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Single-cell transcriptomics reveals the role 
of Macrophage-Naïve CD4 + T cell interaction 
in the immunosuppressive microenvironment 
of primary liver carcinoma
Zhuomao Mo1†, Daiyuan Liu2,3†, Yihan Chen4,5†, Jin Luo1, Wenjing Li3, Jiahui Liu1, Ling Yu6, Bijun Huang7 and 
Shijun Zhang1*   

Abstract 

Background: Liver carcinoma generally presents as an immunosuppressive microenvironment that promotes tumor 
evasion. The intercellular crosstalk of immune cells significantly influences the construction of an immunosuppres-
sive microenvironment. This study aimed to investigate the important interactions between immune cells and their 
targeting drugs in liver carcinoma, by using single-cell and bulk transcriptomic data.

Methods: Single-cell and bulk transcriptomic data were retrieved from Gene Expression Omnibus (GSE159977, GSE136103, 
and GSE125449) and The Cancer Genome Atlas (TGCA-LIHC), respectively. Quality control, dimension reduction, clustering, 
and annotation were performed according to the Scanpy workflow based on Python. Cell–cell interactions were explored 
using the CellPhone database and CellChat. Trajectory analysis was executed using a partition-based graph abstraction 
method. The transcriptomic factors (TFs) were predicted using single-cell regulatory network inference and clustering 
(SCENIC). The target genes from TFs were used to establish a related score based on the TCGA cohort; this score was subse-
quently validated by survival, gene set enrichment, and immune cell infiltration analyses. Drug prediction was performed 
based on the Cancer Therapeutics Response Portal and PRISM Repurposing datasets.

Results: Thirty-one patients at four different states, including health, hepatitis, cirrhosis, and cancer, were enrolled in this 
study. After dimension reduction and clustering, twenty-two clusters were identified. Cell–cell interaction analyses indicated 
that macrophage-naive CD4 + T cell interaction significantly affect cancerous state. In brief, macrophages interact with naive 
CD4 + T cells via different pathways in different states. The results of SCENIC indicated that macrophages present in cancer 
cells were similar to those present during cirrhosis. A macrophage-naive CD4 + T cell (MNT) score was generated by the 
SCENIC-derived target genes. Based on the MNT score, five relevant drugs (inhibitor of polo-like kinase 1, inhibitor of kinesin 
family member 11, dabrafenib, ispinesib, and epothilone-b) were predicted.

Conclusions: This study reveals the crucial role of macrophage-naive CD4 + T cell interaction in the immunosuppressive 
microenvironment of liver carcinoma. Tumor-associated macrophages may be derived from cirrhosis and can initiate 
liver carcinoma. Predictive drugs that target the macrophage-naive CD4 + T cell interaction may help to improve the 
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immunosuppressive microenvironment and prevent immune evasion. The relevant mechanisms need to be further 
validated in experiments and cohort studies.

Keywords: Single cell transcriptomic, Macrophage, Naïve CD4 + T cell, Tumor microenvironment, 
Immunosuppression
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Introduction
Liver cancer remains the fourth most common cause 
of tumor-mediated death and ranks sixth in terms of 
incidence worldwide [1]. As the first-line treatment for 
liver cancer, sorafenib prolongs survival modestly com-
pared with placebo, conferring very limited survival 
benefits [2]. Several immune checkpoint inhibitors have 
been approved for treating various cancers. Nivolumab, 
pembrolizumab, and atezolizumab, immune check-
point inhibitors of the PDL1–PD1 pathway, have shown 
impressive responses against tumors and have a manage-
able safety profile in liver cancer [3–5]. However, it has 
been reported that patients with nonalcoholic steato-
hepatitis (NASH)-mediated liver cancer may not benefit 
from anti-PD1 treatment; besides, NASH-related aber-
rant T-cell activation is a potential cause [6]. The immune 
context should be recognized as an important determi-
nant of immunotherapy efficacy. To identify patients 
who would benefit most from immunotherapeutic inter-
ventions, it is important to elucidate the composition 
and properties of cells in the tumor microenvironment 
(TME).

Most patients with liver cancer have cirrhosis or 
chronic hepatitis [7]. A complex balance exists between 
immunity and tolerance in healthy livers, and with pro-
gression from hepatitis to cirrhosis and liver cancer, the 
liver immune microenvironment gets changed. With 
functions of maintaining tolerance, immune suppression, 
and oncogenesis, immune cells such as macrophages, T 
regulatory (Treg) cells, and myeloid-derived suppressor 
cells (MDSCs) are constantly activated. Cells that con-
tribute to protective antimicrobial or antitumor immu-
nity, such as natural killer (NK) cells and T effector (Teff) 
cells, are mostly inhibited [8]. Multiple suppressive cells 
and molecules function in the TME, thus impairing anti-
tumor responses [9]. Nevertheless, how these cells and 
molecules change in the dynamic and highly complex 
microenvironment of a healthy liver that converts to a 
cancerous liver, remains poorly understood.

