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Abstract 

Background:  Glioblastoma (GBM) is the most common primary malignant brain tumor that leads to lethality. Several 
studies have demonstrated that mitochondria play an important role in GBM and that mitochondria-related genes 
(MRGs) are potential therapeutic targets. However, the role of MRGs in GBM remains unclear.

Methods:  Differential expression and univariate Cox regression analyses were combined to screen for prognostic 
differentially-expressed (DE)-MRGs in GBM. Based on LASSO Cox analysis, 12 DE-MRGs were selected to construct a 
risk score model. Survival, time dependent ROC, and stratified analyses were performed to evaluate the performance 
of this risk model. Mutation and functional enrichment analyses were performed to determine the potential mecha-
nism of the risk score. Immune cell infiltration analysis was used to determine the association between the risk score 
and immune cell infiltration levels. CCK-8 and transwell assays were performed to evaluate cell proliferation and 
migration, respectively. Mitochondrial reactive oxygen species (ROS) levels and morphology were measured using a 
confocal laser scanning microscope. Genes and proteins expression levels were investigated by quantitative PCR and 
western blotting, respectively.

Results:  We identified 21 prognostic DE-MRGs, of which 12 DE-MRGs were selected to construct a prognostic risk 
score model for GBM. This model presented excellent performance in predicting the prognosis of patients with 
GBM and acted as an independent predictive factor. Functional enrichment analysis revealed that the risk score was 
enriched in the inflammatory response, extracellular matrix, and pro-cancer-related and immune related pathways. 
Additionally, the risk score was significantly associated with gene mutations and immune cell infiltration in GBM. 
Single-stranded DNA-binding protein 1 (SSBP1) was considerably upregulated in GBM and associated with poor prog-
nosis. Furthermore, SSBP1 knockdown inhibited GBM cell progression and migration. Mechanistically, SSBP1 knock-
down resulted in mitochondrial dysfunction and increased ROS levels, which, in turn, increased temozolomide (TMZ) 
sensitivity in GBM cells by enhancing ferroptosis.
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Background
Glioblastoma (GBM) is the most common and lethal 
malignant tumor of the central nervous system. Owing 
to its highly invasive nature and lack of effective thera-
peutic methods, its prognosis remains poor. The median 
overall survival (OS) of patients with GBM is < 2  years 
[1]. Currently, maximum tumor resection combined with 
radiochemotherapy remains the standard treatment for 
GBM. Recently, genome-wide molecular profiling stud-
ies have identified many target genes that have advanced 
our understanding of GBM tumorigenesis and chemore-
sistance. Based on these studies, several individualised 
therapies and novel therapeutic strategies have been 
developed. For example, patients with O6-methylgua-
nine-DNA-methyltransferase (MGMT) promoter meth-
ylation may have a more effective treatment response and 
better prognosis [2]. However, none of these individu-
alised targeted therapies have been shown to improve 
patient prognosis owing to the considerable heterogene-
ity between different glioma subtypes. Therefore, there 
is an urgent need to identify novel molecular targets and 
develop effective therapies for GBM.

Mitochondria perform multifaceted roles in normal 
physiology, including energy conversion, apoptosis regu-
lation, biosynthetic metabolism, and cellular proliferation 
[3, 4]. They are vital for stress sensing, environmental 
adaptation, and tumorigenesis [5]. They are also involved 
in tumor development, progression, and treatment resist-
ance by overproducing reactive oxygen species (ROS), 
which induce genomic instability, and regulate gene 
expression and signaling pathways [6–10]. An increas-
ing number of studies have demonstrated that mitochon-
dria play an important role in gliomas, including GBM. 
Mitochondrial DNA (mtDNA) alterations are associated 
with cellular and metabolic consequences, diagnosis, 
prognosis, and treatment of GBM [11]. Mitochondrial 
dynamics are reportedly essential for the development 
of gliomas. Dynamin-related protein 1 (DRP1), a key 
mediator of mitochondrial fission, upregulation is cor-
related with poor prognosis in GBM, and DRP1 knock-
down decreases glioma cell proliferation, migration, and 
invasiveness [12, 13]. In addition, mitochondria related 
ROS are involved in the oncogenesis of gliomas at vari-
ous phases, such as tumor initiation and progression 
[14]. Excessive ROS production induced by mitochon-
drial damage simulataneously activates autophagy and 

apoptosis in GBM cells [15]. According to recent studies, 
anticancer agents directly targeting mitochondria related 
genes bypass drug resistance and improve the prognosis 
of patients with GBM [16, 17]. Therefore, a comprehen-
sively analysis of mitochondria-related genes (MRGs) 
and exploration of their function in GBM might be useful 
for identifying novel prognostic biomarkers and develop-
ing effective therapeutic strategies for GBM.

