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Abstract 

Background:  Soft tissue sarcomas (STS) are heterogeneous and pro-metastatic tumors. Identification of accurate 
prognostic factors and novel therapeutic targets are crucial. CSPG4 is a cell surface proteoglycan with oncogenic 
functions. It recently emerged as a potential target for immunotherapy, including cell therapy based on CSPG4-
specific chimeric antigen receptor (CAR)-redirected cytokine-induced killer lymphocytes (CSPG4-CAR.CIKs) in STS. 
However, expression of CSPG4 is poorly known in STS so far.

Methods:  We analyzed CSPG4 gene expression in 1378 localized STS clinical samples, and searched for correlations 
with clinicopathological data, including disease-free survival (DFS), and with tumor immune features.

Results:  CSPG4 expression was heterogeneous across samples. High expression was associated with younger 
patients’ age, more frequent undifferentiated pleomorphic sarcoma and myxofibrosarcoma pathological subtypes, 
more frequent internal trunk tumor site, and more CINSARC high-risk samples. No correlation existed with pathologi‑
cal tumor size and grade, and tumor depth. Patients with high CSPG4 expression displayed 49% (95% CI 42–57) 5-year 
DFS versus 61% (95% CI 56–68) in patients with low expression (p = 3.17E−03), representing a 49% increased risk of 
event in the “CSPG4-high” group (HR = 1.49, 95% CI 1.14–1.94). This unfavorable prognostic value persisted in multi‑
variate analysis, independently from other variables. There were significant differences in immune variables between 
“CSPG4-high” and “CSPG4-low” tumors. The "CSPG4-low" tumors displayed profiles suggesting higher anti-tumor 
cytotoxic immune response and higher potential vulnerability to immune checkpoint inhibitors (ICI). By contrast, the 
"CSPG4-high" tumors displayed profiles implying an immune-excluded tumor microenvironment, potentially induced 
by hypoxia, resulting from an immature chaotic microvasculature, and/or the presence of contractile myofibroblasts.

Conclusions:  Patients with “CSPG4-high” STS, theoretically candidate for CAR.CIKs, display shorter DFS and an 
immune environment unfavorable to vulnerability to CAR.CIKs, which could be improved by combining anti-angio‑
genic drugs able to normalize the tumor vasculature. By contrast, “CSPG4-low” STS are better candidates for immune 
therapy involving ICI.
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Background
Soft-tissue sarcomas (STS) are rare and serious tumors 
of mesenchymal origin affecting children and adults [1]. 
These heterogeneous tumors encompass more than 100 
distinct pathological subtypes associated with variable 
biological and clinical behaviors [2]. Despite the suc-
cessful advances in surgical resection, radiotherapy, and 
chemotherapy, the outcome of patients with non-met-
astatic STS is still poor: the disease recurs in approxi-
mately 50% of patients, often with distant failure [3–6]. 
In the metastatic setting, the prognosis remains dismal 
with a 5-year survival rate inferior to 25% [7]. Currently, 
two issues represent major challenges in the manage-
ment of STS. The first one is the improvement of prog-
nostic factors that will help to better define the role, if 
any, of adjuvant chemotherapy. Historically associated 
with pathological grade [8] and size, and depth [9], the 
prognostic characterization is being refined, thanks to 
the contribution of genomic signatures such as CIN-
SARC [10] or the immunologic constant of rejection 
(ICR) signature [11]. Clinical trials assessing prospec-
tively the clinical utility of CINSARC (NCT03805022, 
NCT04307277) are ongoing. The second issue relies on 
the identification of novel therapeutic targets. The lim-
ited development of new chemotherapy drugs and tar-
geted therapies during the last decade has not modified 
the overall prognosis, and doxorubicin remains the back-
bone of systemic treatment.

Chondroitin sulfate proteoglycan 4 (CSPG4), also 
called neural-glial 2 (NG2), is a cell surface proteogly-
can, overexpressed in certain human cancers, with low 
expression in normal tissues and oncogenic roles in 
tumor growth and metastatic dissemination [12] via the 
promotion of cell proliferation, cell survival and drug 
resistance, angiogenesis, cell migration and invasion [13]. 
Inhibition of CSPG4 by gene deletion or treatment with 
anti-CSPG4 antibodies inhibits tumor growth in xeno-
grafts from some malignancies [14, 15]. Since CSPG4 
is expressed in the mesenchymal progenitor cells [16, 
17] and pericytes [18] from which STS are supposed to 
originate, its activation could play a role in sarcoma pro-
gression. Driving oncogenic mutations in Ng2/Cspg4-
expressing cells leads to the formation of sarcomas [18]. 
During the last years, CSPG4 was described as a poten-
tial target of cellular immunotherapy in cancers [12]. 
CSPG4 is also known to influence activation, maturation, 
proliferation, and migration of different immune cell sub-
sets suggesting likely interaction with immunotherapy 
efficiency [12].