Here, we integrated 31 cases of single-cell transcrip-
tomic data from healthy patients and those with hepa-
titis, cirrhosis, and cancer. Interestingly, we found that 
macrophage-naïve CD4 + T cell interaction significantly 
influenced TME, which presented various communica-
tion pathways in different states. On the one hand, this 
interaction became active in cirrhosis and cancer; on the 
other hand, the differentiation of Treg cells from naïve 
CD4 + T cell occurred first in cirrhosis and then became 
more obvious in cancer. Consequently, we hypothesized 
that naïve CD4 + T cell induced by Macrophage differen-
tiated into Treg in cirrhosis and they finally contributed 
to immunosuppressive TME. Furthermore, we gener-
ated a score to quantify the macrophage-naïve CD4 + T 

cell interaction and predicted the drugs targeting this 
interaction. Our results enable to shed light on the key 
interactions and sources of immunosuppressive TME in 
the liver, potentially assisting to prevent tumor evasion, 
and further guide the development of rational immuno-
therapy for primary liver carcinoma.

Materials and methods
Data collection
Single-cell transcriptomic data were retrieved from 
Gene Expression Omnibus (GEO; https:// www. ncbi. nlm. 
nih. gov/ geo/) database. Three datasets were employed 
in our research: GSE159977 [6], GSE136103 [10], and 
GSE125449 [11]. We selected the cases among these 
three datasets, finally settling on 31 cases (hepatitis = 3, 
cirrhosis = 5, health = 5, and cancer = 18) for this study. 
Besides, bulk transcriptomic data were retrieved from 
The Cancer Genome Atlas (TCGA-LIHC; https:// portal. 
gdc. cancer. gov/), GEO databases (GSE25097; GSE33814; 
GSE54236) and ICGC database (LIRI cohort; https:// 
dcc. icgc. org/). After data collection, we summarized and 
presented the workflow of this study (Additional file  1: 
Fig. S1). Simultaneously, we collected some available clin-
ical features of employed datasets and samples from sin-
gle-cell transcriptomic data in Additional file 1: Table S1.

Single‑cell RNA‑seq data processing
We downloaded the three files (barcodes, features, and 
matrix) for each case and employed them to generate 
the object of Scanpy [12]. Considering the immune cells 
employed in one dataset (GSE159977), we only extracted 
the immune cells for further analyses. Genes expressed in 
fewer than three cells in a sample were excluded, as were 
cells that expressed fewer than 200 genes. Further qual-
ity control was performed on cells based on the number 
of genes expressed in the count matrix and the percent-
age of mitochondrial gene counts. Cells with > 2500 genes 
were filtered, as well as cells with > 5% of mitochondrial 
gene count (Additional file  1: Fig.  S2A–E). We then 
applied the library-size correction method to normalize 
the data matrix using the “scanpy.pp.normalize_total” 
function in Scanpy. A logarithmized normalized data 
matrix was employed for downstream analysis.

Dimension reduction and unsupervised clustering
Dimension reduction and unsupervised clustering were 
performed based on the workflow in Scanpy. We selected 
highly variable genes for downstream analysis by using 
the “scanpy.pp.highly_variable_genes” function with 
parameter “highly_variable_nbatches ≥ 4”. A total of 2303 
highly variable genes were identified. To investigate the 
effect of the cell cycle, we calculated the “S_score” and 
“G2M_score” by using “sc.tl.score_genes_cell_cycle”. 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://dcc.icgc.org/
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Then, the effects of total counts per cell, the percent-
age of mitochondrial genes expressed, the “S_score” 
and “G2M_score” were regressed out using the “scanpy.
pp.regress_out” function. We also scaled each gene to 
unit variance using “scanpy.pp.scale” with parameter 
“max_value = 10”. After data preprocessing, we reduced 
the dimensionality of the data by performing a principal 
component analysis (PCA). A PCA matrix was calculated 
to reveal the main axes of variation and denoise the data 
through the “scanpy.tl.pca” function with parameter “svd_
solver = ‘arpack’, n_pcs = 11” (Additional file 1: Fig. S2F). 
To remove the batch effects from different datasets, a 
BBKNN (Batch Balanced K Nearest Neighbors) algo-
rithm with parameter “n_pcs = 35, metric = ‘euclidean” 
was performed. BBKNN is a fast and lightweight batch 
alignment method, which is written in Python and com-
patible with Scanpy, and its output can be immediately 
used for dimensionality reduction, clustering and pseu-
dotime inference [13]. Previous study [14] has compared 
the different algorithms for batch correction and found 
that BBKNN showed the good performance in high num-
ber of batches and RAM usage. Furthermore, the dimen-
sionality of merged datasets was reduced using uniform 
manifold approximation and projection (UMAP) imple-
mented by the “scanpy.tl.umap” function. Then, to clus-
ter the neighborhood graph of the cells, we employed 
the Leiden graph-clustering method. The marker genes 
of each cluster were identified using the “scanpy.tl.rank_
genes_groups” function.

