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Abstract 

Background:  Myotonic dystrophy type 1 (DM1), one of the most common forms of adult-onset muscular dystrophy, 
is caused by abnormally expanded CTG repeats in the 3′ untranslated region of the DMPK gene. The CUG repeats tran‑
scribed from the expanded CTG repeats sequestrate a splicing factor, MBNL1, causing the clinical symptoms in DM1. 
Nowadays, only symptomatic treatments are available for DM1, and no rational therapy is available. Recently, upregu‑
lation of MBNL1 expression has been found to be one of the promising therapies for DM1.

Methods:  All experiments were conducted in the C2C12 myoblasts and HSALR mice, a DM1 mouse model. Real-
time PCR and western blot were used to detect the mRNA and protein level, respectively. The rotarod exercise, grip 
strength and hanging time were used to evaluate the muscle strength of mice.

Results:  In this study, we demonstrated that calcitriol, an active form of vitamin D3, increased MBNL1 in C2C12 
mouse myoblasts as well as in HSALR mice model for DM1. In HSALR mice model, calcitriol improved muscle strength, 
and corrected aberrant splicing in skeletal muscle. Besides, calcitriol reduced the number of central nuclei, and 
improved muscle histopathology in HSALR mice. In addition, we identified that calcitriol upregulated MBNL1 expres‑
sion via activating the promoter of Mbnl1 in C2C12 myogenic cells.

Conclusion:  Our study suggests that calcitriol is a potential pharmacological strategy for DM1 that enhances MBNL1 
expression.
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Background
Myotonic dystrophy type 1 (DM1), also known as Stein-
ert’s disease, is one of the most common forms of adult-
onset muscular dystrophy, with a prevalence of 9.27 
per 100,000 [1]. DM1 is caused by abnormal expan-
sion of CTG repeats in the 3’ untranslated region of the 
myotonic dystrophy protein kinase (DMPK) gene on 

chromosome 19 [2]. Unaffected individuals harbor 5–35 
copies of CTG repeats, whereas DM1 patients carry 50 or 
more copies [3]. The CUG repeats transcribed from the 
abnormally expanded CTG repeats sequestrate muscle-
blind-like protein 1 (MBNL1), leading to the downregula-
tion of free MBNL1 [4]. The limited MBNL1 availability 
leads to the aberrant regulation of alternative splicing 
of hundreds of genes, causing various clinical manifes-
tations such as progressive muscle wasting, myotonia, 
insulin resistance, cardiac arrhythmia, cataracts, and 
intellectual deficits [5].
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Recently, some therapeutic approaches have been 
designed for DM1 [6, 7]. There is numerous evidence 
that MBNL1 functions are the limiting factors in DM1, 
and the upregulation of MBNL1 expression is one of the 
promising therapies for DM1. In animal experiments, 
Mbnl1 knockout mice recapitulate the main clinical 
symptoms for DM1, such as myotonia, aberrant splicing, 
cataracts, cardiac dysfunctions, and progressive skeletal 
muscle weakness [8, 9]. In complementary gain-of-func-
tion experiments, the overexpression of Mbnl1 in skel-
etal muscle, using a recombinant adeno-associated viral 
vector in a murine model expressing 250 CTG repeats 
(HSALR mice), rescued myotonia, hyperexcitability, and 
aberrant splicing [5, 10]. MBNL1 upregulation in DM1 
mice and DM1 drosophila is well tolerated without obvi-
ous side effects, and rescues several symptoms, such as 
myotonia, myopathy, and mis-splicing events [11, 12].

Vitamin D is a steroid hormone, of which approxi-
mately 80% is produced in the skin [13]. In the skin, 
7-dehydrocholesterol is transferred into pre-vitamin D3 
and then vitamin D3 under the action of ultraviolet-B 
radiation. Vitamin D3 is further converted to 25-hydrox-
yvitamin D [25(OH)D] in the liver and 1,25-hydroxyvita-
min D (1,25(OH)2D, also called calcitriol), an active form 
of vitamin D3, in the kidney [14]. Previous studies found 
that DM1 patients have a reduction of circulating 25(OH)
D, which correlates with the severity of the disease, sug-
gesting that vitamin D supplement may alleviate some 
symptoms of DM1 patients [15, 16].

