
Wang et al. Journal of Translational Medicine          (2022) 20:595  
https://doi.org/10.1186/s12967-022-03777-x

RESEARCH

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

Journal of 
Translational Medicine

Multi‑scale pathology image texture 
signature is a prognostic factor for resectable 
lung adenocarcinoma: a multi‑center, 
retrospective study
Yumeng Wang1†, Xipeng Pan1,2,3,4†, Huan Lin2,5†, Chu Han2,3†, Yajun An1, Bingjiang Qiu2,3,4, Zhengyun Feng1, 
Xiaomei Huang2, Zeyan Xu2,5, Zhenwei Shi2,3,4, Xin Chen6, Bingbing Li7, Lixu Yan8, Cheng Lu2,3*, Zhenhui Li2,3,4,9*, 
Yanfen Cui2,3,4,10*, Zaiyi Liu2,3* and Zhenbing Liu1*    

Abstract 

Background:  Tumor histomorphology analysis plays a crucial role in predicting the prognosis of resectable lung 
adenocarcinoma (LUAD). Computer-extracted image texture features have been previously shown to be correlated 
with outcome. However, a comprehensive, quantitative, and interpretable predictor remains to be developed.

Methods:  In this multi-center study, we included patients with resectable LUAD from four independent cohorts. An 
automated pipeline was designed for extracting texture features from the tumor region in hematoxylin and eosin 
(H&E)-stained whole slide images (WSIs) at multiple magnifications. A multi-scale pathology image texture signature 
(MPIS) was constructed with the discriminative texture features in terms of overall survival (OS) selected by the LASSO 
method. The prognostic value of MPIS for OS was evaluated through univariable and multivariable analysis in the 
discovery set (n = 111) and the three external validation sets (V1, n = 115; V2, n = 116; and V3, n = 246). We constructed 
a Cox proportional hazards model incorporating clinicopathological variables and MPIS to assess whether MPIS could 
improve prognostic stratification. We also performed histo-genomics analysis to explore the associations between 
texture features and biological pathways.

Results:  A set of eight texture features was selected to construct MPIS. In multivariable analysis, a higher MPIS was 
associated with significantly worse OS in the discovery set (HR 5.32, 95%CI 1.72–16.44; P = 0.0037) and the three exter-
nal validation sets (V1: HR 2.63, 95%CI 1.10–6.29, P = 0.0292; V2: HR 2.99, 95%CI 1.34–6.66, P = 0.0075; V3: HR 1.93, 95%CI 
1.15–3.23, P = 0.0125). The model that integrated clinicopathological variables and MPIS had better discrimination 
for OS compared to the clinicopathological variables-based model in the discovery set (C-index, 0.837 vs. 0.798) and 
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the three external validation sets (V1: 0.704 vs. 0.679; V2: 0.728 vs. 0.666; V3: 0.696 vs. 0.669). Furthermore, the identified 
texture features were associated with biological pathways, such as cytokine activity, structural constituent of cytoskel-
eton, and extracellular matrix structural constituent.

Conclusions:  MPIS was an independent prognostic biomarker that was robust and interpretable. Integration of MPIS 
with clinicopathological variables improved prognostic stratification in resectable LUAD and might help enhance the 
quality of individualized postoperative care.

Keywords:  Lung adenocarcinoma, Prognosis, Texture analysis, Whole slide image, Artificial intelligence

Background
Lung cancer is one of the most common malignant 
tumors worldwide, with the highest mortality rate [1, 
2]. Lung adenocarcinoma (LUAD) is the most common 
subtype of lung cancer [3], accounting for 40% of all lung 
cancer types and more than 55% of non-small cell lung 
cancer. For patients with resectable LUAD, surgical resec-
tion with curative intent is the standard of care [4], but a 
significant portion of patients develop disease recurrence 
and die even after resection of the entire tumor mass 
[5]. Tumor-node-metastasis (TNM) stage [6] and tumor 
differentiation are traditionally considered to be the 
important postoperative prognostic factors, but signifi-
cant differences in postoperative prognosis exist among 
LUAD patients with the same TNM stage and tumor dif-
ferentiation due to tumor heterogeneity [7]. Therefore, 
a novel prognostic biomarker is needed to quantify the 
biological behavior of the tumor for precise risk stratifi-
cation in resectable LUAD.

Histopathological slide, providing morphological infor-
mation on tumors and their microenvironment at the 
tissue and cellular levels, is the gold standard for lung 
cancer diagnosis [8, 9]. Tumor development and growth 
depend highly on their interactions with the associated 
microenvironment [10]. Typically, pathologists visually 
examine Hematoxylin and Eosin (H&E)-stained slides 
from low to high magnification under a microscope 
to qualitatively assess the histopathological pattern of 
the tumor, which can help predict cancer behavior to 
a certain degree. Nevertheless, manual assessment is 
time-consuming and subjective. In addition, there are 
many sub-visual attributes of tumors in complex histo-
pathological slides [11], allowing for a comprehensive 
characterization of the morphology of tumors and their 
microenvironment.