Cell cluster annotation
We employed the marker genes that were validated 
experimentally and calculated from Scanpy to anno-
tate cell clusters. Genes that were highly and specifically 
expressed in the cell cluster were considered as marker 
genes. CellMarker (http:// biocc. hrbmu. edu. cn/ CellM 
arker/) [15] and Panglao DB (https:// pangl aodb. se/) [16] 
websites were used to identify the cell types representing 
the marker genes.

Cell–cell interaction analyses
We used CellPhone database [17] and CellChat [18] to 
infer cell–cell interactions between immune cell sub-
sets. The potential interaction strength was predicted 
based on the expression of immune-associated receptors 
and ligands. The enriched ligand-receptor interactions 
were calculated based on a permutation test. p < 0.01 
were considered significant. To further complement the 
cell–cell interaction analysis using CellPhoneDB, we 
employed the CellChat package for analysis. The Cellchat 
package includes a comprehensive signaling molecule 
interaction database that considers the known struc-
tural composition of receptor-ligand interactions, such 

as multimeric receptor-ligand complexes, soluble ago-
nists and antagonists, as well as stimulatory and inhibi-
tory membrane-bound coreceptors [18]. The inference 
of cell–cell interactions includes identification of differ-
entially expressed signaling genes, calculation of ensem-
ble average expression and intercellular communication 
probability, and identification of statistically significant 
intercellular communications. We divided the single-cell 
transcriptomic data into four parts according to the states 
(health, hepatitis, cirrhosis, and cancer) and explored the 
differences in ligand and receptor interactions and signal-
ing pathways, across these four states.

Gene regulatory network
To identify cell type-specific gene regulatory networks, 
single-cell regulatory network inference and clustering 
(SCENIC) analysis were performed. Genes that were 
expressed in 3% of samples and cells that expressed > 0 
unique molecular identifier (UMI) and normalized by 
 log2(filtered expr + 1) were filtered according to the SCE-
NIC workflow [19]. Genes present in RcisTarget’s human 
feather databases (hg19-500  bp-upstream-7species.
mc9nr.feather and hg19-tss-centered-10  kb-7species.
mc9nr.feather) were utilized. These genes are predicted 
in a region of 500 to 10,000 base pairs, upstream of the 
hg19 human reference genome. The SCENIC workflow 
consisted of three steps: (1) identification of co-expres-
sion modules between transcription factor (TF) and 
potential target genes; (2) inference of direct target genes 
based on those potential targets for which the motif of 
the corresponding TF is significantly enriched (The regu-
lon is defined as a TF and its direct target genes); (3) cal-
culation of the regulon activity score in every single cell 
using the area under the recovery curve. To further quan-
tify the cell-type specificity of a regulon, we adapted an 
entropy-based strategy that was previously used for gene 
expression data analysis, to generate a regulon-specific 
score (RSS) [20]. The algorithm was comprehensively 
described in a previous study [21].

Trajectory analysis
To characterize the developmental trajectory between 
naïve CD4 + T cells and Treg cells, trajectory analysis was 
performed by partition-based graph abstraction (PAGA) 
[22] in this research. We employed the PAGA method 
of Scanpy to assess the most likely trajectories between 
naïve CD4 + T and Treg cells. The computations were 
performed using the default parameters.

TCGA data analyses
Score generation and validation
To further validate the role of macrophage-naïve 
CD4 + T cell interaction in bulk transcriptomic data, we 

http://biocc.hrbmu.edu.cn/CellMarker/
http://biocc.hrbmu.edu.cn/CellMarker/
https://panglaodb.se/
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established a score based on the target genes of top regu-
lons from these two cell types. First, differential expres-
sion analysis was performed to select the target genes. 
Genes with both p < 0.05, and |log2fold change|> 1 were 
considered significantly differentially expressed. Subse-
quently, we performed univariate Cox regression analy-
sis to further explore the prognostic genes. Genes in the 
univariate Cox analysis were eligible for further selection 
if they exhibited a p < 0.01. The least absolute shrinkage 
and selection operator (LASSO) regression analysis was 
performed to establish the score. Here, a lasso penalty 
was used to account for shrinkage and variable selection. 
The optimal value of the lambda penalty parameter was 
defined by performing 10 cross-validations. The formula 
for calculating scores was as follows: 

Furthermore, to investigate the correlation between 
macrophage–naïve CD4 + T cell (MNT) score and over-
all survival, we performed survival analysis between the 
high and low-score groups using the “survival” pack-
age. We also performed gene set enrichment analysis 
(GSEA) to explore signaling pathways in the high-score 
group. Considering the IL16 related pathways activated 
between macrophages and naïve CD4 + T cells in cancer, 
we selected the potential signaling pathways in Molecu-
lar Signatures Database as input in GSEA. Regarding the 
immune cell infiltration in bulk transcriptomic data, we 
employed four algorithms (CIBERSORT, QUANTISEQ, 
MCP counter, and TIMER) to estimate and compare the 
difference between the high and low-score groups.