In this study, we first identified that calcitriol increases 
MBNL1 in C2C12 mouse myoblasts. Next, we confirmed 
that calcitriol improves muscle strength in HSALR mice 
model for DM1. Calcitriol enhances MBNL1 expres-
sion and corrects aberrant splicing in skeletal muscle 
of HSALR mice. Besides, calcitriol reduces the number 
of central nuclei, and improves muscle histopathology 
in HSALR mice. In addition, we identified that calcitriol 
upregulates MBNL1 expression via activating the pro-
moter of Mbnl1 in C2C12 myogenic cells. Our study 
suggests that calcitriol is a promising pharmacological 
strategy for DM1.

Methods
C2C12 cell culture and drug treatment
C2C12 myoblasts (National Collection of Authenticated 
Cell Cultures, serial: SCSP-505) were cultured in Dul-
becco’s modified Eagle’s medium (DMEM, Gibco, Cat. 
C12430500BT) supplemented with 10% (v/v) fetal bovine 
serum (FBS, Procell, Cat. 164210-50) and incubated at 
37 °C with 5% CO2. Different concentrations of calcitriol 
(MCE, HY-10,002) or ergocalciferol (Aladdin, E106318) 
were added into the culture medium of C2C12 myoblasts 
with 50–60% confluency for 24  h before analysis. To 

examine the effect of calcitriol or ergocalciferol in differ-
entiated C2C12 myotubes, C2C12 myoblasts were grown 
to 95% confluency in DMEM with 10% FBS, and then 
changed into the differentiation medium containing 2% 
horse serum (HS) (Biological Industries, Cat. 04-004-1B) 
and various concentrations of calcitriol or ergocalciferol 
in DMEM for five days before analysis.

Administration of calcitriol to DM1 mouse model
All mouse studies were approved by the Department of 
Laboratory Animals of Central South University, and 
were performed in accordance with the relevant guide-
lines. HSALR transgenic mice, which express approxi-
mately 250 untranslated CUG repeats driven by a 
muscle-specific promoter, were bought from The Jackson 
Laboratory, USA (Strain #:032031) [17]. The wild-type 
FVB/N (WT) mice that have the same genetic back-
ground were bought from the Department of Laboratory 
Animals of Central South University. Mice were divided 
into three groups: (1) untreated WT mice, (2) untreated 
HSALR mice, and (3) calcitriol treated HSALR mice. At 12 
weeks after birth, mice started to take 0.9% normal saline 
or 1 µg/kg/day of calcitriol, which is a physiological dose 
widely used in mouse experiment [18, 19], by intraperito-
neal injection for 12 weeks before sacrifice.

Blood routine examination and vitamin D level analysis
After treated with or without calcitriol for 12 weeks, 
blood of the mice was collected from the angular veins 
and transferred into a blood collection tube containing 
EDTA to prevent blood clotting. Blood routine examina-
tion and cell classifications were analyzed using a Sysmex 
Hematology Analyzer (XN-1000-B1, Dewei, China) fol-
lowed with manufacturer’s instructions. Vitamin D lev-
els were determined using Mouse VD ELISA Kit from 
Shanghai ZCIBIO technology Co.,Ltd, (Cat. ZC-38,755), 
according to the manufacturer’s instructions.

Rotarod test, grip of strength, and inverted mesh hanging 
test
For the rotarod test, the angular speed was accelerated 
from 0 to 40  rpm in 90  s with a 30 min maximum trail 
time (ZF44-YLS-4D, M407469). Mice were given two tri-
als per week and the average endurance time of two trails 
for each animal was calculated. Mice with impaired mus-
cle strength fell off quickly. The apparatus was cleaned 
between each trial to avoid odor interference.

