micro-
array (GSE70768) and two using RNA-seq (DKFZ2018 
and TCGA-PRAD). These results indicate the potential 
generalizability of the TICS across platforms.

As for other limitations, first, the size of the cohorts 
used to analyze the associations of the TICS with the 
efficacy of ADT or immunotherapy efficacy was small, 
and castration-resistant patients in the immunotherapy 
cohort may have molecular characteristics different from 
the training cohorts. Our findings based on these two 
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cohorts had hypothesis-generating rather than hypothe-
sis-testing value. More data on prostate cancer patients 
with non-RNA-seq or microarray techniques (e.g., pro-
tein expression level) are needed to evaluate the preci-
sion and robustness of the TICS model in the future. 
Second, the TICS was calculated by the ssGSEA method 
which requires the whole microarray or RNA-seq data. 
Despite that RNA-seq may benefit PRAD patients by 
detecting fusions (e.g., NTRK), large genomic rearrange-
ments (e.g., BRCA1/2), and splice variants (e.g., AR-V7) 
that may guide targeted therapies, its low cost-effec-
tiveness may prevent it from being widely used in clini-
cal settings. Third, the TICS consists of eight immune 
signatures/cells, while exploring the spatial relationship 
between immune cells and cancer cells must be war-
ranted in future studies. Fourth, established with retro-
spective datasets, more prospective studies are necessary 
to examine the clinical utility and cost-effectiveness of 
the TICS.

Conclusions
In summary, our study identified the TICS as a robust 
biomarker based on the expression signatures in pros-
tate cancer. In a retrospective study of multiple cohorts, 
TICS can optimize the accuracy of existing models for 
predicting BCR, while it is also associated with the out-
comes of ADT or immunotherapy. In the PRAD patients 
after curative surgery with a normal PSA and/or a low 
Gleason score, those with a low TICS might benefit from 
radical treatment and close monitoring. In addition, the 
predictive value of the TICS for ADT and immunother-
apy is worth further investigation. This work developed 
a robust and effective tool for improving the risk strati-
fication scheme of prostate cancer patients, which may 
optimize post-operative management and personalized 
treatment for patients with prostate cancer in clinical 
practice.
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