Drug prediction
Drug sensitivity data of human cancer cell lines were 
obtained from the Cancer Therapeutics Response Por-
tal (CTPR, https:// porta ls. broad insti tude. org/ ctrp) and 
PRISM Repurposing dataset (https:// depmap. org/ por-
tal/ prism/). The CTRP and PRISM contain the sensi-
tivity data for 481 compounds over 835 CCLs and 1448 
compounds over 482 CCLs, respectively. Both datasets 
employed the area under the dose–response curve (area 
under the curve, AUC) values to estimate drug sensi-
tivity. Lower AUC values indicated higher sensitivity to 
treatment. For drug response prediction, we employed 
the ridge regression model located in the “pRRophetic” 
package to measure drug response and compared the dif-
ference in drug sensitivity between high and low-score 
groups. The algorithm of drug prediction was compre-
hensively described in previous study [23].

score =
(

coefficient of Gene 1× expression of Gene 1
)

+
(

coefficient of Gene 2× expression of Gene 2
)

+ · · · +
(

coefficient of Gene n × expressionGene n
)

Identification of Macrophage subtypes
Considering the various functions of macrophage sub-
types, we investigated the correlation between identi-
fied macrophages (single-cell transcriptomic data) and 
macrophage infiltration (bulk transcriptomic data). We 
employed the differential expression genes of each state of 
macrophage to define the macrophage by ssGSEA. Con-
sidering the different states of macrophage, three datasets 
involved health (GSE33814), hepatitis (GSE33814), cir-
rhosis (GSE25097), and cancer (TCGA-LIHC) were using 
in this research. In terms of the subtypes of macrophage, 
we calculated the M1 polarization and M2 polarization 
score using ssGSEA. The defined genes were presented in 
Additional file 1: Table S2. Spearman method was used to 
calculate the correlation between different states of mac-
rophage and polarization score.

Spatial transcriptomic analyses
To further investigate the spatial location of single cell 
clusters in HCC TME, we employed “CARD” pack-
age [24] to deconvolute the spatial transcriptomic data 
based on our single cell data of cancer state. The spatial 
transcriptomic data were retrieved from previous study 
[25]. We selected four HCC tissue section for decon-
volution. Using “CARD” package, we created “CARD” 
object through “CreateCARDObject” function. And we 
employed the  “CARD_deconvolution” function with 
default parameters to calculate the results.

Scissor analyses
To explore the underlying relationship between single cell 
clusters and clinical characteristics, our study used “Scis-
sor” package [26] to analyze. Based on bulk transcrip-
tomic data and phenotype information, “Scissor” can 
automatically identify cell subpopulations from single-
cell data that are most responsible for the differences of 
phenotypes [26]. We employed TCGA-LIHC cohort and 
select “tumor size” and “stage” to analyze the single cell 
data of cancer. The “Scissor” function with “alpha = 0.01, 
family = binomial” parameters was executed.

Results
A multi‑sector single‑cell atlas of liver
In total, 53,184 cells from 31 cases were analyzed in our 
study. Leiden clustering of these cells identified 22 dis-
tinct major clusters representing epithelial, immune, 
endothelial, and fibroblast populations (Fig.  1A). 
Although we selected immune cells in data preprocess-
ing, a fraction of stromal cells was found; this may be 
attributed to the different clustering methods and anno-
tations. As illustrated in Additional file  1: Fig.  S2G–J, 
the batch effects were removed. Figure  1B shows the 

https://portals.broadinstitude.org/ctrp
https://depmap.org/portal/prism/
https://depmap.org/portal/prism/
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Fig. 1 Identification of cell clusters and annotation. A Leiden clustering of 53,184 cells identifies 22 clusters. B UMAP plot colored by different states. 
C Dot plot depicting the cell-type-specific markers. D Proportion bar graph representing cluster frequency in four different states. In each state, the 
sum of each cluster proportion is 100%
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distribution of different states in the UMAP. Next, we 
employed the specific markers to annotate leiden clus-
ters into 21 cell types of the liver (cluster 17 was unde-
fined), comprising T helper cells (CD40LG, CCR6), naïve 
CD4 + T cells (MAL, CCR7, LEF1), CD8 + exhausted 
T cells (CD8A, TIGIT, PDCD1), ZNF683 + cytotoxic T 
lymphocytes (ZNF683, IFNG, TNF), FGFBP2 + cyto-
toxic T lymphocytes (GZMK, NKG7, FGFBP2), 
XCL1 + natural killer cells (XCL1, IL2RB, XCL2), 
GNLY + natural killer cells (GNLY, GZMB, FCGR3A), 
mucosal-associated invariant T cells (NCR3, SLC4A10), 
macrophage (TREM2, FCGR1A,GPR34), CD1C + _A 
dendritic cells (CLEC10A, CD1C, FCER1A), CD1C + _B 
dendritic cells (S100A9, S100A8, FCN1), CD141-CD1C-
dendritic cells (LST1, CFD), B cells (CD79A, MS4A1, 
CD79B), Plasma cells (IGKC, IGHG3, IGHG1), endothe-
lial cells (GNG11, ID1, ID3), Treg cells (TNFRSF4, 
CTLA4, FOXP3), AXL + dendritic cells (LGMN, AXL, 
DAB2), plasmacytoid dendritic cells (IRF7, SERPINF1, 
LILRA4), CD141 + CLEC9A + dendritic cells (CLEC9A, 
IDO1, BATF3), Hepatic stellate cell (ALB, IGFBP6, 
COL1A1), and mast cells (HPGDS, VWA5A, LTC4S) 
(Fig.  1C and Additional file  1: Fig.  S3). To characterize 
the change in each cell type among the four states, we 
calculated the proportion of cell types during each state. 
Interestingly, we observed that some immune cells have a 
relatively higher proportion in cancer, including T helper 
cells, naïve CD4 + T cells, exhausted CD8 + T cells, mac-
rophages, B cells, plasma cells, and Treg cells (Fig.  1D). 
The statistical significance of each cell type in four states 
were presented in Additional file 1: Fig. S4.