In this study, we identified prognostic MRGs and con-
structed and validated a novel prognostic model for GBM 
base on 12 differentially-expressed (DE)-MRGs. Our 
model presented remarkable performance in predict-
ing the prognosis of GBM patients and was confirmed to 
be an independent risk predictive factor. Furthermore, 
our risk score was enriched in inflammatory response, 
extracellular matrix, and pro-cancer-related and immune 
related pathways and closely associated with gene muta-
tion and immune cell infiltration. To confirm the impor-
tance of these 12 DE-MRGs, we selected single-stranded 
DNA-binding protein 1 (SSBP1) for further in vitro stud-
ies and found that it was upregulated in GBM tissues. 
Furthermore, we demonstrated that SSBP1 knockdown 
significantly inhibits GBM cells proliferation and migra-
tion by disturbing mitochondrial function. SSBP1 knock-
down also enhances temozolomide (TMZ) sensitivity by 
enhancing ROS induced ferroptosis.

Materials and methods
Data acquisition
The gene expression profiles of The Cancer Genome 
Atlas (TCGA)-GBM cohort (count and tpm) and clinical 
information were downloaded from the GDC Data Por-
tal (https://​portal.​gdc.​cancer.​gov/). In addition, the single 
cell data of GSE84465 and the external independent GBM 
databases, GSE147352 and GSE16011, were gained from 
the Gene Expression Omnibus (GEO, https://​www.​ncbi.​
nlm.​nih.​gov/​gds). The samples with complete survival 
information were retained for analysis. The gene expres-
sion data of Chinese Glioma Genome Atlas (CGGA) 
GBM cohort were downloaded from http://​www.​cgga.​
org.​cn/.

Conclusion:  Our 12 DE-MRGs-based prognostic model can predict the GBM patients prognosis and 12 MRGs are 
potential targets for the treatment of GBM. SSBP1 was significantly upregulated in GBM and protected U87 cells from 
TMZ-induced ferroptosis, which could serve as a prognostic and therapeutic target/biomarker for GBM.

Keywords:  Glioblastoma, Mitochondria, SSBP1, Temozolomide, Ferroptosis
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Identification of prognostic mitochondrial‑related genes 
(MRGs) in GBM
First, we analysed the single-cell data of GSE84465 to 
identify differentially expressed genes (DEGs) between 
neoplastic and non-neoplastic cells by using “Seurat” 
package. The threshold for data filtering included mini-
mum cells = 3, 200 < nFeature RNA < 7500, and per-
centage of ribosome RNA < 15. FindMarkers function 
was used to DEGs. based on the following criterions: 
logFC > 0.25 and adjusted p value < 0.05. The 686 MRGs 
(Additional file 6: Table S1) were obtained from the uni-
port database (https://​www.​unipr​ot.​org/). By taking 
the intersection of DEGs and MRGs, we finally got 201 
differentially-expressed (DE)-MRGs, of which 197 DE-
MRGs can be matched in the TCGA GBM database. 
Subsequently, univariate Cox analysis was performed to 
identify the prognostic DE-MRGs based on the TCGA 
GBM cohort. The FeaturePlot function was used to pre-
sent gene expression on a dimensional reduction plot 
between cell clusters.

Construction and validation of prognostic risk score model 
based on the DE‑MRGs
Based on the TCGA cohort, the Least absolute shrink-
age and selection operator (LASSO) Cox regression 
analysis was used for further dimensionality reduction 
of prognostic DE-MRGs. Finally, 12 DE-MRGs were 
selected to the construct a prognostic risk model. The 
formula for risk score was as follows: Risk score = 0.2132 
* expression level of PLAUR + 0.0261 * expression level 
of RBP1 + 0.0048 * expression level of ABCB8 + 0.2553 * 
expression level of TOMM7 − 0.1868 * expression level 
of MFF + 0.0714 * expression level of SSBP1 + 0.1927 
* expression level of MRPL36 + 0.1686 * expression 
level of AGK + 0.07 * expression level of HK1—0.1339 
* expression level of APEX1 + 0.2896 * expression level 
of NUDT1 − 0.3503 * expression level of PHB2. The 
Kaplan–Meier (K-M) analysis, univariate cox and mul-
tivariate cox analysis, and time dependent Receiver 
Operation Characteristic (ROC) curve were used to 
reveal the prognostic value of our model. The GSE16011 
and GSE147352 GBM cohorts were used to validate this 
prognostic model.