The rapid advancement of computer technology [12] 
and digital whole-slide images (WSIs) has opened up 
opportunities for identifying and quantifying sub-visual 
features correlated with prognosis. For example, tex-
ture features could quantitatively measure interactions 
between pixel intensities within a region of interest in 
an image. Recent studies also showed that image texture 
analysis plays an important role in quantifying underlying 

sub-visual tumor heterogeneity [13, 14]. However, these 
studies focused solely on single-scale image features, 
such as a single cell or tissue type, and ignored multi-
scale information, which could diminish the accuracy 
of outcome prediction. Moreover, computer-extracted 
deep features from WSIs also appeared to be prognos-
tic [15]. Nevertheless, deep learning models lack inter-
pretability, and may have difficulties gaining widespread 
acceptance in clinical settings [16]. Thus, while previ-
ous studies have identified many prognostic biomarkers, 
there is still possible  for improvement in terms of accu-
racy and interpretability.

In this study, we developed and validated a multi-
scale pathology image texture signature (referred to as 
MPIS) using texture features at multiple magnifications 
extracted from digital H&E-stained WSIs, and then used 
MPIS in conjunction with Cox proportional hazards 
model to predict overall survival (OS) in patients with 
resectable LUAD. We hypothesized that MPIS was an 
independent prognostic factor for OS, and the integra-
tion of MPIS with clinicopathological variables would 
improve prognostic stratification in patients with resect-
able LUAD. Meanwhile, we also sought to demonstrate 
that the image-derived texture features correlated with 
the gene expression of biological pathways affecting 
tumor development.

Methods
Patients
This multi-center study was conducted using patients 
from four independent cohorts: a discovery set (Guang-
dong Provincial People’s Hospital, GDPH) and three 
external validation sets (Yunnan Cancer Hospital, YNCH; 
Shanxi Provincial Cancer Hospital, SXCH; The Cancer 
Genome Atlas, TCGA). We enrolled LUAD patients who 
were treated with surgical therapy with curative intent 
at GDPH between 2007 and 2014, patients with resect-
able LUAD treated at YNCH from 2012 to 2014, and 
those treated at SXCH from 2014 to 2020. This study was 
approved by the Research Ethics Committee. Informed 
consent was waived because only retrospective imaging 
analysis was performed. Additionally, the TCGA dataset 
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was downloaded from the Genomic Data Commons Data 
Portal (https://​portal.​gdc.​cancer.​gov/).

OS, defined as the time interval from surgery to death, 
was chosen as the endpoint event for our study. The base-
line and clinicopathological variables were collected, 
including age at surgery, sex, smoking status, tumor site, 
adjuvant chemotherapy, differentiation, and TNM stage. 
We excluded the cases with treating with neoadjuvant 
therapy, remaining residual tumors, or dying within 
1 month. The inclusion and exclusion criteria are detailed 
in Additional file 1: Section 1.

Image acquisition
Digital WSIs were acquired from the H&E-stained diag-
nostic tissue slides of the primary tumor. The H&E-
stained slides were scanned by Leica Aperio-AT2 USA 
scanner at 40 × magnification (0.252 μm/pixel). We con-
trolled the image quality by excluding WSIs that were 
blurry, contained artifacts, exhibited poor staining, or 
lacked sufficient tumor tissues. In the TCGA dataset, 
some cases had multiple slides (one slide was selected 
for analysis according to image quality). Pathologists (BB 
Li with 5  years of clinical experience and LX Yan with 
15  years of clinical experience) reviewed and agreed on 
the image quality for all WSIs. Additionally, these experi-
enced pathologists annotated tumors and normal tissues 
on a set of 67 WSIs from GDPH for fine-tuning a pre-
trained tumor segmentation model based on ResNet50 
[17].

Automatic tumor segmentation on WSIs
The overall workflow of this study is shown in Fig.  1. 
First, ResNet50 was employed to conduct tumor region 
segmentation. To reduce the amount of annotation, we 
used data from a similar domain for transfer learning. 
We obtained 270 (tumor = 160, normal = 110) WSIs of 
breast cancer from the Camelyon16 [18] dataset. We 
then extracted millions of small positive and negative 
image patches with a size of 224 × 224 pixels (40 × mag-
nification) to pre-train the model for classifying tumor 
or normal tissues. The pre-trained model was fine-tuned 
using 100,000 image patches from 67 annotated WSIs 
from GDPH.

We used the OTSU method [19] to obtain the tissue 
region mask of WSIs. A window with a size of 224 × 224 
pixels was slid without overlapping area on the whole 
tissue region. We used the trained model to predict the 
image patch under a sliding window, and the predicted 
probability was generated for each image patch. The 
predicted probability heatmap was further generated 
for each histopathological image. Finally, we binarized 
the predicted heatmap using the OTSU method, and 

retained the largest connected region as the tumor mask 
for each WSI. The framework is shown in Fig. 1a.

Multi‑scale texture feature extraction
The multi-scale texture feature extraction process is 
shown in Fig.  1b. Based on the results of tumor region 
segmentation, several image patches were acquired at 
magnifications of 2.5 × , 10 × , and 40 × . Color normali-
zation [20] was performed for these patches to reduce the 
effect of staining differences on the texture distribution 
of images. In the case of 2.5 × magnification, the image 
of the whole tumor region was acquired directly. In the 
cases of 10 × and 40 × magnifications, we obtained image 
patches with a size of 1024 × 1024 pixels in the tumor 
region. To facilitate the acquisition of relatively dense 
image patches in the tumor region, the image patch with 
above 75% tissue area was used in this study. In the case 
of 40 × magnification, we randomly sampled 200 patches 
to reduce computational time for each WSI and avoid 
potential subjective bias [14].