The peak grip force was measured using a grip strength 
meter (YR92-YLS-13  A, M281330). Mice that grasp a 
wire mesh with the forelimbs and hindlimbs were pulled 
horizontally by their tails until they lost their grip. Meas-
urements were performed twice and the average strength 
for each mouse was calculated.
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Fatigability of limbs was tested for with the inverted 
grid hanging test [20]. Mice were placed on the center of 
an invertible 40×40 cm wire grid, mounted 60 cm above 
a padded surface. The time was recorded from the mice 
hang on to drop off. Each mouse was tested twice. The 
average hanging times were calculated for each mouse.

Gene expression analysis and splicing analysis
RNA extraction from the tibialis anterior (TA) muscle 
of mouse was performed as described previously with 
minor modifications [21]. Tissues were mashed by High 
Speed Tissue Homogenizer (Servicebio, KZ-II) in the 
lysis buffer from the FastPure Cell/Tissue Total RNA 
Isolation Kit (Vazyme, Cat. RC101-01). Total RNA from 
the tissues and the cultured cells was extracted by the kit 
according to the manufacturer’s instructions. RNA was 
reverse-transcribed into cDNA using RevertAid Master 
Mix (Thermo Fisher, Cat. M1631).

Real-time RT-PCR was performed with the QuantS-
tudio (Thermo Fisher Scientific) using the NovoStart® 
SYBR qPCR SuperMix Plus (Novoprotein, Cat. E096). 
Gene expression levels were normalized by that of 

glyceraldehyde-3-phosphate dehydrogenase (Gapdh). All 
real-time RT-PCR experiments were performed in dupli-
cate. For splicing analysis, PCR amplifications were per-
formed using 2×Taq Plus Master Mix II (Vazyme, Cat. 
P213) for 35 cycles. The primer sequences used for PCR 
are shown in Additional file  1: Table  S1. The intensities 
of RT-PCR-amplified spliced products were quantified 
with the ImageJ program (http://​imagej.​nih.​gov/​ij/). We 
then estimated the ratio of exon inclusion by dividing the 
signal intensity of the upper band by the sum of signal 
intensities of two bands.

Western blot and immunodecoration
Proteins from tissues and cultured cells were extracted by 
the lysis buffer [20 mM Tris/HCl pH 7.4, 50 mM NaCl, 
10% (w/v) Glycerol, 0.1 mM EDTA, 2% SDS] supple-
mented with cOmplete protease inhibitor (Roche) and 
1 mM PMSF. The protein concentration was quantified 
using Pierce 660  nm Protein Assay Reagent (Thermo 
Scientific, Cat. 23,225). Proteins were separated by SDS-
PAGE, transferred onto polyvinylidene fluoride (PVDF) 
membranes (Immobilon-P, Millipore), and detected with 
primary and secondary antibodies listed in Additional 
file 1: Table S2 using ECL (Advansta, Cat. K-12,045-D50) 
and ChampChemi910 (Beijing Sage Creation Science 
Co., Ltd.).

Histopathology of TA muscles
Pathological examinations were performed as described 
elsewhere with minor modifications [22–25]. Briefly, TA 
muscles of mouse were snap-frozen in isopentane chilled 
with liquid nitrogen. Quadriceps muscles were sliced at 
8 μm with a cryostat. Hematoxylin and eosin (HE) stain-
ing was done according to the standard procedures. To 
determine the central nuclei, muscle fiber size and fre-
quency distribution, tissue slides were observed using 
Olympus BX53 microscope. The cross-sectional area of 
the myofibers and the number of myonuclei was calcu-
lated from two random view per muscle sample using 
ImageJ.