To decipher the ligand-receptor interactions in dif-
ferent states, we performed cell–cell interaction anal-
yses. The results from CellPhoneDB indicated that 
different states exhibited various immune cell interac-
tions (Fig.  2A–D). Furthermore, we observed that mac-
rophage-naïve CD4 + T cell interaction had an important 
effect on the cirrhosis and cancer but not the hepati-
tis. Simultaneously, the results from CellChat revealed 
that macrophages exhibited higher outgoing interac-
tion strength in cirrhosis and cancer, but lower strength 
in hepatitis (Fig.  3A). Meanwhile, naïve CD4 + T cells 
showed a lower outgoing interaction strength in health, 
hepatitis, and cancer states, but their outgoing strength 
increased in the cirrhosis state. We speculated that 
naïve CD4 + T cells may be regulated by macrophages 
through paracrine mechanisms, mainly in hepatitis, cir-
rhosis, and cancer. Consequently, we investigated the 
signaling pathways by which macrophages act as send-
ers and naïve CD4 + T cells as receivers, in subsequent 
analyses. From the health to hepatitis, the MIF signal-
ing network and related ligand-receptor interactions, 
including MIF-(CD74 + CXCR4), MIF-(CD74 + CXCR2), 

and MIF-(CD74 + CD44) showed a significant effect on 
macrophage–naïve CD4 + T cell interaction (Fig.  3B 
and E). From hepatitis to cirrhosis, the CCL signal-
ing network and related ligand-receptor interactions, 
including CCL5-CCR5 and CCL5-CCR1, presented the 
highest communication probability in macrophage-naïve 
CD4 + T cell interaction (Fig. 3C and F). From the cirrho-
sis to cancer, IL16 and related ligand-receptor interaction 
(IL16-CD4) exhibited a significant difference in mac-
rophage-naïve CD4 + T cell interaction (Fig. 3D and G). 

Furthermore, we visualized the network and interac-
tions of the above-mentioned signaling pathways (MIF, 
CCL, and IL16). In the healthy state, the communica-
tion probability exhibited by the MIF signaling pathway 
was insignificant, similar to that of IL16 in the cirrhosis 
state. Therefore, the only difference observed was in the 
CCL signaling pathway, between hepatitis and cirrhosis 
in our study. As illustrated in Figs. 4A and B, the interac-
tions based on the MIF signaling pathway between mac-
rophages and other immune cells, were mediated mainly 
by paracrine signaling. From hepatitis to cirrhosis, the 
total interactions of the CCL signaling pathway increased 
significantly (Fig.  4C and E), and both the strength of 
autocrine and paracrine cells from macrophages and 
naïve CD4 + T cells, increased in the CCL signaling 
pathway (Fig. 4D and F). From cirrhosis to cancer, mac-
rophages and naïve CD4 + T cells employ autocrine and 
paracrine mechanisms to communicate in the IL16 sign-
aling pathway (Fig. 4G and H).

Gene regulatory network in macrophages and naïve 
CD4 + T cells
Considering the importance of macrophage-naïve 
CD4 + T cell interaction in the TME, we employed SCE-
NIC to decipher the gene regulatory network (GRN) of 
macrophages and naïve CD4 + T cells, followed by reg-
ulon-activity-based hierarchical clustering. The results 
indicated that cirrhosis and cancer presented similar 
GRN of macrophages, while the difference was observed 
between hepatitis and the other three states (Fig.  5A). 
Naïve CD4 + T cells exhibited distinct GRN in the cancer 
(Fig. 5F). Furthermore, we employed the RSS to evaluate 
regulons and ranked them in each state (Fig. 5B–E,G–J). 
We found that the transcriptomic factor (XBP1) was the 
top-ranked in both macrophages and naïve CD4 + T cells 
in cancer (Fig. 5E and J).