Gene Oncology (GO) and pathway enrichment analysis 
of our risk model
Firstly, The R package (Deseq2) was used to identify 
the DEGs between high- and low-risk groups based on 
the TCGA GBM cohort. The standards for DEGs were 
logFC > 1 and adjusted p value < 0.05. Then, the GO 
analysis of biological process (BP), cellular component 
(CC), and molecular function (MF) was performed by 
using DAVID (https://​david.​ncifc​rf.​gov/) based on the 

DEGs between risk groups. The pathway enrichment 
analysis of KEGG and HALLMARK gene sets was per-
formed via GSAE (gene set enrichment analysis) method. 
An adjusted p-value < 0.05, q-value < 0.05, and absolute 
normalised enrichment score (NES) > 1 were used as the 
threshold for determination of significance.

Ferroptosis score
Ferroptosis-related gene sets, including driver and sup-
pressor genes, were obtained from FerrDb (http://​www.​
zhoun​an.​org/​ferrdb/​curre​nt/), the first database dedi-
cated to ferroptosis regulators and ferroptosis-disease 
associations. The ferroptosis score of each sample was 
calculated using the single-sample GSEA (ssGSEA) 
method.

Immune infiltration analysis
The infiltration levels of 28 immune cells in each sam-
ple were assessed by using single sampleGSEA based 
on the R package (GSVA). Additionally, the ESTIMATE 
algorithm was also used for calculated the ImmuneS-
core, StromalScore, and ESTIMATEScore of each sample 
based on the “estimate” package in R.

Cell culture and transfection
All glioma cell lines (U87, U251, and SHG-44) were 
obtained from the Shanghai Life Academy of Sciences 
Cell Library (Shanghai, China). Glial cells (HEB) were 
obtained from the Sun Yat-Sen University Cancer Center. 
U87 cells were grown at 37  °C and 5% CO2 in Dulbec-
co’s modified Eagle’s medium (DMEM; HyClone, United 
States) supplemented with 10% foetal bovine serum. 
TMZ was obtained from Sigma-Aldrich Corporation.

All small interference RNA (siRNA) against the target 
genes and negative control siRNA were synthesised by 
GenPharma (Suzhou, China). U87 cells were transfected 
using Lipofectamine® RNAiMAX Transfection Reagent 
(Invitrogen, Carlsbad, California, United States), accord-
ing to the manufacturer’s instructions. The sequences of 
the SSBP1 siRNA were as follows: siRNA #1 F 5’-CAA​
CAA​UCA​UAG​CUG​AUA​AUA, 3’-UUA​UCA​GCU​AUG​
AUU​GUU​GUU; siRNA #2 F 5’- UAA​UAC​AGG​UCU​
UCG​AAA​CAU, 3’-GUU​UCG​AAG​ACC​UGU​AUU​ACA.

RNA extraction and quantitative PCR (qPCR)
Total RNA was extracted from U87 cells using TRIzol 
reagent (Invitrogen, Carlsbad, CA, United States) and 
reverse transcription was performed using PrimeScript™ 
RT Reagent Kit (Takara, Dalian, China). Real-time PCR 
was performed using SYBR Green Real-Time PCR Kit 
(Takara, Dalian, China). β-Actin was used as a normalis-
ing control. The relative expression levels were evaluated 

https://www.uniprot.org/
https://david.ncifcrf.gov/
http://www.zhounan.org/ferrdb/current/
http://www.zhounan.org/ferrdb/current/
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using the 2-ΔΔCT method. The primer sequences used 
in this study are included in Additional file 7: Table S2.