Transfection and luciferase assays
To make the luciferase vector harboring the Mbnl1 
promoter (pMbnl1), the mouse genomic region of 
chr3:60,407,525 − 60,408,852 according to GRCm37/
mm9 was chemically synthesized, inserted into pGL3-
Enhancer Vector (pGL3E, Promega) between BmtI and 
XhoI restriction sites, and was confirmed by Sanger 
sequencing (Sangon Biotech). Plasmids were introduced 
into Stbl3 Competent Cell (KTSM110L) and propagated. 
To measure the transcriptional activity of pMbnl1, C2C12 
myoblasts were grown to 95% confluency in DMEM 
with 10% FBS, and then changed into the differentiation 

Fig. 1  Calcitriol upregulates MBNL1 expression in C2C12 myoblasts 
and myotubes. Real-time RT-PCR analysis (a, b) and western blot (c) 
were performed using undifferentiated or differentiated C2C12 cells. 
The cells were treated with calcitriol as indicated. Undifferentiated 
C2C12 cells were examined one day after the treatment. 
Differentiated C2C12 cells were examined on day 5 of differentiation. 
Expression levels of Mbnl1 mRNA and MBNL1 protein are normalized 
to those of Gapdh and GAPDH, respectively, and also to 0 nM-treated 
cells. Mean and SEM (n = 3 and 6 culture dishes for real-time RT-PCR 
and western blot, respectively) are indicated. *p < 0.05, **p < 0.01 
and ***p < 0.001 by one-way ANOVA followed by Turkey multiple 
comparison correction

http://imagej.nih.gov/ij/
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medium containing 2% HS and various concentrations 
of calcitriol. The cells were transiently transfected with 
pMbnl1 or pGL3E using Lipofectamine 3000 (Ther-
moFisher) according to the manufacturer’s recommenda-
tions. Five days later, the luciferase assay was performed 
using the Dual Luciferase Reporter Assay kit (Vazyme, 
Cat. DL101-01). For normalization, pRL-CMV Renilla 
Luciferase Reporter Vector was co-transfected, and the 
firefly luciferase activities were normalized to the Renilla 
luciferase activity.

Results
Calcitriol increases MBNL1 expression in myogenic C2C12 
cells
Since the upregulation of MBNL1 is a promising thera-
peutic target of DM1, and the level of circulating 25(OH)
D (the precursor of calcitriol) correlates inversely with 
the disease severity in DM1 patients [15, 16], we started 
to address whether calcitriol regulates MBNL1 expres-
sion using C2C12 cells. We cultured the cells with dif-
ferent concentrations of calcitriol for 24 h and analyzed 
Mbnl1 mRNA level by real-time RT-PCR. Calcitriol 
promoted the expression of Mbnl1 mRNA up to two-
fold in undifferentiated C2C12 cells (Fig.  1a). We next 
examined the effect of calcitriol on MBNL1 expres-
sion during myogenic differentiation. We harvested 

total RNA from C2C12 cells on differentiation day 5, 
and performed real-time RT-PCR analysis. Our analysis 
showed that calcitriol also upregulated Mbnl1 mRNA in 
a dose-dependent manner in differentiated C2C12 cells 
(Fig. 1b). Consistently, western blot analysis showed that 
calcitriol upregulated MBNL1 protein level (Fig.  1c). 
Meanwhile, we did not observe any significant effect of 
calcitriol on the expression of muscle-related proteins, 
such as α-sarcoglycan [26] and Myogenin [27], in C2C12 
cells (Additional file  1: Figure S1). Of note, ergocalcif-
erol (an active form of vitamin D2) neither significantly 
affect Mbnl1 expression (Additional file  1: Figure S2). 
These results suggest that calcitriol specifically enhances 
MBNL1 expression in myogenic cells in a dose-depend-
ent manner.

Calcitriol improves muscle strength in HSALR mice
Next, we analyzed the effects of calcitriol on HSALR mice. 
HSALR mouse is a widely-used model for DM1, which 
carries 250 CUG repeats driven by a muscle-specific pro-
moter. Calcitriol (1  µg/kg/day) was given to the HSALR 
mice by intraperitoneal injection for 12 weeks from age 
12 weeks. We confirmed that the calcitriol treatment did 
not affect the body weight and blood cells composition in 
HSALR mice (Additional file  1: Figure S3). As expected, 
calcitriol upregulated vitamin D levels from 2.85 ng/