We automatically extracted 68 texture features of tumor 
regions at each scale, including texture features such as 
first-order statistics (n = 17), gray level co-occurrence 
matrix (GLCM, n = 7), and gray level run length matrix 
(GLRLM, n = 44). First-order statistics features describe 
the distribution of pixel intensities within an image 
region. GLCM-based features consider the variation in 
pixel grey levels within a certain distance. GLRLM-based 
features quantify gray level runs defined as the number 
of consecutive pixels with the same gray level. Overall, a 
total of 204 texture features were extracted at three scales 
(i.e., 2.5 × , 10 × , and 40 × magnifications). Details of 
these features are provided in Additional file 1: Section 2.

Feature selection and signature construction
To regularize the number of features proportionate 
to sample size, the features related to prognosis were 
selected through the least absolute shrinkage and selec-
tion operator (LASSO) method with tenfold cross-val-
idation from the discovery set (Fig.  1c). Before feature 
selection, we normalized the feature values based on the 
Z-score method. Furthermore, it was crucial to visualize 
texture features related to prognosis so that all the clini-
cians could understand them. We quantified and visual-
ized the selected texture features by the violin plot and 
feature heatmap.

MPIS was computed via a weighted linear combina-
tion of the discriminative texture features and their cor-
responding coefficients. The median value of MPIS in 
the discovery set was determined as the cut-off for dis-
tinguishing patients by risk level, with any value greater 
than the cut-off categorized as high-risk and any value 
equal to or less than the cut-off categorized as low-risk. 

https://portal.gdc.cancer.gov/
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The threshold identified from the discovery set was then 
applied to the external validation sets to distinguish high-
risk and low-risk groups.

Histo‑genomic analysis
For the TCGA cohort, there were 244 patients available 
with normalized messenger ribonucleic acid (mRNA) 

Fig. 1  Overall workflow of this study. a Fully automated tumor region segmentation. b Image tile extraction from tumor region and multi-scale 
texture feature extraction, including 2.5 × , 10 × , and 40 × magnification. c Feature selection by the Lasso method. d Survival analysis and model 
development. e Histo-genomic analysis: the associated biological pathways are identified by gene ontology (GO) enrichment analysis and the 
relationships between the texture features and biological pathways are explored using single-sample gene set enrichment analysis (ssGSEA)
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expression data, after matching with the amount of 
TCGA data in survival analysis. We removed the genes 
whose mRNA expression levels were 0 in patient samples 
to explore the associations between gene expression of 
biological pathways and texture features derived from the 
histopathological image. First, patients were categorized 
as high-risk or low-risk according to the MPIS. We used 
the Wilcoxon rank-sum test to identify genes that were 
significantly differentially expressed across the high-risk 
and low-risk groups. The Benjamini & Hochberg method 
was employed to adjust P-value. We then used the differ-
entially expressed genes (DEGs) for Gene Ontology (GO) 
enrichment analysis [21] to identify the biological path-
ways with over-represented genes in the gene set. Based 
on the identified pathways, we selected the ones poten-
tially representative of biological processes related to 
tumor growth and development. Finally, we assessed the 
associations between the gene expression of biological 
pathways and the image-derived texture features by sin-
gle-sample gene set enrichment analysis (ssGSEA) [22]. 
A ssGSEA enrichment score within each gene set was 
calculated for each patient, which assessed the degree to 
which member gene of a gene set in a sample was coordi-
nately upregulated or downregulated. We used the Wil-
coxon rank-sum test to select the significant differentially 
expressed pathways related to the image-derived texture 
features.

Statistical analysis
Categorical data were reported as count (percentage). 
Differences in age, sex, smoking status, tumor site, treat-
ment, differentiation, and TNM stage between four 
cohorts were evaluated through Pearson’s chi-squared 
test or Fisher’s exact test, where appropriate. The data 
distribution of MPIS corresponding to different tumor 
differentiation degrees was also analyzed by the inde-
pendent samples t-test. We used the log-rank test to 
estimate differences in OS between the high-risk and 
low-risk groups for Kaplan–Meier survival analysis. The 
prognostic abilities of MPIS and other clinical variables 
(i.e., age, sex, smoking status, tumor site, treatment, dif-
ferentiation, and TNM stage) were assessed via uni-
variable analysis. Then, the factors with P < 0.05 in the 
univariable analysis were adopted in the multivariable 
analysis. Akaike information criterion (AIC) was used 
in multivariable analysis to determine and evaluate the 
independent prognostic factors.

In the discovery set, a full model was established by 
incorporating the independent factors selected in the 
multivariable analysis, and the clinical model was built by 
independent clinicopathological variables. The full model 
and the clinical model were validated in the three inde-
pendent external validation sets. Harrell’s concordance 

index (C-index) was used to determine the discriminative 
ability of models. The prognostic accuracy was evaluated 
using the time-dependent receiver operating charac-
teristic (ROC) curve and area under the curve (AUC) at 
5-year OS.

We conducted statistical analysis using R software (ver-
sion 4.1.2, http://​www.R-​proje​ct.​org) [23]. The packages 
of R software used for statistical analysis included glm-
net, cutoff, survival, survminer, rms, timeROC, and viop-
lot. A factor was reported as statistically significant when 
the two-sided P < 0.05.