Recent data suggested that the immune system might 
positively impact the outcome of patients with STS [11, 
19, 20]. Several clinical trials testing immunotherapy 
based on immune checkpoint inhibitors (ICI) have been 
launched [21], but the results were relatively disappoint-
ing and remain controversial [22]. Identification of effi-
cacy predictive markers, such as the presence of tertiary 
lymphoid structures [23, 24], is crucial in this so hetero-
geneous group of tumors. Another immunotherapy type 
is adoptive cellular therapy in which the T-cells are redi-
rected by tumor antigen-specific chimeric antigen recep-
tors (CAR-Ts). This approach, very effective in B-cell 
cancers [25–27], remains challenging in solid tumors 
[28]. One approach dedicated to improving the efficacy 
and safety of CAR-based therapies is the engineering 
of immune effectors different from αβT-lymphocytes, 
such as γδT-cells, natural killer (NK), NKT, or cytokine-
induced killer (CIK) cells [29]. A recent study revealed 
the therapeutic potential of CSPG4-specific chimeric 
antigen receptor (CAR)-redirected cytokine-induced 
killer lymphocytes (CSPG4-CAR.CIKs) in STS [30]. In 
this study, the CSPG4-CAR.CIKs effectively targeted 
multiple STS pathological subtypes in vitro and in vivo. 
Antitumor activity against STS spheroids was associated 
with tumor recruitment, infiltration, and matrix penetra-
tion. In vivo, the CSPG4-CAR.CIKs delayed or reversed 
the tumor growth in three STS xenograft models (leio-
myosarcoma, undifferentiated pleomorphic sarcoma, and 
fibrosarcoma).

Expression of CSPG4 is poorly known in STS. To our 
knowledge, only three studies [30–32] in the literature 
analyzed its expression in clinical samples, including 
respectively 251, 55, and 108 cases, but only the two 
smallest ones searched for correlations with tumor clini-
cal features. To fill this gap and given the potential rel-
evance of CSPG4 as a target for immunotherapy, we 
analyzed its expression in 1,378 localized STS clinical 
samples. We searched for correlations between expres-
sion and clinicopathological data, including disease-free 
survival (DFS), but also the components of the tumor 
immune landscape.

Methods
Patients and tumor samples
We collected clinicopathological and gene expression 
data of clinical STS samples from 15 public data sets 
through the National Center for Biotechnology Infor-
mation (NCBI)/Genbank GEO, ArrayExpress databases, 
and authors’ websites (Additional file  1: Table  S1). The 
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gene expression profiles had been generated using DNA 
microarrays or RNA-sequencing. The data sets were 
selected if the clinical and expression data, including 
CSPG4 expression level, were available. The final data set 
included 1,378 clinical samples. The study was approved 
by our institutional board. We also analyzed cancer cell 
line data from the Dependency Map (DepMap) portal 
(https://​depmap.​org/​portal; accessed on 05 April 2022) to 
compare the RPPA-based protein expression levels versus 
the RNA-seq-based mRNA expression levels of CSPG4.

Gene expression data analysis
The pre-analytic processing of data was done as previ-
ously described [11]. Briefly, a first step of normalization 
was applied to each data set separately, by using quantile 
normalization for the already processed non-Affymetrix 
data, and Robust Multichip Average (RMA) with non-
parametric quantile algorithm for the raw Affymetrix 
data. Normalization was done in R using Bioconductor 
and associated packages. We then mapped hybridiza-
tion probes and kept the most variant one in a given data 
set when multiple probes mapped to the same GeneID. 
The already normalized TCGA RNAseq data were 
log2-transformed. Finally, we corrected the batch effects 
across the 15 studies by using z-score normalization, in 
which mean and standard deviation were measured on 
leiomyosarcoma samples. CSPG4 expression was ana-
lyzed as discrete variable (high versus low) by using its 
median expression level of the whole series as cut-off.

Because CSPG4 is a potential target of immunotherapy, 
we searched for correlations between its tumor expres-
sion and different immune variables. We applied to each 
data set separately several immunity-, fibroblastic- or 
vasculature-related multigene classifiers/scores: the 
tumor-infiltrating lymphocyte (TIL) score [33], the 24 
Bindea’s innate and adaptive immune cell subpopulations 
and two Bindea’s vessels signatures [34], two fibroblast 
subsets’ classifications [35, 36], hypoxia, acidosis and 
lactic acidosis Gatza’s scores [37], the Immunologic Con-
stant of Rejection (ICR) classifier [38], and metagenes 
associated representative of T-cell-inflamed signature 
(TIS) [39], of tertiary lymphoid structures (TLS) signa-
ture [40], of cytolytic activity score [41], and the antigen 
processing machinery (APM) score [42]. We also applied 
the CINSARC signature, now recognized as the most rel-
evant prognostic signature in STS [10].