Cell proliferation and migration assay
U87 cells were seeded in 96-well plates at a density of 
5000 cells per well, Cell viability was measured using the 
Cell Counting Kit-8(Sigma-Aldrich, Shanghai, China) 
according to the manufacturer’s instructions. After 
knocking down SSBP1 for 72  h, U87 cells were seeded 
into the upper chambers at a density of 5.0 × 104 cells in 
300 µl of serum-free cell culture medium, while 500 µl of 
medium containing 20% FBS was added into the lower 
chambers. The cell migration assay was performed using 
24-well transwell chambers (Corning, NY, United States) 
according to the manufacturer’s instructions.

Measurement of ROS level, iron content, and GSH level
Mitochondrial ROS and mitochondrial membrane 
potential (MMP) were detected using MitoSOX™ Red 
Mitochondrial Superoxide Indicator (Invitrogen, United 
States) and MitoTracker™ Red CMXRos (Invitrogen, 
United States), respectively. For 24  h, 1.0 × 105 U87 
cells were cultured in a Nunc™ Glass Bottom Dish (Inv-
itrogen, United States). Cells were washed with warm 
DPBS before incubation with 2.5 µM MitoSOX™ Red or 
100  nM MitoTracker™ Red. Fluorescence intensity was 
analysed using a Zeiss LSM 800 confocal microscope and 
measured using ImageJ software.

U87 cells were transfected with siRNA and incubated 
with and without 400  μM TMZ for 48  h and collected. 
Iron content (Abcam, Cambridge, UK) and intracellu-
lar GSH levels (Abcam, Cambridge, UK) were measured 
according to the manufacturer’s instructions.

Western blotting
Glioma cells and HEB were lysed in 300 µL SDS sample 
buffer (Sangon Biotech, China) containing 1  mM phos-
phatase inhibitor and 1  mM PMSF, and denatured pro-
teins (20 µg) were resolved on 15% SDS PAGE gels and 
transferred to PVDF membranes. After blocking with 
5% milk at room temperature, the membranes were 
incubated with the primary antibody overnight at 4  °C, 
followed by incubation with a horseradish peroxidase–
conjugated secondary antibody for 2 h at room tempera-
ture. After washing the membranes thrice with TBST, 
ECL Reagent (Sangon Biotech, China) was added for 
chemiluminescent detection.

Immunofluorescence
U87 cells were seeded in a six-well plate with three cov-
erslips per well and cultured for 72  h at 37  °C. Further, 
100 nM MitoTracker™ Red CMXRos (Invitrogen, United 
States) were incubated with U87 cells at 37 °C for 30 min 

before fixing in 4% paraformaldehyde for 10 min at room 
temperature. Permeabilization was performed using 
0.5% Triton X-100 for 10 min at room temperature. The 
slides were washed and blocked with 1% BSA for 1 h. The 
primary antibodies were then incubated with U87 cells 
overnight at 4  °C. Next morning, the slides were incu-
bated with Alexa Fluor 488 (Abcam, Shanghai, China) for 
1  h at room temperature. Cell nuclei were stained with 
DAPI (Boyetime, Wuhan, China). Immunofluorescence 
images were observed using a Zeiss LSM 800 confocal 
microscope and analysed using ImageJ software.

Statistical analysis
All results were analysed using GraphPad Prism 9 and R 
software with R packages. The experimental data were 
presented as means ± SDs (standard deviations) and 
unpaired Student’s t-test was used for continuous vari-
ables between groups. The log-rank test was utilized for 
K-M survival analysis. The Pearson’s correlation coef-
ficient was applied to calculate the correlation between 
the expression of mtDNA-encoded genes and SSBP1. A 
two-side p < 0.05 was considered to indicate a statistically 
significant result.

Results
Identification of prognostic DE‑MRGs in GBM
Differential expression analysis of the GBM single-cell 
dataset revealed that 201MRGs, including 172 upregu-
lated and 29 downregulated genes, were significantly 
differentially expressed between neoplastic and non-neo-
plastic cells (Fig. 1A, Additional file 8: Table S3). Further-
more, to investigate the prognostic value of DE-MRGs 
in GBM patients, univariate Cox analysis was performed 
based on TCGA GBM dataset. The result revealed that 
among these DE-MRGs (14 genes could not match in 
TCGA GBM cohort), 21 DE-MRGs, including 5 genes 
with hazard ratio (HR) < 1 and 16 genes with HR > 1, were 
significantly associated with the OS of patients with GBM 
in TCGA dataset (Fig. 1B,  C, Additional file 9: Table S4).