Results
Patients
We summarized the qualified patients in this study after 
applying all inclusion and exclusion criteria. The process 
is shown in  (Additional file 1: Figure S1). The discovery 
set (n = 111) was established from GDPH, and employed 
for feature discovery and model training. Three inde-
pendent cohorts were used for validating the trained 
model, collected from YNCH, SXCH, and TCGA. The 
three cohorts are denoted as external validation set V1 
(n = 115), external validation set V2 (n = 116), and exter-
nal validation set V3 (n = 246). Table 1 shows the detailed 
distributions of demographic and clinicopathological 
variables in the four cohorts. Significant differences were 
observed among the four cohorts in all included clinical 
characteristics, except for sex (P = 0.1603) and tumor site 
(P = 0.2230).

Feature selection and signature construction
A set of eight potential predictors was selected from 204 
multi-scale texture features using the LASSO method, 
namely glrlm_SRLGLE_90_2.5, glrlm_SRLGLE_90_40, 
glcm_dissimilarity_0_2.5, Kurtosis_10, glrlm_LRH-
GLE_90_2.5, glrlm_SRE_0_40, glcm_ASM_0_2.5, and 
Percentile_10th_40 (see  in Additional file  1: Table  S1 
for specific definitions of these texture features). These 
texture features and corresponding regression coeffi-
cients are shown in  (Additional file  1: Table  S2). MPIS 
was computed for each patient through a linear combina-
tion of these feature values, weighted by the correspond-
ing regression coefficients. The median value (-0.061) of 
MPIS in the discovery set was taken as the cut-off for 
stratifying patients.

As shown in Fig. 2, we quantified and visualized the 
image texture features in which significant differences 
were observed between the two representative images 
from the high-risk and low-risk groups determined by 
the corresponding feature. The low-risk example had 
higher feature values than the high-risk example in the 
cases of features glrlm_SRLGLE_90_2.5, glrlm_SRL-
GLE_90_40, glcm_dissimilarity_0_2.5, and Kurtosis_10 

http://www.R-project.org
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(Fig.  2(a–d)), while had lower feature values than the 
high-risk example in the cases of features glrlm_LRH-
GLE_90_2.5, glrlm_SRE_0_40, glcm_ASM_0_2.5, 
Percentile_10th_40 (Fig. 2(e–h)).

Evaluation and validation of MPIS
Kaplan–Meier curves for predicting OS by MPIS showed 
that the low-risk group had a significantly better sur-
vival rate compared with the high-risk group (Fig. 3). On 

Table 1  Distributions of demographic and clinicopathological variables of patients with resectable LUAD in the discovery set and the 
three external validation sets

Bold value represents the significant difference is observed among the four cohorts in the corresponding clinical characteristic

Surg. + Chemo surgery and chemotherapy, G1/G2 well-moderately differentiated, G3/G4 poorly undifferentiated, NA not applicable
* Number of endpoint events (i.e., OS) that occurred/total number of patients
# The P-value is obtained using Pearson’s chi-squared test.
† The P-value is obtained using Fisher’s exact test

Variable Discovery set
N (%)

Validation set V1
N (%)

Validation set V2
N (%)

Validation set V3
N (%)

P

Number of patients 31/111* 30/115* 37/116* 80/246*

Age  < 0.0001#

 < 65 years 41(36.9) 19(16.5) 78(67.2) 124(50.4)

  ≥ 65 years 70(63.1) 96(83.5) 38(32.8) 122(49.6)

Sex 0.1603#

 Male 58(52.3) 58(50.4) 66(56.9) 110(44.7)

 Female 53(47.7) 57(49.6) 50(43.1) 136(55.3)

Smoking Status  < 0.0001†

 Ever 32(28.8) 41(35.7) 56(48.3) 213(86.6)

 Never 79(71.2) 74(64.3) 60(51.7) 30(12.2)

 Unknown 0(0.0) 0(0.0) 0(0.0) 3(1.2)

Tumor site 0.2230†

 Upper/Middle 72(64.9) 65(56.5) 64(55.2) 160(65.0)

 Lower 39(35.1) 50(43.5) 52(44.8) 84(34.2)

 Unknown 0(0.0) 0(0.0) 0(0.0) 2(0.8)

Treatment  < 0.0001†

 Surg. Only 76(68.5) 56(48.7) 55(47.4) 139(56.5)

 Surg. + Chemo 35(31.5) 59(51.3) 61(52.6) 87(35.4)

 Unknown 0(0.0) 0(0.0) 0(0.0) 20(8.1)

Differentiation  < 0.0001#

 G1/G2 86(77.5) 60(52.2) 70(60.3) NA

 G3/G4 22(19.8) 40(34.8) 46(39.7) NA

 Unknown 3(2.7) 15(13.0) 0(0.0) NA

TNM stage  < 0.0001#

 I 79(71.2) 70(60.9) 49(42.2) 145(58.9)

 II 15(13.5) 17(14.8) 38(32.8) 65(26.4)

 III 17(15.3) 28(24.3) 29(25.0) 36(14.6)