To explore the biological pathways linked to CSPG4 
expression in STS, we applied a supervised analysis to 
the largest transcriptomics data set [10] including 131 
“CSPG4-high” and 179 “CSPG4-low” tumors (learn-
ing set), and used the remaining tumors as independ-
ent validation set, including 558 “CSPG4-high” and 
510 “CSPG4-low” tumors. In the learning set (N=310), 

we compared the expression profiles of 18,606 genes 
between “CSPG4-high” and “CSPG4-low” tumors using a 
moderated t-test with empirical Bayes statistic (limma R 
packages) and false discovery rate (FDR) correction. Sig-
nificant genes were defined by the following thresholds: 
p<5%, q<10% and fold change (FC) superior to |1.5x|. 
Ontology analysis of the resulting gene list was based 
on GO biological processes of the Database for Annota-
tion, Visualization and Integrated Discovery (DAVID; 
david.abcc.ncifcrf.gov/). We tested the robustness of the 
resulting gene list in the remaining data sets defined as 
validation set (N=1068) by computing the Pearson cor-
relation distance between each sample and the CSPG4-
high profile defined in the learning set as the average 
expression of each significant gene in the CSPG4-high 
class. Validation samples with negative correlation were 
classified as “CSPG4-low-like” and those with positive 
correlations were classified as “CSPG4-high-like”. Super-
vised analyses also searched for differentially altered 
genes between “CSPG4-high” and “CPG4-low” STS at 
the DNA level using the copy-number alteration (CNA), 
mutation and methylome public data available on TCGA 
portal (https://​portal.​gdc.​cancer.​gov). We compared the 
CNA profiles using the available “GISTIC thresholded 
by genes” TCGA data between “CSPG4-high” (N=123) 
and “CSPG4-low” (N=132) tumors across 24,776 genes 
using a Fisher’s exact test and FDR correction. Significant 
altered genes at “one copy gain”, “amplification”, “one copy 
loss” and “homozygous deletion” were defined by the fol-
lowing thresholds: p<5% and q<10%. Next, we compared 
the mutation profiles between “CSPG4-high” (N=119) 
and “CSPG4-low” (N=126) tumors across 7492 filtered 
(genes mutated in at least one sample) using a Fisher’s 
exact test and false discovery rate (FDR) correction. 
Silent mutations were excluded from analysis. Significant 
mutated genes were defined by the following thresholds: 
p<5% and q<10%. Finally, we compared the methylation 
profiles between “CSPG4-high” (N=101) and “CSPG4-
low” (N=118) tumors across 450,000 probes using a Stu-
dent t-test and FDR correction. Significant methylation 
sites were defined by the following thresholds: p<5%, 
q<10% and fold change (FC) superior to |1.25x|.

Statistical analysis
The continuous variables were described using median 
and range, and the discrete values using number and 
percentage. The correlations between CSPG4 expres-
sion-based groups and clinicopathological variables and 
molecular signatures were measured using the Fisher’s 
exact test or Student’s t-test when appropriate. The end-
point of prognostic analysis was the disease-free survival 
(DFS), calculated from the date of diagnosis until the date 
of distant relapse or death from any cause, whichever 

https://depmap.org/portal
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occurred first. The follow-up was measured from the 
date of diagnosis to the date of last news for event-free 
patients. Survivals were estimated using the Kaplan-
Meier method and curves compared with the log-rank 
test. Uni- and multivariate prognostic analyses were 
done using Cox regression analysis (Wald test). The vari-
ables tested in univariate analysis were patients’ age and 
gender, pathological tumor type (liposarcomas (LPS), 
leiomyosarcomas (LMS), undifferentiated pleomorphic 
sarcomas (UPS), myxofibrosarcomas (MFS), others), 
grade (3, 1-2), and size, tumor depth (superficial, deep) 
and site (extremities, head and neck, internal trunk, 
superficial trunk), CINSARC-based risk (high, low) and 
the CSPG4-based classification (high, low). Multivariate 
analysis incorporated all variables with a p-value inferior 
to 5% in univariate analysis. The correlations of molecu-
lar immune/stromal variables with “CSPG4-high” versus 
“CSPG4-low” status of samples were assessed by logistic 
regression analysis with the glm function (R statistical 
package; significance estimated by specifying a binomial 
family for models with a logit link). All statistical tests 
were two-sided, and the significance threshold was 5%. 
Analyses were done with the survival package (version 
2.43) from R software (version 3.5.2).

Results
Patients’ characteristics and CSPG4 expression
A total of 1378 localized STS samples were available for 
analysis. Their characteristics are summarized in Table 1. 
The median patients’ age was 61 years (range, 2–92), 
and 51% of cases were male. The pathological subtypes 
were represented by 476 (35%) liposarcomas (LPS), 311 
(23%) leiomyosarcomas (LMS), 288 (21%) undifferenti-
ated pleomorphic sarcomas (UPS), 100 (7%) myxofibro-
sarcomas (MFS), and 177 (13%) other subtypes. Fifty-one 
percent were grade 3. The median pathological tumor 
size was 10 cm (range 1.2-39.5), and the most frequent 
tumor sites were extremities in 42% of cases and internal 
trunk in 39% of cases. The tumor was deep-seated (under 
fascia) in 89% of cases. Sixty-two percent (62%) of sam-
ples showed a complex genetic profile and 53% a low-risk 
according to the CINSARC signature.