Construction and validation of prognostic risk score model 
for GBM based on MRGs
To further screen for potential and critical prognostic 
DE-MRGs, LASSO penalized Cox regression analysis 
was conducted. First, the coefficient values at the dif-
ferent penalty levels were evaluated (Fig.  2A). Next, 
the optimal lambda value was confirmed using a ten-
fold cross-validation method (Fig. 2B). Finally,12 prog-
nostic DE-MRGs (PLAUR, RBP1, ABCB8, TOMM7, 
MFF, SSBP1, MRPL36, AGK, HK1, APEX1, NUDT1 
and PHB2) were selected to construct a prognostic risk 
score model. The risk score of each GBM patient was 
calculated according to the formula. To evaluate the 
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predictive accuracy and sensitivity of this prognostic 
model for OS, a time-dependent ROC curve analysis 
was performed. In TCGA GBM cohort, the areas under 
the ROC curve of this model for 1-, 3- and 5-year of 
OS were 0.75, 0.81, and 0.902, respectively, indicat-
ing that the signature of the 12 MRGs showed excel-
lent prognostic validity (Fig. 2C). Based on the optimal 
cutoff value (2.33391033) for 3-year OS, patients with 
GBM were divided into high- and low-risk groups. The 
distribution of risk scores and survival status, between 
the high-risk group and low-risk group in TCGA-
GBM cohort is presented in Fig. 2D. Heatmap showed 

that nine genes were highly expressed and three genes 
were expressed at low levels in the high-risk group 
(Fig.  2E). The Kaplan–Meier (KM) survival analysis 
curves showed that a low-risk score was related to a 
better prognosis in TCGA cohorts (Fig.  2F). Impor-
tantly, similar results were obtained in the GSE147352 
and GSE16011 datasets, indicating that our risk model 
presents excellent performance in predicting the prog-
nosis of GBM (Additional file 1: Fig. S1). We also found 
that our risk model was associated with the prognosis 
of patients with other types of tumors, such as lower 
grade gliomaa, lung adenocarcinoma, and kidney renal 

Fig. 1  Identification of prognostic DE-MRGs in GBM. A The heatmap plot illustrated the 201 significant DE-MRGs between primary neoplastic and 
non-neoplastic cells based on the single cell data of GBM. B The volcano plots showed the results of univariate cox analysis of DE-MRGs in the TCGA 
GBM dataset. C The forest plot showed the 21 prognostic DE-MRGs in the TCGA GBM dataset
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Fig. 2  Construction of DE-MRGs related prognostic risk model for GBM. A The LASSO coefficient profiles of 21 prognostic DE-MRGs. B Ten-time 
cross-validation for tuning parameter selection in the LASSO model and the dotted-line equal to lambda.min. C Time dependent ROC curves for 12 
DE-MRGS prognostic model in the TCGA GBM cohort. D The distribution of risk scores, survival time, and status of GBM patients in the TCGA cohort. 
E The heatmap of the 12 model DE-MRGs in the TCGA GBM cohort. F Kaplan–Meier curves for OS in TCGA GBM cohort stratified by 12 DE-MRGs 
model in high and low-risk
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clear cell carcinoma. (Additional file 2: Fig. S2). In addi-
tion, the efficiency of our risk predictor was better than 
that of other similar predictors, including immune-
related gene signature [18], pyroptosis-related gene sig-
nature [19], and autophagy-related gene signature [20], 
as reported in the literature (Additional file 3: Fig. S3).

Prognostic model is an independent predictor 
and a valuable hierarchical factor
It is well known that the age of patients and whether 
radiotherapy and chemotherapy affect the prognosis of 
patients with GBM. To assess whether our risk model is 
an independent predictor of the prognosis of patients 

with GBM, univariate and multivariate Cox analy-
ses were performed. Univariate Cox analysis revealed 
that the risk score, age, and whether to receive radio-
therapy or TMZ chemotherapy were significantly asso-
ciated with the OS of patients (Fig.  3A). Multivariate 
Cox analysis demonstrated that the risk score was an 
independent factor for predicting OS of patients after 
adjusting for the abovementioned factors (Fig. 3B). Fur-
thermore, to evaluate the prognostic values of this risk 
score in different subgroups of GBM, a stratified sur-
vival analysis was performed. The results showed that 
patients aged ≤ 65  years, received radiotherapy in the 
to low-risk group had better OS those in the high-risk 