(See figure on next page.)
Fig. 2  Graphical overview of the eight image texture features: a glrlm_SRLGLE_90_2.5, b glrlm_SRLGLE_90_40, c glcm_dissimilarity_0_2.5, d 
Kurtosis_10, e glrlm_LRHGLE_90_2.5, f glrlm_SRE_0_40, g glcm_ASM_0_2.5, h Percentile_10th_40. For each texture feature, a violin plot shows 
the distribution of the feature quantified in all patient samples. Furthermore, tissue image patches corresponding to high and low values and 
the correlated texture feature map are shown. Two tissue image patches are taken from high-risk and low-risk patients. The color coding (i.e., 
red, orange, green, and blue) of the feature map corresponds to the gray level (from low to high) of the image. The P-value is computed by the 
independent samples t-test. A significant difference in feature distribution between the high-risk and low-risk groups is observed for each texture 
feature. ***Represents P < 0.001, **represents P < 0.01, and *represents P < 0.05
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Fig. 2  (See legend on previous page.)
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univariable analysis, MPIS was statistically significant in 
the four cohorts, as shown in Table 2. MPIS was associ-
ated with OS in the discovery set (hazard ratio [HR], 9.90; 
95% confidence interval [CI], 3.44–28.49; P < 0.0001). 
Furthermore, MPIS was also prognostic of OS on the 
external validation set V1 (HR, 2.36; 95%CI, 1.08–5.16; 
P = 0.0312), external validation set V2 (HR, 3.47; 95%CI, 
1.60–7.52; P = 0.0016), and external validation set V3 
(HR, 2.57; 95%CI 1.59–4.17; P = 0.0001). Multivariable 
analysis was conducted using factors (treatment, TNM 
stage, differentiation, MPIS) that achieved statistical sig-
nificance (P < 0.05) in univariable analysis. On multivari-
able analysis, we further demonstrated that MPIS was 

an independent prognostic factor on the discovery set 
(HR, 5.32; 95% CI 1.17–16.44; P = 0.0037), external vali-
dation set V1 (HR, 2.63; 95% CI 1.10–6.29; P = 0.0292), 
external validation set V2 (HR, 2.99; 95% CI 1.34–6.66; 
P = 0.0075), and external validation set V3 (HR, 1.93; 95% 
CI 1.15–3.23; P = 0.0125).

MPIS could predict OS in patients with TNM stage 
I and early-stage (TNM stages I and II) LUAD (Addi-
tional file  1: Figures  S2, S3). For early-stage LUAD 
patients, the survival outcomes of patients in the high-
risk group were significantly worse than those in the 
low-risk group. Although no statistical association was 
found between MPIS and OS in the external validation 

Fig. 3  Kaplan–Meier curves of patients stratified by MPIS in the a discovery set, b external validation set V1, c external validation set V2, and d 
external validation set V3
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set V1 (P = 0.13), we could still observe a clear trend 
for poor prognosis in the high-risk group. For TNM 
stage I LUAD patients, the low-risk group had a bet-
ter prognosis. Additionally, when stratifying patients 
by clinicopathological variables, including age (≥ 65 
or < 65  years), sex (female or male), smoking status 
(ever smoke or never smoke), treatment (surgery alone 
or received chemotherapy), and differentiation (well-
moderately differentiated or poorly undifferentiated), 
MPIS was associated with OS in most of the subgroups 
(Additional file 1: Figures S4–S8).

In addition, MPIS was significantly higher in the 
poorly undifferentiated group compared with the 
well-moderately differentiated groups on the discov-
ery set (t = −7.02; P < 0.0001), external validation set 
V1 (t = −2.19; P = 0.0314), and external validation set 
V2 (t = −2.61; P = 0.0104). The violin plots in Fig.  4 

show the distribution of MPIS across the well-moder-
ately differentiated and poorly undifferentiated LUAD 
patient groups.

Evaluation and validation of the full model
Using stepwise regression based on the AIC, independ-
ent prognostic factors were identified, including MPIS, 
differentiation, and TNM stage (Table 2). In the discov-
ery set, we built the full model incorporating the above 
independent factors, and established the clinical model 
incorporating two clinicopathological variables (i.e., dif-
ferentiation and TNM stage). It was observed that the 
C-index of the full model (0.837; 95% CI 0.784–0.890; 
Table  3) was higher than that of the clinical model 
(C-index, 0.798; 95% CI 0.729–0.867), and the AIC of 
the full model was smaller than that of the clinical model 
(235.991 vs. 244.905; Table 3). Therefore, the full model 
showed higher discrimination and calibration than the 

Table 2  Univariable and multivariable analysis for OS on the discovery set and the three external validation sets

HR hazard ratio, CI confidence interval, Surg. + Chemo surgery and chemotherapy, G1/G2 well-moderately differentiated, G3/G4 poorly undifferentiated, NA not 
applicable

Discovery set Validation set V1 Validation set V2 Validation set V3

HR (95%CI) P-value HR (95%CI) P-value HR (95%CI) P-value HR (95%CI) P-value

Univariable Analysis

 Age

   < 65 years vs. ≥ 65 years 1.54(0.76–3.11) 0.2309 1.20(0.49–2.93) 0.6910 1.20(0.61–2.37) 0.5907 1.17(0.76–1.83) 0.4753

Sex

 Male vs. Female 0.62(0.30–1.28) 0.1962 0.95(0.46–1.95) 0.8944 0.40(0.20–0.84) 0.0149 0.69(0.45–1.08) 0.1041

Smoking status

 Never vs. Ever 1.51(0.72–3.15) 0.2730 0.69(0.32–1.51) 0.3514 2.15(1.11–4.20) 0.0241 1.77(0.77–4.08) 0.1814