CSPG4 mRNA expression varied among the 1,378 
tumors with a range of intensities over four units in log2 
scale (Additional file  2: Figure S1A), suggesting a het-
erogeneous expression across the samples. Using the 
available omics data of 343 cancer cell lines including 
four sarcoma cell lines, we showed an excellent correla-
tion between the mRNA and protein expression levels of 
CSPG4, with a Spearman’s rank correlation coefficient 
(rho) mean equal to 0.85 (p=9E-102) (Additional file  2: 
Figure S1A).

CSPG4 expression correlates with clinicopathological 
features
We searched for correlations between CSPG4 expres-
sion, assessed as a discrete variable (high versus low) and 
clinicopathological features (Table 1). There was no sig-
nificant correlation with patients’ gender, pathological 
tumor size, pathological grade, and tumor depth. A trend 
for correlation existed with the genetic profile (p=0.063), 
with more frequent complex profiles in “CSPG4-high” 
tumors (65% versus 60%, p=0.095). Significant correla-
tions were found with patients’ age (p=3.21E−02), patho-
logical subtype (p=7.52E−21), tumor site (p=7.11E−03), 
and the CINSARC class (p=4.59E−02). Briefly, we found 
younger median age in “CSPG4-high” tumors (57 versus 
60 years), more UPS (24% versus 18%) and MFS (12% 
versus 3%) in “CSPG4-low” tumors and more LMS (33% 
versus 13%) in “CSPG4-high” tumors, more frequent 
extremity site for “CSPG4-low” tumors (47% versus 36%) 
and internal trunk site for “CSPG4-high” tumors (47% 
versus 33%), and more CINSARC high-risk samples in 
“CSPG4-high” tumors (50% versus 45%).

CSPG4 expression correlates with disease‑free survival
The information on DFS and CSPG4 expression was 
available for 610 patients. In the whole population, the 
median follow-up was 28 months (range 1-222), 223 
DFS events occurred, and the 5-year DFS was 56% (95% 
CI 52–61) (Figure 1A). The 5-year DFS was 61% (95% CI 
56–68) in the “CSPG4-low” subgroup and 49% (95%CI 
42-57) in the “CSPG4-high” group (p=3.17E−03; Fig-
ure 1B). In univariate analysis for DFS (Table 2), this DFS 
difference corresponded to a 49% increased risk of event 
in the “CSPG4-high” group (HR=1.49, 95% CI 1.14–1.94; 
p=3.36E−03, Wald test). The other variables associ-
ated with shorter DFS included the pathological subtype 
(p=2.06E−05) and tumor size (HR=1.05, p=1.39E−03), 
and the CINSARC risk (p=4.35E−09). A trend was 
observed for the pathological grade (p= 0.098) and 
the tumor depth (p=0.062). No correlation was found 
between DFS and patients’ age and gender, and tumor 
site. In multivariate analysis, the “CSPG4-high” group 
(HR=3.47, 95% CI 1.73–6.95, p=4.59E−04) and higher 
pathological tumor size (HR=1.05, 95% CI 1.01–1.09, 
p=1.98E−02) remained significant, suggesting independ-
ent poor-prognosis value. The same result was observed 
when the ICR signature was added in the multivariate 
analysis (Additional file 7: Table S2).

CSPG4 expression correlates with immune features
Next, we investigated whether CSPG4 expression was 
associated with immunity-related parameters in STS 
samples (Figure  2). First, we compared the TIL scores 
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in “CSPG4-high” and “CSPG4-low” tumors. These 
scores quantify the infiltration level of TIL, lymphoid 
and myeloid cells in tumor tissues, based on expres-
sion data. “CSPG4-low” STS displayed higher TILs 
scores (p=6.26E−05), notably with higher infiltra-
tion of lymphoid cells (p=5.11E−07) and myeloid cells 

(p=3.11E−04) than “CSPG4-high” STS, suggesting 
overall higher infiltration by immune cells in the for-
mer. Second, we looked at the composition and func-
tional orientation of these tumor infiltrated cells, using 
immunity-related fibroblast-related and vasculature-
related signatures/scores. Analysis of the 24 immune 

Table 1  Clinicopathological characteristics of patients and samples

The significant p-values are in bold

FNCLCC, Fédération Nationale des Centres de Lutte Contre le Cancer; *, Student’s t-test for continuous variables and Fisher’s exact test for discrete variables

Characteristics N All CSPG4 classes p-value*

low high

Patient’s age, median

 Years (range) 528 61 (2–92) 61 (10–92) 57 (2–90) 0.032
Gender

 Female 299 299 (49%) 151 (47%) 148 (52%) 0.316

 Male 306 306 (51%) 168 (53%) 138 (48%)

Tumor site

 Extremity 206 206 (42%) 124 (47%) 82 (36%) 0.007
 Head and neck 9 9 (2%) 7 (3%) 2 (1%)

 Internal trunk 195 195 (39%) 87 (33%) 108 (47%)