Fig. 2  Calcitriol alleviates muscle weakness in HSALR mice. (a) WT and HSALR mice were treated with calcitriol as indicated. Vitamin D level of 
plasma from each group were analyzed. Mean and SEM (n = 8, 8 and 8 in WT, DM1 0 µg/kg/d and DM1 1 µg/kg/d, respectively) are indicated. 
(b–d) Calcitriol induced partial recovery from the muscle weakness occurring in the HSALR mice. The time that the mice stay on the rotarod (b), 
the grip strength (c) and the time that the mice hang on the wire mesh (d) of each group was recorded. Mean and SEM (n = 9, 9 and 8 in WT, DM1 
0 µg/kg/d and DM1 1 µg/kg/d, respectively) are indicated. *p < 0.05, **p < 0.01 and ***p < 0.001 by one-way ANOVA followed by Turkey multiple 
comparison correction (a), and by two-way ANOVA followed by Turkey multiple comparison correction (b–d)
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ml (~ 6.8 nM) to 4.74 ng/ml (~ 11.4 nM) in HSALR 
mice (Fig.  2a). We next analyzed the rotarod exercise, 
grip strength and hanging time to evaluate the muscle 
strength of these mice during calcitriol treatment. We 
found that calcitriol treatment increased the exercising 
time on the rotarod, the grip strength and the hanging 
time on the wire mesh in HSALR mice (Fig. 2b–d). These 
results suggest that calcitriol ameliorates muscle weak-
ness in DM1 mouse model.

Calcitriol improves muscle histopathology in HSALR mice
In HSALR mice, central nuclei and markedly increased 
fiber size variations are pathological features in skeletal 
muscles. We stained muscle sections of untreated wild 
type mice, untreated HSALR mice, and calcitriol-treated 
HSALR mice with hematoxylin and eosin (H&E), which 
could clearly show nuclei and muscle fiber size (Fig. 3a). 
We found that calcitriol significantly reduced the num-
ber of muscle fibers with central nuclei (Fig.  3b). The 
frequency distribution of the muscle fiber area further 
revealed that the TA muscle of calcitriol-treated HSALR 

mice had a shift toward WT mice as compared with the 
untreated HSALR mice (Fig. 3c).

Calcitriol upregulates MBNL1 expression and corrects 
aberrant splicing in skeletal muscle
Consistent with the results of C2C12 cells, in  vivo 
analysis showed that calcitriol elevated the expres-
sion of Mbnl1 in TA muscles and soleus of HSALR mice 
(Fig.  4a–d). Calcitriol enhanced the Mbnl1 mRNA level 
by approximate 3 folds and significantly elevated the 
amount of MBNL1 proteins. Interestingly, although the 
level of Mbnl1 mRNA in calcitriol treated HSALR mice 
significantly exceeded the one in WT mice, the protein 
level was still significantly lower. Additional regulating 
mechanisms on translational/post-translational level of 
Mbnl1 may be involved and await further studies. Since 
MBNL1 regulates splicing events in skeletal muscle, we 
assumed that the enhanced expression of MBNL1 by cal-
citriol may correct the aberrant splicing in HSALR mice. 
Indeed, RT-PCR analysis demonstrated that calcitriol 
significantly suppressed the abnormal inclusion of exon 
7a in Clcn1 in HSALR mice (Fig. 4e, f ). Moreover, we also 

Fig. 3  In HSALR mice, calcitriol improves muscle histopathology. (a) Representative H&E staining of TA muscles in different groups of mice as 
indicated. Arrows point to the central nuclei of muscle fibers. Scale bar = 100 μm. (b) The number of fibers with central nuclei was counted in 
three groups of mice. The data were analyzed by one-way ANOVA followed by Turkey multiple comparison correction. ***p < 0.001. (c) Frequency 
distribution of cross-sectional TA muscle fiber area was counted in three groups of mice. The mean and SEM (n = 8, 9 and 8 in WT, DM1 0 µg/kg/d 
and DM1 1 µg/kg/d, respectively) in each group are indicated
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found that calcitriol ameliorated the aberrant splicing of 
Serca1 exon 22 and Nfix exon 7 in HSALR mice (Fig. 4e, 
f ). Thus, our results show that calcitriol enhances the 
MBNL1 expression and ameliorates the aberrant splicing 
in skeletal muscle in vivo.