Tumor site

 Upper/Middle vs. Lower 0.83(0.39–1.76) 0.6205 0.99(0.48–2.05) 0.9865 0.70(0.35–1.37) 0.2940 1.30(0.83–2.04) 0.2474

Treatment

 Surg. vs. Surg. + Chemo 4.46 (2.16–9.24)  < 0.0001 1.78(0.85–3.75) 0.1268 1.47(0.76–2.87) 0.2539 1.92(1.19–3.08) 0.0074

Differentiation

 G1/G2 vs. G3/G4 7.00(3.40–14.40)  < 0.0001 1.60(0.74–3.46) 0.2296 3.07(1.58–5.97) 0.0010 NA

TNM stage

 II vs. I 4.93(1.90–12.81) 0.0011 2.67(0.97–7.35) 0.0572 1.20(0.53–2.72) 0.6669 2.88(1.75–4.72)  < 0.0001

 III vs. I 9.82(4.33–22.28)  < 0.0001 4.55(2.02–10.26) 0.0003 2.51(1.16–5.47) 0.0201 3.54(1.95–6.41)  < 0.0001

MPIS

 Low vs. High 9.90(3.44–28.49)  < 0.0001 2.36(1.08–5.16) 0.0312 3.47(1.60–7.52) 0.0016 2.57(1.59–4.17) 0.0001

Multivariable analysis

 Differentiation

  G1/G2 vs. G3/G4 2.47(1.12–5.49) 0.0259 3.49(1.72–7.06) 0.0005 NA

TNM stage

 II vs. I 2.72(0.99–7.44) 0.0521 2.60(0.87–7.78) 0.0871 1.25(0.54–2.87) 0.6031 2.20 (1.30–3.74) 0.0035

 III vs. I 3.12(1.23–7.92) 0.0166 5.30(2.22–12.66) 0.0002 3.24(1.45–7.28) 0.0043 3.08 (1.68–5.64) 0.0003

MPIS

 Low vs. High 5.32(1.72–16.44) 0.0037 2.63(1.10–6.29) 0.0292 2.99(1.34–6.66) 0.0075 1.93 (1.15–3.23) 0.0125
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clinical model. Meanwhile, we demonstrated that inte-
grating the MPIS into the clinical model significantly 
improved the prediction for OS (P = 0.0010, likelihood 
ratio test), as shown in Table  3. Time-dependent ROC 
curves at 60 months and time-dependent AUC curves at 
different times were plotted, as shown in Fig. 5a. The full 
model (AUC, 0.890; 95%CI, 0.822–0.958; for 5-year OS) 
showed significantly improved predictive performance 
compared with the clinical model (AUC, 0.843; 95%CI, 
0.759–0.927; for 5-year OS). Furthermore, we visualized 
the full model and the clinical model as nomograms to 

facilitate the application of the full model (Additional 
file 1: Figure S9).

We further validated the performance of the full model 
in the independent external validation sets (Table  3). 
The full model had better discriminative and calibration 
(V1: C-index, 0.704 vs. 0.679; P < 0.0001, likelihood ratio; 
AIC, 219.568 vs. 222.908; V2: 0.728 vs. 0.666; P < 0.0001; 
307.537 vs. 313.815) than the clinical model in the 
two external validation sets. In Figs.  5b, c, AUC curves 
showed that the full model had better performance at 
every time point in the two external validation sets (V1: 
AUC, 0.732 vs. 0.708; for 5-year OS; V2: 0.789 vs. 0.658; 

Fig. 4  MPIS distribution across the well-moderately differentiated and poorly undifferentiated LUAD patients. The distribution of MPIS is 
significantly different between the well-moderately differentiated and poorly-undifferentiated groups on the a discovery set (P < 0.0001), b external 
validation set V1 (P = 0.0314), and c external validation set V2 (P = 0.0104). The P-value is obtained using the independent samples t-test. G1/G2, 
well-moderately differentiated; G3/G4, poorly undifferentiated

Table 3  Performance of models in the discovery set and the three external validation sets

Clinical model: TNM stage + differentiation; Full model: TNM stage + differentiation + MPIS. Note that information related to tumor differentiation was unavailable in 
the external validation set V3. The P-value is calculated to compare the difference between the clinical model and the full model by the likelihood ratio test

CI confidence interval, AIC Akaike information criterion

Clinical model Full model

Discovery set C-index(95%CI) 0.798(0.729–0.867) 0.837(0.784–0.890)

AIC 244.905 235.991

P-value 0.0010

External validation set V1 C-index(95%CI) 0.679(0.573–0.784) 0.704(0.608–0.801)

AIC 222.908 219.568

P-value  < 0.0001

External validation set V2 C-index(95%CI) 0.666(0.572–0.761) 0.728(0.646–0.811)

AIC 313.815 307.537

P-value  < 0.0001

External validation set V3 C-index(95%CI) 0.669(0.606–0.731) 0.696(0.632–0.760)

AIC 722.453 717.869

P-value  < 0.0001
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Fig. 5  Time-dependent ROC curves and AUC curves of models in the a discovery set, b external validation set V1, c external validation set V2, and d 
external validation set V3. Time-dependent ROC curves are evaluated for 5-year OS (or for 3-year OS), and time-dependent AUC curves are plotted 
for 12–60 months (or for 12–36 months)
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for 3-year OS). Besides, due to the lack of information 
related to tumor differentiation in the external validation 
set V3, the full model was established with two variables 
(i.e., TNM stage and MPIS), and the clinical model was 
established with one variable (i.e., TNM stage). It can be 
observed that the full model (C-index, 0.696 vs. 0.669; 
AIC, 717.869 vs. 722.453; likelihood ratio, P < 0.0001; 
AUC, 0.706 vs. 0.671; for 3-year OS) still outperformed 
the clinical model in terms of discrimination and calibra-
tion (Table 3, Fig. 5d).