 Superficial trunk 84 84 (17%) 46 (17%) 38 (17%)

Tumor depth

 Deep 144 144 (89%) 73 (88%) 71 (91%) 0.706

 Superficial 17 17 (11%) 10 (12%) 7 (9%)

Pathological type

 Undifferentiated pleomorphic sarcoma 288 288 (21%) 163 (24%) 125 (18%) 7.52E−21
 Leiomyosarcoma 311 311 (23%) 87 (13%) 224 (33%)

 Liposarcoma 476 476 (35%) 259 (38%) 217 (32%)

 Myxofibrosarcoma 100 100 (7%) 78 (12%) 22 (3%)

 Other 177 177 (13%) 86 (13%) 91 (13%)

Pathological tumor size, median cm (range) 170 10.0 (1.2–39.5) 12.53 (1.6–36) 11.8 (1.2–39.5) 0.540

Pathological FNCLCC grade

 1–2 163 163 (49%) 88 (51%) 75 (48%) 0.693

 3 166 166 (51%) 85 (49%) 81 (52%)

Genetic profile

 Simple 508 508 (38%) 269 (40%) 239 (35%) 0.095

 Complex 844 844 (62%) 406 (60%) 438 (65%)

CINSARC risk

Low-risk 724 724 (53%) 381 (55%) 343 (50%) 0.046
High-risk 654 654 (47%) 308 (45%) 346 (50%)

TCGA SARC, iCluster

 1 48 48 (27%) 2 (2%) 46 (51%) 6.51E−14
 2 27 27 (15%) 11 (12%) 16 (18%)

 3 55 55 (30%) 45 (50%) 10 (11%)

 4 9 9 (5%) 7 (8%) 2 (2%)

 5 42 42 (23%) 25 (28%) 17 (19%)

Follow-up median, months (min–max) 610 28 (1–222) 32 (1–203) 24 (1–222) 0.624

DFS event 610 223 (27%) 119 (33%) 104 (43%) 1.28E−02
5-year DFS [95% CI] 610 56% (52–61) 61% (56–68) 49% (42–57) 3.17E−03
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cell types defined as the immunome [27], fibroblast 
subsets and two vessels signatures showed significant 
differences between “CSPG4-high” and “CSPG4-low” 
tumors. “CSPG4-high” tumors displayed a higher infil-
trate in NK cells (p=7.43E−05), notably the immu-
noregulatory ones (NK CD56bright cells: p=8.76E−03). 
This was associated with a highly suppressive micro-
environment, as demonstrated by the enrichment in 

signatures for acidosis (p=1.82E−06), lactic acido-
sis (p=2.74E−10), and hypoxia (p=5.38E−12) despite 
a higher signature of blood vessels (p=3.13E−04). 
CSPG4-high” tumors were also enriched in myofibro-
blasts CAFs (Kinchen_Myofibroblast: p=2.88E−24) 
and myCAFs (Tuveson_myCAF: p=4.00E−04) subsets. 
By contrast, the “CSPG4-low” tumors showed enrich-
ment in signatures of macrophages (p=2.64E−06), T 
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Fig. 1  Disease-free survival in patients with localized STS after surgery. A Kaplan–Meier DFS curves in the 610 informative patients for DFS. B Similar 
to A, but according to CSPG4 expression (low and high). The p-value is for the log-rank test

Table 2  Uni- and multivariate prognostic analyses for DFS

The significant p-values are in bold

UPS Undifferentiated Pleomorphic Sarcoma, FNCLCC Fédération Nationale des Centres de Lutte Contre le Cancer

Variables Univariate Multivariate

N HR [95% CI] p-value N HR [95% CI] p-value

Patient’s age 303 1.00 [0.99–1.01] 0.839

Gender, male vs. female 303 1.04 [0.73–1.48] 0.831

Tumor site, head and neck vs. extremity 382 0.00 [0.00- Inf ] 0.118

Tumor site, internal trunk vs. extremity 1.28 [0.90–1.81]

Tumor site, superficial trunk vs. extremity 0.68 [0.40–1.16]

Tumor depth, superficial vs. deep 128 0.26 [0.06–1.07] 0.062

Pathological type, leiomyosarcoma vs. UPS 610 2.42 [1.65–3.54] 2.06E−05 55 3.63 [0.28–46.61] 0.322

Pathological type, liposarcoma vs. UPS 1.44 [1.00–2.06] 55 1.97 [0.10–37.16] 0.650

Pathological type, myxofibrosarcoma vs. UPS 1.01 [0.51–2.01] 55 7.02 [0.33–150.7] 0.213

Pathological type, other vs. UPS 0.78 [0.35–1.72] 55 0 [0.00—Inf ] 0.999

Pathological tumor size (cm) 142 1.05 [1.02–1.09] 1.39E−03 55 1.07 [0.98–1.17] 0.155

Pathological FNCLCC grade, 3 vs. 1–2 239 1.47 [0.93–2.33] 0.098 55 6.84 [1.04–44.8] 0.045