Calcitriol activates the promoter of Mbnl1 in C2C12 
myogenic cells
A previous study identified the promoter of Mbnl1 which 
locates in the 5’UTR (untranslated region) in mouse 
[28], we named pMbnl1 (Fig.  5a). To examine whether 
calcitriol promotes the activity of pMbnl1, we inserted 
the promoter sequence upstream of the firefly luciferase 

cDNA to make pMbnl1-pGL3E (Fig.  5b). C2C12 myo-
blasts were introduced with pGL3E or pMbnl1-pGL3E, 
and were induced to differentiate 24 h later. In order to 
examine the effect of calcitriol on the promoter activity, 
cells were treated with various concentrations of calci-
triol during myogenic differentiation. Luciferase assay 
revealed that calcitriol significantly increased the lucif-
erase activity of pMbnl1-pGL3E, not the control plasmid 
(Fig.  5c). Thus, calcitriol could enhance the activity of 
Mbnl1 promoter to upregulate the MBNL1 protein level.

Discussion
DM1 is a rare, multisystem disorder without curative 
or disease-modifying treatment to slow or stop disease 
progression [29]. Symptomatic and supportive treat-
ment, preventive measures and clinical surveillance are 
the currently available options for DM1 patients [30]. 
The upregulation of MBNL1 protein level is a promis-
ing therapeutic strategy against DM1. Previous studies 
indicated that MBNL1 is downregulated in DM1 mod-
els and patients, and the overexpression of MBNL1 is 
beneficial in murine disease models [5, 12]. Various 
drugs and epigenetic approaches have been found to 
promote endogenous MBNL1 expression and amelio-
rate the disease phenotypes in different experimental 
models [31–34]. In the current study, we identified that 
calcitriol (active form of vitamin D3) elevated MBNL1 
expression in mouse myogenic cells and in skeletal 
muscles of HSALR mouse model via enhancing the 
Mbnl1 promoter activity.

Vitamin D plays essential roles in skeletal muscle. Vita-
min D positively influences the protein synthesis and 
increases the size of muscle cells, leading to increased 
muscle mass, strength and performance [35, 36]. Meta-
analyses also reported beneficial effects of vitamin D sup-
plementation on muscle strength and function in healthy 
adults [37, 38]. Accordingly, vitamin D deficiency leads 
to muscle weakness and muscle mass reduction [39, 40]. 
Clinical studies also identified a correlation between 
serum 25(OH)D concentration and muscle strength and 
function in older adults [41, 42]. Importantly, vitamin D 
deficiency has been found to correlate with the severity 
of the disease symptoms in DM1 patients [15, 16]. In our 
study, the upregulation of MBNL1 by calcitriol seems 
to be beneficial in the DM1 model, since the abnormal 
splicing of MBNL1-regulated genes (Clcn1, Serca1, and 
Nfix) was partially corrected, and the muscle pathology 
as well as the muscle weakness was ameliorated. These 
results suggest that calcitriol upregulates MBNL1 expres-
sion and improves muscle strength in HSALR mice model.

MBNL1 is a splicing factor which can promote oppo-
site splicing patterns for different genes depending on 
pre-mRNA binding context and interacting proteins [8, 