Treg cells may derive from naïve CD4 + T cells in cancer
A previous study [27] revealed that Treg cells in human 
breast cancer are mainly derived from naïve CD4 + T 
cells recruited by tumor-associated macrophage-derived 
CCL18. Our results also demonstrated that Treg cells 
accounted for a relatively high proportion in the tumor 
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microenvironment (Fig.  1D). We speculated that Treg 
cells may also be converted from naïve CD4 + T cells in 
cancer and thus, we performed a trajectory analysis. The 
results from PAGA validated our speculation (Fig.  5K). 
Furthermore, we found that naïve CD4 + T cells convert 
into Treg in specific states (cirrhosis and cancer), which 
may be related to macrophage.

Validation from bulk transcriptomic data
Macrophage‑naïve CD4 + T cell interaction score generation
To further elucidate the relationship between mac-
rophage-naïve CD4 + T cell interaction and the clinic, 
we established a macrophage-naïve CD4 + T cell (MNT) 
score. First, we selected the target genes of the top regu-
lon from macrophages (cancer) and naïve CD4 + T cells 
(cancer), respectively, and visualized them in network 
(Fig. 6A). A total of 125 target genes were utilized in our 

Fig. 2 Cell interactions. The interactions among 19 cell types in A health, B hepatitis, C cirrhosis, and D cancer. Note: The scale number represents 
the interactions between cells. The higher number represents the stronger interactive strength



Page 9 of 17Mo et al. Journal of Translational Medicine          (2022) 20:466  

Fig. 3 Strength and pathways involved in cell–cell interactions from four different states. A The incoming and outgoing strength of each immune 
cell under health, hepatitis, cirrhosis, and cancer, respectively. The communication probability of pathways from B health to hepatitis, C hepatitis 
to cirrhosis, and D cirrhosis to cancer. The difference in communication probability of ligand-receptor interactions from (E health to hepatitis, F 
hepatitis to cirrhosis, and G cirrhosis to cancer. Note: B–G is limited to the interaction of macrophages (sender) and naïve CD4 + T cells (receiver)
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Fig. 4 The cell–cell interactions in specific pathways under different states. A The MIF signaling pathway network in hepatitis. B The hierarchy plot 
of MIF signaling pathway in hepatitis. C The CCL signaling pathway network in hepatitis. D The hierarchy plot of CCL signaling pathway in hepatitis. 
E The CCL signaling pathway network in cirrhosis. F The hierarchy plot of CCL signaling pathway in cirrhosis. G The IL16 signaling pathway network 
in cancer. H The hierarchy plot of the IL16 signaling pathway in cancer
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study, comprising 78 in macrophages (cancer) and 47 in 
naïve CD4 + T cells (cancer) (Additional file 1: Table S3). 
We then performed differential expression analysis of 
selected genes between the normal and tumor tissue 
based on TCGA-LIHC dataset. Forty-seven genes were 
eligible for Cox regression analysis (Fig. 6B). The results 
from the Cox regression analysis showed that 18 genes 
were significantly correlated with prognosis (p < 0.01) 
(Fig.  6C). Subsequently, we employed a LASSO regres-
sion model to establish the MNT score. The results from 
Fig.  6D revealed that the MNT score was generated by 
seven genes (BOD1, SEC61A1, RHEB, CFL1, PTMA, 
C1orf109, and E2F5). We divided the cases into high-
score and low-score groups based on the median. A sig-
nificant survival difference (p < 0.01) was found between 
the high and low-score groups (Fig.  7A). Another two 
HCC datasets (ICGC-LIRI and GSE54236) also dem-
onstrated that the patients with higher MNT score pre-
sented the worst prognosis (Additional file 1: Fig. S5). The 
cases in the high-score group were significantly enriched 
in leukocyte-and cytokine-related pathways (Fig. 7B). We 
also found that the cases in the high-score groups pre-
sented higher infiltration of Treg cells and macrophages 
(Fig. 7C–F). 

Drug prediction based on CTPR and PRISM
We predicted the potential drugs based on the CTPR 
and PRISM databases (Fig.  7G–J) and found that the 
cases in the high-score group may be more sensitive to 
GSK461364 (inhibitor of polo-like kinase 1), SB-743921 
(inhibitor of kinesin family member 11), dabrafenib, ispi-
nesib, and epothilone-b.

Macrophages in TME tend to exhibit the M2 phenotype
To further explore the function of macrophages in this 
study, we investigated the correlation between differ-
ential expression genes of macrophage and polarization 
score (M1, and M2). The results demonstrated that mac-
rophage tended to present the M1 phenotype in health 
while M2 in hepatitis, cirrhosis, and cancer (Fig. 7K–R).

Translational level validation from HPA database
To further validate the association between macrophage, 
naïve CD4 + T cell and Treg cell in liver carcinoma, we 
estimated the translational level of their marker genes 
using immunohistochemistry. Three maker genes were 

found in liver carcinoma of HPA database (TREM2 and 
GPR34 from macrophage, PDCD1 from Treg cell), which 
indicated that macrophages and Treg cells existed in liver 
carcinoma (Additional file 1: Fig. S6).

Spatial co‑location was observed between Macrophage 
and Treg
The deconvolution results of HCC spatial transcrip-
tomic data indicated that macrophage and Treg existed 
in HCC tissues (Additional file 1: Fig. S7). Furthermore, 
we observed that both macrophage and Treg located in 
the similar position (Additional file 1: Fig.S7), which indi-
cated that there was higher communication probability 
between macrophage and Treg in cancer.