Genetic profile, complex vs. simple 598 1.17 [0.89–1.54] 0.270

CINSARC, high-risk vs. low-risk 610 2.22 [1.70–2.90] 4.35E−09 55 1.14 [0.26–4.93] 0,865

CSPG4, high vs. low 610 1.49 [1.14–1.94] 3.36E−03 55 10.47 [1.04–105.3] 4.62E−02
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cells (p=1.41E−05), aDC cells (p=1.70E−05), neutro-
phils (p=1.78E−04), γδ T cells (p=6.30E−04), B cells 
(p=1.45E-03), cytotoxic cells (p=1.97E−03) and CD8 T 
cells (p=6.97E−03), higher inflammatory CAFs (Tuve-
son_iCAFs: p=7.35E−05) and antigen-presenting CAFs 
(Tuveson_apCAFs: p=5.38E−04), and higher lymph ves-
sels signature (p=3.15E−13). Thus, except for NK cells, 
most immune cell types were observed in higher pro-
portions in “CSPG4-low” tumors, which also had a less 
immune-suppressive environment. In parallel, analysis 
of other immune functional signatures confirmed these 
results. “CSPG4-high” samples showed a lower immune 
cytolytic activity score (p=1.70E−06) than “CSPG4-low 

samples”, as well as lower antigen processing/presenta-
tion machinery (APM) score (p=5.81E−04). They also 
displayed lower scores for signatures associated with 
response to ICI: Immunologic Constant of Rejection 
(ICR) score (p=1.66E−04), reflect of an antitumor cyto-
toxic immune response, T cell-inflamed signature (TIS) 
(p=7.28E−06), and tertiary lymphoid structure (TLS) 
score (p=1.72E−05).

CSPG4 expression and correlations with biological 
variables
In order to further characterize the “CSPG4-high” and 
“CGSPG4-low” STS samples, we applied supervised 
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analysis to transcriptomics, genomics and epigenom-
ics data. Regarding transcriptomics data, the super-
vised analysis identified 379 genes differentially 
expressed between the “CSPG4-high” tumors and the 
“CSPG4-low” tumors of the learning set, including 229 
genes upregulated and 150 genes downregulated in 
the “CSPG4-high” tumors (Additional file 8: Table S3, 
Additional file  3: Figure S2A). The robustness of this 
gene list was confirmed in the validation set including 
1,068 tumors (Additional file  3: Figure S2B). Ontol-
ogy analysis (Additional file  9: Table  S4) revealed a 
net overrepresentation of immune ontologies among 
the genes overexpressed in the “GSPG4-low” tumors, 
whereas the genes overexpressed in the “GSPG4-high” 
tumors were associated with multiple ontologies such 
as those related to cell migration, cytoskeleton, col-
lagen and extra-cellular matrix, response to stress, 
growth and development.

Using the TCGA data set [43], we then applied 
supervised analyses to identify the DNA copy num-
ber alterations (CNA), the gene mutations and the 
gene methylations differentially observed between 
the two sample groups. Regarding the comparison of 
CNA between the “CSPG4-high” and “CGSPG4-low” 
tumors, the profiles were very similar; no significant 
difference was observed regarding “one copy gains”, 
“amplifications”, and “homozygous deletions“, whereas 
2255 genes were differentially altered regarding the 
frequency of “one copy loss”, including 255 genes more 
frequently lost in the ”CSPG4-high” samples and 2292 
genes more frequently lost in the ”CSPG4-low” sam-
ples (Additional file 10: Table S5, Additional file 4: Fig-
ure S3). The comparison of mutational profiles showed 
no significant difference in term of mutation frequency 
between the “CSPG4-high” and “CGSPG4-low” tumors 
(Additional file  11: Table  S6, Additional file  5: Figure 
S4). Three genes were more frequently mutated in the 
“CSPG4-high” samples (RB1, PTEN, PRKDC) and two 
were more frequently mutated in the “CSPG4-low” 
samples (PEG2, AHK2), but none of them remained 
significant after FDR correction. The comparison 
of methylation sites between the “CSPG4-high” and 
“CGSPG4-low” tumors identified 84 significant sites, 
including 35 more methylated in the “CSPG4-high” 
group and 49 in the “CGSPG4-low” group (Additional 
file 12: Table S7, Additional file 6: Figure S5).

Finally, we searched for correlation between the 
CSPG4 expression status and the five multi-omics 
subtypes defined in the TCGA set by iClustering inte-
grating DNA copy number, DNA methylation, and 
expression of mRNA and miRNA [43]. As shown in 
Table  1, the correlation was highly significant  : the 
“CSPG4-high” tumors were more frequently classified 

as iClusters 1 and 2, whereas the “CSPG4-low” tumors 
were more frequently classified as iCluster 3, 4 and 5 
(p=6.51E−14).

Discussion
In this series of 1378 STS clinical samples, high CSPG4 
expression was an independent unfavorable prognos-
tic factor for DFS and was associated with low cytotoxic 
immune response. To our knowledge, this is the largest 
study analyzing the expression of this new potential tar-
get for immune therapy in STS.