To further demonstrate the incremental value of MPIS, 
we also selected features from the individual scale, cal-
culated the corresponding single-scale pathology image 
signature, and constructed single-scale models including 
a 2.5 × model, a 10 × model, and a 40 × model. The fea-
ture selected at each scale and their corresponding coef-
ficients are detailed in (Additional file  1: Tables S3–S5 
). The single-scale texture signature at 2.5 × , 10 × , and 
40 × magnifications were associated with the OS in the 
discovery set and the three external validation sets (Addi-
tional file  1: Figures  S10–S12). Compared to the single-
scale models, the full model still had a higher AUC value 
at most time points (Additional file 1: Figure S13).

Histo‑genomic analysis
The transcriptomic data consisted of 19,645 annotated 
genes across TCGA-LUAD. We performed differential 
gene expression analysis, and found 194 DEGs between 
the MPIS-defined high-risk and low-risk groups. These 
DEGs identified 16 significant biological pathways 
through GO enrichment analysis. These significant 
pathways were involved in cytokine activity, cell pro-
liferation, metabolism, growth, division, and extracel-
lular matrix structure, and they were considered to be 
correlated with the growth and development of tumors. 
Specifically, DEGs showed significant enrichment in 
biological pathways such as humoral immune response, 
regulation of peptidase activity, signal release, and extra-
cellular structure organization (Additional file  1: Figure 
S14). The full list of DEGs and pathways is presented in 
Additional file 2. Furthermore, we evaluated the associa-
tions between the gene expression of biological pathways 
and the image-derived texture features with ssGSEA. 
We used 16 biological pathways to calculate the enrich-
ment scores for each of the eight texture features used to 
construct the MPIS. As shown in Fig. 6, the texture fea-
tures of the tumor region derived from histopathological 
images (i.e., glrlm_SRLGLE_90_2.5, glcm_ASM_0_2.5, 
and Percentile_10th_40) were significantly associated 
with biological pathways such as extracellular structure 
organization, structural constituent of cytoskeleton, 
hormone activity, and extracellular matrix structural 
constituent.

Discussion
Accurate prognosis for resectable LUAD could guide 
clinical decision-making and improve risk stratification. 
Although morphological examination of tumors in rou-
tine histopathological slides by pathologists could help 
predict cancer behavior, manual review fails to quantify 
sub-visual features of tumors. In this study, we developed 
a fully automated pipeline to analyze the tumor and its 
microenvironment through extracting multi-scale tex-
ture information from the tumor region in H&E-stained 
WSIs. We used the texture information to construct 
MPIS and evaluated its prognostic ability for predicting 
OS in patients with resectable LUAD. The results dem-
onstrated that MPIS was an independent prognostic 
factor for OS. Moreover, integrating MPIS with clinico-
pathological variables improved the prognostic stratifica-
tion in resectable LUAD. In addition, the image-derived 
multi-scale texture features were associated with bio-
logical pathways affecting tumor development. We vali-
dated the prognostic model in four independent cohorts, 
including large multi-institutional data from the TCGA 
cohort. MPIS was an independent prognostic factor in 
all four cohorts, even though there were statistically sig-
nificant differences among these four cohorts (Table  1). 
At the same time, we observed significant stratification 
in most subgroups (Additional file 1: Figure S2–S8). This 
suggested that MPIS is a robust prognostic biomarker of 
OS in resectable LUAD and can be easily generalized to 
other centers.

In recent years, many histopathological biomark-
ers have been developed for the prognosis of patients 
with lung cancer. For instance, Yu et al. [13] and Chen 
et  al. [24] employed CellProfiler [25–27] software to 
quantitatively measure cellular phenotypes in histo-
pathological images, and correlated these features with 
prognosis. Several studies [28–30] captured cellular-
level feature descriptors from segmented nuclei for 
predicting prognosis in early-stage non-small cell lung 
cancer. In addition, Wang et  al. [31] have provided 
insights into the relationship between tumor shape and 
prognosis in patients with LUAD. However, most of 
these potential biomarkers are mainly focused on sin-
gle-scale information, on either the cellular level or the 
tissue level of histopathological images. Differently, this 
study leveraged multi-scale texture features from tumor 
regions to construct an image signature for prognosti-
cating OS of LUAD patients. The motivation for quanti-
fying multi-scale texture features was based on routine 
examination of histopathological slides by pathologists. 
Pathologists generally first observe the whole slide 



Page 13 of 17Wang et al. Journal of Translational Medicine          (2022) 20:595 	

tissue at the tissue level with low magnification, and 
then selectively examine the morphological features at 
the cellular level with high magnification. Specifically, 
a 2.5 × magnification image contains global informa-
tion about the whole tumor, a 10 × magnification image 
contains the characteristics of the tumor region at the 
tissue level, and a 40 × magnification image contains 
tumor features at the cellular level. Compared with 

single-scale texture signatures, we found that MPIS 
could improve the prognostic stratification in resect-
able LUAD, and the full model that integrated MPIS 
and clinicopathological variables had better prediction 
power (Additional file  1: Figure S13). This seems to 
indicate that MPIS can effectively capture multi-scale 
information from the cellular level to the tissue level 

Fig. 6  Associations between biological pathways and the identified texture features. The strengths of associations of biological pathways (shown in 
rows) with texture features (shown in columns) were shown by ssGSEA analysis. Wilcoxon rank-sum test P-values are shown, where P < 0.05 indicates 
an association exists between the texture feature of the tumor region derived from histopathological images and the biological pathway
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in histopathological images, and can comprehensively 
assess morphological characterization of tumors.