Fig. 4  Calcitriol upregulates Mbnl1 expression and corrects aberrant 
splicing in skeletal muscle of HSALR mice.(a, c) Real-time RT-PCR 
analysis to estimate the expression of Mbnl1 in TA muscles (a) and 
soleus (c) of WT and HSALR mice treated with calcitriol as indicated. 
(b, d) Western blot analysis of MBNL1 in mouse TA muscles (b) and 
soleus (d). Left panel shows representative blots, and right panel 
shows the quantitative analysis of signal intensities. (e) RT-PCR 
analysis to evaluate the splicing of Clcn1 exon 7a, Serca1 exon 22 and 
Nfix exon 7 in TA muscles of four mice from each group as indicated. 
(f) The ratio of inclusion of relevant exon was calculated. The mean 
and SEM in each group are indicated. The data were analyzed by 
one-way ANOVA followed by Turkey multiple comparison correction. 
*p < 0.05, **p < 0.01 and ***p < 0.001
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43]. The strength of alternative exon exclusion or inclu-
sion highly depends on the MBNL1 binding affinity, 
relative concentration and local RNA structure features 
[44]. MBNL1 could bind to the alternative exon or the 
upstream intron, causing exon skipping. It could also 
bind to the end of the alternative exon or to the down-
stream intron, promoting exon inclusion. This regulated 
alternative splicing activity of MBNL1 could poten-
tially explain the observed differential effects of elevated 
MBNL1 on the aberrant splicing of Clcn1, Nfix and 
Serca1 in calcitriol treated HSALR mice.

MBNL1 sequestration by abnormally expanded CUG 
repeats is key to the clinical symptoms in DM1 [8], 

but this multi-systemic disease has also been found to 
be related with many other factors, such as increased 
CELF [45] or HNRNPA1 [46] expression, and decreased 
DMPK, SIX5, and DMWD expression [47]. In line 
with this notion, although calcitriol could significantly 
upregulate MBNL1 protein level in the DM1 mouse 
model to ~ 70% of WT, it could only partially rescue 
various phenotypes of the disease model. Therefore, it 
would be interesting in the future to search for more 
potent chemicals, with structures similar to calcitriol or 
not, with therapeutic potential for DM1.

The involvement of calcitriol in the regulation of pro-
moter activity has been previously reported. In target 

Fig. 5  Calcitriol activates the promoter of Mbnl1 in myogenic cells. (a) Schematic diagram showing the position of promoter of Mbnl1 gene 
(pMbnl1). Exons are shown by boxes, introns by thin lines, and pMbnl1 by a black closed square. (b) Schematic diagram of pGL3E vector and 
pMbnl1-pGL3E vector. In pMbnl1-pGL3E, the pMbnl1 region was cloned into pGL3E upstream of the firefly luciferase gene. (c) Luciferase activity 
of pGL3E or pMbnl1-pGL3E during myogenic differentiation of C2C12 myoblasts. Cells were treated with different concentrations of calcitriol from 
differentiation day 0, whole cell lysates were extracted and firefly luciferase activity was evaluated on day 5 after induction of differentiation. Firefly 
luciferase activity was normalized to the Renilla luciferase activity of co-transfected pRL-CMV, and also to 0 nM treated cells. Mean and SD (n = 5 
culture dishes) are indicated. ***p < 0.001, and n.s., not significant by one-way ANOVA followed by Turkey multiple comparison correction
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tissues, calcitriol binds to vitamin D receptor (VDR) 
and retinoid X receptor (RXR) [48, 49]. The calci-
triol-VDR-RXR complex binds to vitamin D response 
element (VDRE) in the promoter region of calcitriol-
target genes [50]. This binding leads to the recruit-
ment of enzymatic coregulatory complexes that shift 
the local chromatin structure, facilitate the epigenetic 
modification of histones and improve the local concen-
tration of RNA polymerase II (RNA pol II), leading to 
the regulation of mRNA expression [50]. In our study, 
we found that calcitriol activates Mbnl1 promoter 
and increases MBNL1 expression. However, the exact 
molecular mechanisms still remain unclear. The mul-
tiple predicted MEF2 binding sites (http://​jaspar.​gener​
eg.​net/) in the Mbnl1 promoter region may be involved 
and awaits further studies [51].

Conclusion
Taken together, we reported that calcitriol activates 
Mbnl1 promoter, increases the endogenous MBNL1 
protein expression, and improves muscle strength and 
function in DM1 mouse model, suggesting calcitriol as a 
potential pharmacological option for DM1 patients.
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