Our analysis was based on gene expression of CSPG4 
in a very large series of clinical samples. The strong cor-
relation between mRNA and protein expression levels of 
CSPG4 that we evidenced in 343 cancer cell lines sug-
gests that CSPG4 protein expression parallels observa-
tions made at the transcriptomic level. Such mRNA level 
analysis allowed not only to avoid the classical limitations 
of immunohistochemistry (availability of antibodies, 
standardization, positivity cut-off, interpretation sub-
jectivity…), but also to work on a large series of clinical 
samples and to search for correlations with expression of 
biologically and clinically relevant immune signatures. 
We found heterogeneous expression of CSPG4 in clini-
cal STS samples, as reported in the three previous stud-
ies on STS, all also performed at the transcriptional level 
[30–32]. Benassi et al. profiled 55 samples [31], Cattaru-
zza et al. 108 samples including the 55 previous ones 
[32], and Leuci et al. analyzed 251 TCGA samples [30]. 
Benassi et al. focused their analysis on 55 deeply local-
ized, >5-cm diameter and high-grade lesions [31] and did 
not find any significant correlation between the CSPG4 
expression and clinicopathological variables. The same 
team [32] extended this series to a total of 108 cases and 
found higher expression in synovial sarcoma. Leuci et al 
did not search for eventual correlations [30]. In our pre-
sent study, we found that expression was mainly associ-
ated with the pathological type, with higher expression 
in LMS and MFS and lower expression in UPS and LPS. 
Other significant correlations existed with age, tumor 
site, and CINSARC risk, the “CSPG4-high" samples being 
more frequently high-risk according to CINSARC than 
the “CSPG4-low” samples.

Our prognostic analysis included a large series of 610 
patients informative for DFS, the largest prognostic study 
reported so far. In uni- and multivariate analyses, high 
CSGP4 expression was associated with a higher risk of 
DFS event, independently from other prognostic vari-
ables including pathological tumor size and grade and 
CINSARC. The 5-year DFS was 61% in the “CSPG4-low” 
subgroup versus 49% in the “CSPG4-high” group, rep-
resenting a 49% increased risk of event in the “CSPG4-
high” group. These results are consistent with the sole 
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other prognostic study published in the literature [31]. 
In a series of 108 patients with STS deeply localized, 
>5-cm diameter and grade 2–3 [32], the authors found 
higher CSPG4 expression in the metastases when com-
pared with paired primary lesions and when compared 
with normal lung and other tissues. They confirmed this 
result at the protein level using IHC based on a mono-
clonal antibody generated by their own team, with high 
expression on the surface of neoplastic cells and neovas-
cular structures of primary and secondary tumor masses. 
Finally, they demonstrated in multivariate analysis the 
independent unfavorable prognostic value of high CSPG4 
expression for MFS [32]. This prognostic impact in STS 
was investigated at the functional level. Using in vitro and 
in vivo models, the same team [32] showed that CSPG4 
controlled the tumor progression (local growth, cell 
adhesion, and motility, and cell survival) by mediating the 
interaction of sarcoma cells with the host extracellular 
matrix, in particular with collagen 6 (Col VI) that accu-
mulates in the peri- and intra-lesional stroma. In another 
study [44], Hsu et al. showed that the effects of CSPG4 
on STS growth depended of the tumor developmental 
stage: in established murine and human STS, inhibition 
of CSPG4, using anti-CSPG4 antibody immunotherapy 
or gene deletion, decreased the cell proliferation and 
tumor size and increased apoptosis, whereas Ng2/Cspg4 
deletion at the time of tumor initiation resulted in the 
opposite effect on tumor growth. The prognostic value 
of CSPG4 expression is likely tumor type-dependent. We 
recently showed the good-prognosis value of high CSPG4 
expression in a series of 309 GIST [45], whereas higher 
expression was associated with poorer prognosis in mela-
noma [46], glioblastoma [47], breast cancer [48], head 
and neck squamous cell carcinomas [49], and hepatocel-
lular carcinoma [50].

The transmembrane proteoglycan CSPG4 had been 
originally identified by Dr Ferrone‘s team as a highly 
immunogenic tumor antigen on the surface of mela-
noma cells and was named High Molecular Weight 
Melanoma-Associated Antigen [51]. This antigen was 
then characterized by the same team in several cancers: 
melanoma [46], TNBC [14], malignant mesothelioma 
[15], acute myeloid leukemia [52], chordoma [53], glio-
blastoma [54], and osteosarcoma [55]. It is now identi-
fied as a potential therapeutic target for immune therapy 
in different cancers, including anti-idiotypic antibodies 
in melanoma [56–58], monoclonal antibodies in triple-
negative breast cancer [14] and melanoma [59], anti-
body-drug conjugate in melanoma [60], and CAR-T cells 
in many cancers [61]. In sarcomas, Leuci et al. recently 
demonstrated in vitro and in vivo the anti-tumor activ-
ity of CSPG4-CAR.CIKs in STS pre-clinical samples. We 
thus searched for eventual correlations between CSPG4 