Over the past few years, different deep learning 
approaches have been proposed to quantify tumors and 
their surrounding microenvironment, resulting in various 
potential biomarkers based on deep features for progno-
sis [32–34]. For example, Coudray et al. [15] demonstrated 
that deep learning models could assist pathologists in 
automatically detecting cancer subtypes or gene muta-
tions. Shi et al. [33] proposed an efficient and labor-saving 
deep learning method for providing a valuable means of 
patient risk stratification. Nevertheless, they only enabled 
subjectively provide hypothetical explanations based on 
slide-by-slide qualitative assessments, let alone objectively 
connect deep features to biological phenomena, although 
class activation maps [35, 36] could visualize interested 
image regions in end-to-end CNN models.

In contrast, our work could directly correlate with bio-
logical concepts, and provide interpretability in histo-
pathology and genomics. On the one hand, we tracked 
down observable texture features from a histopathologi-
cal standpoint to reduce the risk of spurious correlations. 
Specifically, we observed significant differences in the 
distribution of MPIS between the well-moderately dif-
ferentiated and poorly undifferentiated groups (Fig.  4). 
This seems to suggest that a significant association exists 
between MPIS and tumor differentiation performed by 
pathologists. For example, the abundance and spatial 
distribution of tumor cells and the growth pattern of 
stroma might be reflected in the texture features of WSIs. 
MPIS could discriminate the degree of tumor differentia-
tion by quantifying these texture features. Furthermore, 
we found that the selected multi-scale texture features 
might be directly correlated with biological phenomena 
by quantifying phenotypic information in histopathologi-
cal images, and could provide interpretability for inves-
tigators. More specifically, the feature glrlm_ SRLGLE 
measured the pattern of consecutive pixels with lower 
gray value in an image. In the context of histopathologi-
cal images, a larger glrlm_SRLGLE feature value might 
reflect the sparser distribution of cells in the tissue image. 
This biological phenomenon might indicate a lepidic or 
acinar growth pattern of LUAD (Fig. 2a, b). The feature 
glcm_ASM measured the gray scale uniformity of the 
image. A larger value indicated a higher degree of uni-
formity. As shown in Fig.  2g, the bottom figure had a 
higher glcm_ASM feature value. One may observe that 
the tissues and cells grow relatively more densely in the 
tumor compared with that of the top figure, and the 
tumor growth pattern seems to be solid.

On the other hand, we also investigated the biologi-
cal pathways that might drive tumor development by 
histo-genomics analysis, which further elaborated the 

interpretability of texture features from a genomics 
perspective. In this study, the selected texture features 
were associated with significant biological pathways 
affecting tumor development. For instance, the extra-
cellular matrix structural constituent was significantly 
associated with the features glrlm_SRLGLE_90_2.5, and 
Percentile_10th_40. Gene expression of these pathways 
has been shown to affect tumors and their microenvi-
ronment [37], possibly suggesting that the stromal tis-
sue structure influences the texture distribution of the 
tumor region. Moreover, the cellular microenvironment 
constantly regulates cell growth, apoptosis, and differen-
tiation by cytoskeletal remodeling [38]. We found a sig-
nificant correlation between the structural constituent of 
cytoskeleton and the image-derived texture features such 
as glrlm_SRLGLE_90_40, clearly suggesting that the tex-
ture feature might be driven by pathways related to cel-
lular apoptosis and differentiation. Cytokine activity [39, 
40], which could be another latent reason for affecting 
the texture distribution of the tumor region, reflects the 
survival, growth, differentiation, and effector function of 
tissues and cells.

This study had some limitations. First, our study was 
based on retrospective cohorts, which may be impres-
sionable to bias from some risk variables and the loss 
of follow-up. In the future, we will further validate our 
model in larger cohorts or a prospective study. Second, 
MPIS was developed and validated with data from dif-
ferent institutions, which meant some relevant demo-
graphic parameters were unavailable in some datasets. 
Third, this study employed a deep learning method based 
on transfer learning to segment the tumor region. How-
ever, pathologists still needed to annotate a small number 
of slides to fine-tune the segmentation model, improv-
ing the model’s performance. In the future, we will use 
weakly supervised or unsupervised learning models for 
quantitative analysis to minimize the labeling work of 
pathologists.

Conclusions
In summary, we developed and validated MPIS, which 
could successfully stratify patients with resectable LUAD 
into high-risk and low-risk groups with significant differ-
ences in OS. MPIS was an independent prognostic factor 
for OS, and the integration of MPIS with clinicopatho-
logical variables improved the prognostic stratification 
for patients with resectable LUAD. The study demon-
strated that MPIS was a comprehensive, robust, and 
interpretable predictor and could contribute to the field 
of precision oncology by helping to improve the quality 
of individualized postoperative care.
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