Macrophage, naïve CD4 + T cell and Treg associated 
with HCC progression
To further explore the association between cell types and 
clinical characteristics, we combined the bulk transcrip-
tomic data (TCGA-LIHC) and single-cell transcriptomic 
data (cancer) to performed scissor analyses. The results 
showed that 80.4% cells in cancer associated with T3/
T4, in which naïve CD4 + T cell accounts for 21.5%, mac-
rophage accounts for 11.5% and Treg accounts for 5% 
(Additional file 1: Fig. S8). Regarding the stage, 77% cells 
in cancer associated with stage III/stage IV, including 
22.8% of naïve CD4 + T cell, 13.9% of macrophage and 
4% of Treg (Additional file 1: Fig. S8).

Discussion
Primary liver carcinoma commonly arises in damaged 
liver and is characterized by extensive inflammation 
and fibrosis. The TME, including immune cells, reacts 
to liver injury by producing cytokines and components 
of the extracellular matrix, which promotes angiogen-
esis and survival of cancer stem cells [28]. Generally, 
primary liver carcinoma presents an immunosuppres-
sive microenvironment. Nevertheless, the correlation 
between the immunosuppressive microenvironment and 
liver injury (hepatitis and cirrhosis) remains unclarified. 
Here, we generated a comprehensive single-cell atlas 
of the liver to understand the immune cell interactions 
among health, hepatitis, cirrhosis, and cancer. We first 
focused on the proportion of each immune cell type in 
the four states and found that macrophages account for a 
relatively high proportion of tumor microenvironments. 

Fig. 5 Gene regulatory network prediction and trajectory analysis. A Heatmap of macrophage-related regulons in different states. Top 5 regulons of 
macrophage in B health, C hepatitis, D cirrhosis, and E cancer. F Heatmap of naïve CD4 + T cell-related regulons in different states. Top 5 regulons of 
naïve CD4 + T cells in G health, H hepatitis, I cirrhosis, and J cancer. K Developmental trajectory of Treg cells and naïve CD4 + T cells in four different 
states inferred by PAGA, colored by cell types and pseudotime, respectively. Note: dpt means diffusion pseudo time. The scale represents the 
predictive differentiation trajectory. The higher value represents the degree of differentiation

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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Fig. 6 MNT score generation. A Top two regulon networks of macrophages and naïve CD4 + T cells in cancer. B Differentially expressed genes in 
TCGA cohort. C Forest plot of Cox regression analysis. D Results of lasso regression analysis

Fig. 7 MNT score validation and drug prediction. A Survival analysis based on TCGA cohort. B Relevant pathways enriched in the high-score group. 
Treg cell infiltration differences between two groups based on C CIBERSORT, D QUANTISEQ, E MCP counter, and F TIMER. G Spearman’s correlation 
analysis of two CTPR-derived compounds. H Differential drug analysis of two CTPR-derived compounds. I Spearman’s correlation analysis of three 
PRISM-derived compounds. J Differential drug analysis of two PRISM-derived compounds. K, L Correlation analysis between macrophage (health) 
and K M1 polarization score, L M2 polarization score. M, N Correlation analysis between macrophage (hepatitis) and M M1 polarization score, N M2 
polarization score. O, P Correlation analysis between macrophage (cirrhosis) and O M1 polarization score, P M2 polarization score. Q, R Correlation 
analysis between macrophage (cancer) and Q M1 polarization score, R M2 polarization score

(See figure on next page.)
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Fig. 7 (See legend on previous page.)
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Simultaneously, macrophages and naïve CD4 + T cells 
exhibit stronger interactions in cancer, which indicated 
that macrophage-naïve CD4 + T cell interaction essen-
tially affects the cancerous state. These results led us to 
investigate the differences of macrophage-naïve CD4 + T 
cell interaction in the four states. Notably, macrophages 
present higher outgoing and incoming strength in cir-
rhosis and cancer but not in hepatitis, possibly due to 
the decreased number of macrophages in hepatitis. 
Interestingly, we found that MIF-related ligand-recep-
tor interactions were highly activated in hepatitis. MIF 
exhibits a protective effect against steatosis, resulting in 
a decreased quantity of macrophages [29]. The interac-
tion between CCL5 and CCR5 significantly influences 
macrophage numbers from the state of hepatitis to cir-
rhosis. The receptor CCR5 induces the recruitment 
of macrophages [30]; thus, more macrophages can be 
observed in cirrhosis. A previous study found that the 
ligand CCL5 promotes steatosis, inflammation [31], and 
early cirrhosis [32]. The ligand-receptor pair of IL16 and 
CD4 is activated in the interaction of macrophages and 
naïve CD4 + T cells, and in conversion from cirrhosis to 
the cancer. IL16 induces the recruitment of macrophages 
in breast cancer [33]. The above-mentioned results eluci-
dated the differences of macrophage-naïve CD4 + T cell 
interaction under the four states, which may be helpful 
in exploring the source of immunosuppressive microen-
vironment of liver carcinoma.