expression and immune/stromal features. Several of 
them were differentially enriched between "CSPG4-
high" and "CSPG4-low" STS. "CSPG4-low" tumors had 
higher scores for immune signatures suggesting higher 
infiltration by immune cells, higher lymphatic vascu-
lature and higher anti-tumor immune response. They 
were also associated with the presence of TLS and other 
signatures indicative of better response to ICI treat-
ment [23], despite signs of exhaustion. In line with this, 
"CSPG4-low" tumors showed higher iCAFs and apCAFs, 
which respectively secrete cytokines to attract and 
entrap lymphocytes to turn them into harmless cells. 
Altogether, these data suggested that "CSPG4-low” STS 
could be better candidates for immune therapy involv-
ing ICI, which will fully unleash pre-infiltrated CD8 T 
cells cytotoxic potential [45]. By contrast, the "CSPG4-
high" tumors displayed immune profiles suggesting an 
immune desert or immune-excluded tumor microenvi-
ronment, lacking all kinds of immune cells required to 
mount an effective anti-tumor response, except for the 
NKbright cells. This lack of immune infiltrated cells can be 
related to the presence of myofibroblasts and myCAFs, 
which are fibroblastic subsets endowed with contractile 
features, which affect the distribution of blood vascula-
ture [62]. They also secrete a massive amount of matrix 
and prevent lymphocyte accessibility to tumor cells. For 
all these reasons, immune desert tumor microenviron-
ments have been reported to have limited sensitivity 
to ICI. In the study reported by Leuci et al., the tumor 
elimination in vitro after treatment with CSPG4-CAR.
CIKs was dependent on the expression level of tumor 
cells, suggesting that "CSPG4-high" STS should repre-
sent the most candidate population for such treatment 
[30]. But our present data suggest that a treatment based 
on CSPG4-CAR.CIKs infiltrating cells that will target 
"CSPG4-high" tumor cells could be interesting if some 
aspects responsible for the immune desert can be over-
come first. Notably, immune desert can be induced by 
hypoxia. Hypoxia is a key determinant of tumor aggres-
siveness, therapy resistance and has a dampening effect 
on antitumor immune responses and immune cells 
recruitment. Hypoxia and lactic acidosis induce the 
functional suppression of NK cells. We found that both 
hypoxia and lactic acidosis were enhanced in "CSPG4-
high" tumors. This observation is consistent with a cer-
tain overexpression of CSPG4 induced by the chronic 
hypoxia in vitro [63] and likely explains why only immu-
noregulatory NKbright cells are present in "CSPG4-high" 
tumors. A strategy based on CSPG4-CAR.CIKs would 
thus require to overcome the functional suppression. 
Hypoxia results from an immature chaotic microvascu-
lature within the tumor. Strategies that seek to normalize 
the tumor vasculature, such as tyrosine kinase inhibitors 
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(TKIs) that target pro-angiogenic receptors, should help 
reduce hypoxia, enhance tumor’s perfusion and optimize 
therapy uptake. This would be a key point to improve the 
efficacy of CSPG4-CAR.CIKs in STS.

Supervised analysis of transcriptomics data between 
the “CSPG4-high” and “CSPG4-low” tumors confirmed 
the immune desert observed in the “CSPG4-high” 
tumors and their enrichment in genes related to cell 
migration, collagen and extra-cellular matrix, response 
to stress, growth and development. That might explain 
in part their poorer prognosis when compared with 
the “CSPG4-low” tumors. No significant difference was 
observed regarding the frequency of gene amplification 
or gene deletion between both tumor groups, notably 
for CSPG4, suggesting that the DNA copy number is 
not responsible for the CSPG4 differential expression. 
Similarly, no gene showed a significant difference in 
term of mutation frequency between the “CSPG4-high” 
and “CSPG4-low” tumors. By contrast, 84 sites were 
differentially methylated between both tumor groups, 
calling for further investigations in order to assess an 
eventual functional link with CSPG4.

Conclusion
To our knowledge, our study is the largest one describ-
ing CSPG4 expression in clinical cancer samples, here 
in STS. We show that expression of CSPG4 in STS sam-
ples is heterogeneous and associated independently with 
shorter DFS and with an immune landscape not favora-
ble to anti-tumor cytotoxic response. The main strength 
of our study lies in the high number of rare tumor sam-
ples analysed. Others include its originality and analysis 
of correlations with tumor immune variables. Limitations 
include the retrospective nature and associated biases, 
analysis of bulk samples, and absence of analysis at the 
protein level. Obviously, analysis of larger clinical series 
and protein analysis are warranted. Yet, our results sug-
gest the prognostic value of CSPG4 expression in STS 
and describe the immune microenvironment of tumors 
candidate to specific immune therapy such as CSPG4-
CAR.CIKs. Whether patients with STS, and what type of 
patients, will benefit from such immunotherapy deserve 
rapid assessment in prospective clinical trials.
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