Next, we predicted the GRNs of macrophages in the four 
states. Importantly, the GRNs of macrophages between 
cirrhosis and cancer were similar, indicating that tumor-
associated macrophages may stem from a cirrhotic state. 
Macrophages in hepatitis presented a distinct GRN com-
pared to the other three states, revealing that macrophages 
may perform different functions in hepatitis. Besides, the 
identified macrophages tended to exhibit the M2 phe-
notype, which demonstrates that macrophages have an 
immunosuppressive effect in cancer. Furthermore, a previ-
ous study reported that naïve CD4 + T cells are recruited 
and converted to Treg cells by macrophages-derived 
CCL18 in breast cancer [27]. In our trajectory analyses of 
four states, the phenomenon that naïve CD4 + T cell dif-
ferentiated into Treg occurred first in cirrhosis and then 
became more obvious in cancer, which was unobserved 
in health and hepatitis. Interestingly, the interaction 
between macrophage and naïve CD4 + T cell exhibited in 
CellphoneDB is consistent with the findings of trajectory 
analyses. The consistency further confirms the connection 
between the macrophage-naive CD4 + T cell interaction 
and Treg population. In summary, macrophages produced 
in response to cirrhosis play a crucial role in constructing 
and enhancing the immunosuppressive microenvironment 
of primary liver carcinoma.

Considering the limited therapy available for primary 
liver carcinoma, we predicted potential sensitive drugs 
based on macrophage-naïve CD4 + T cell interaction. 
First, we generated the MNT score to quantify mac-
rophage-naïve CD4 + T cell interaction. For all cases, 
high MNT scores led to a worse prognosis, validating the 
importance of macrophage-naïve CD4 + T cell interac-
tion in bulk transcriptomic data. Meanwhile, the cases 
with high MNT scores presented higher infiltration of 
Treg cells and macrophages, which corresponds with the 
results of single-cell analyses. Regarding drug predic-
tion, inhibitors of polo-like kinase 1 and kinesin 11 based 
on CTPR, were significantly correlated with high MNT 
scores. Polo-like kinase 1 has been shown to regulate 
liver tumor cell death by phosphorylation of Tap63 [34]. 
Meanwhile, kinesin family member 11 has been shown 
to correlate with tumor size and prognosis in liver cancer 
[35]. Three other drugs from PRISM also cause concern. 
Dabrafenib is a single-agent treatment for patients with 
BRAF V600E mutation-positive advanced melanoma 
[36]. Epothilone-b is an anti-cancer drug for treating 
aggressive metastatic or locally advanced breast cancer, 
and prevents cancer cells from dividing by interfering 
with tubulin [37]. Interestingly, ispinesib is also an inhibi-
tor of KIF11, which has been used to treat patients with 
locally advanced, recurrent, or metastatic liver cancer 
(NCT00095992). We reasoned that employing the pre-
dictive drugs may target the interaction of macrophages 
and CD4 naïve T cells, which results in reprogramming 
of the TME and strengthening of immunosurveillance in 
primary liver carcinoma.

Compared with the previous studies [6, 10, 11], our 
research integrated the single cell transcriptomic data 
of four states from healthy liver to primary liver carci-
noma, which was comprehensive and creative. By com-
paring the TME of four states, we found that different 
states presented the vary proportion and communica-
tion among immune cells. The key point we found in this 
research was the interaction of macrophage and naïve 
CD4 + T cell. Macrophage induced naïve CD4 + T cell 
to differentiate into Treg in cirrhosis and cancer. Simul-
taneously, we observed that Macrophage and Treg co-
located in HCC tissue. These findings may be helpful in 
decoding the immunosuppressive TME of HCC under 
single cell resolution. Furthermore, we linked the single 
cell transcriptomic and clinical phenotypes and veri-
fied the clinical importance of Macrophage. At present, 
macrophage-related therapy in HCC mainly divided into 
three approaches, including cutting off the source and 
eliminating the production of M2 macrophages, remod-
eling M2 macrophages to M1 macrophages, and block-
ing communication between M2 macrophages and liver 
cancer cells [38]. Blocking the interaction of macrophage 
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and naïve CD4 + T cell may be the novel and interesting 
therapeutic strategy in HCC immunotherapy.

Conclusion
In conclusion, this study reveals the crucial role of mac-
rophage-naïve CD4 + T cell interaction in the immu-
nosuppressive microenvironment of primary liver 
carcinoma. Tumor-associated macrophages may derive 
from cirrhosis. Naïve CD4 + T cell induced by mac-
rophage may differentiate into Treg in cirrhosis and they 
finally contributed to immunosuppressive TME. Predic-
tive drugs that target the macrophage-naïve CD4 + T cell 
interaction may help to improve the immunosuppres-
sive microenvironment and prevent immune evasion. 
However, due to the bioinformatics used in our research, 
the relevant mechanisms need to further validations by 
experiments and cohort studies.
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