Fig. 3  Independence of our risk score as a prognostic factor. A The forest plot showed the univariate cox analysis using risk score, age, radiotherapy, 
TMZ chemotherapy, and gender as variates in the TCGA GBM cohort. B The forest plot showed the multivariate cox analysis using risk score, age, 
radiotherapy, and TMZ chemotherapy as variates in the TCGA GBM cohort. C Stratified OS analysis in TCGA GBM patients with different age based 
on our risk model. D Stratified OS analysis in TCGA GBM patients with radiotherapy or not based on our risk model. E Stratified OS analysis in TCGA 
GBM patients with TMZ chemotherapy or not based on our risk model
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group (Fig. 3C and D). When both TMZ chemotherapy 
and risk score were considered, regardless of whether 
they received TMZ treatment, the patients in the low-
risk group had longer OS than those in the high-risk 
group (Fig. 3E). These results were well validated in the 
GSE16011 GBM cohort (Additional file 4: Fig. S4).

Clinical and mutational characteristics of risk score
We compared the risk scores of GBM for different clinical 
and molecular subtypes. The results showed that there 
was no significant difference in the risk score between 
primary and recurrence GBMs (Fig.  4A), whereas, the 
score for GBM with IDH mutation and MGMT promoter 
methylation was significantly lower than that for GBM 
with wildtype IDH and unmethylated MGMT promoter 
(Fig.  4B and C). The distribution of the top 20 mutated 
genes in GBM is illustrated in Fig. 4D. Furthermore, we 
compared the genes mutations between GBM in the 
high- and low- risk groups, and the results showed that 

the mutation frequency of IDH1, SYNE1, ADAM29, 

CACNA2D1, DICER1, and USH2A in GBM in the low-
risk group was significantly higher than that in GBM in 
the high-risk group (Fig. 4E and F).

To further understand the underlying mechanism of 
the risk score, differential expression and functional 
enrichment analyses were performed. As shown in 
Fig. 5A, we identified 639 DEGs between the high-risk 
group and low-risk group, including 328 upregulated 
and 311 downregulated genes. Based on GO enrich-
ment analysis, we found that these DEGs were signifi-
cantly enriched in a total of 50 BP terms, 23 CC, and 
26 MF terms (adjusted p value < 0.05, Additional file 10: 
Table  S5). The top terms of BP included signal trans-
duction, inflammatory response, chemokine-mediated 
signaling pathway, and extracellular matrix organiza-
tion and disassembly (Fig.  5B). For CC, the top terms 
included plasma membrane, collagen trimer, extracellu-
lar region, extracellular space, and extracellular matrix 
(Fig. 5C). For MF, the top terms included extracellular 

Fig. 4  Clinical and mutational characteristics of our risk score. A The violin plot showed the risk score of different sample types. B The violin plot 
showed the difference of risk score between MGMT promoter methylated tumor and MGMT promoter unmethylated tumor. C The violin plot 
showed the difference of risk score between IDH mutant tumor and IDH wildtype tumor. D The top 20 frequently mutated genes in high- and 
low-risk groups. E The differential mutated genes between high- and low-risk groups
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matrix structural constituents, chemokine activity, 
cytokine activity, CXCR chemokine receptor binding, 
metalloendopeptidase activity, and transmembrane 

signaling receptor activity (Fig.  5D). Additionally, we 
performed GSEA and found that high-risk patients 
were not only enriched in pro-cancer-related pathways, 

Fig. 5  Functional enrichment analysis of our risk score. A The volcano plot showed the protein-coding DEGs between high- and low-risk groups 
based on the TCGA GBM dataset. B The top10 biological process terms of GO enrichment analysis of 639 DEGs. C The top10 cellular component 
terms of GO enrichment analysis of 639 DEGs. D The top10 molecular function terms of GO enrichment analysis of 639 DEGs. E The GSEA 
enrichment plot based on the KEGG gene sets. F The GSEA enrichment plot based on the HALLMARK gene sets
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such as epithelial mesenchymal transition, hypoxia, and 
KRAS signaling, but also enriched in immune related 
pathways, such as inflammatory response, cytokine-
cytokine receptor interaction, chemokine signaling 
pathway and focal adhesion (Fig. 5E and F).

Correlation between the risk score correlated and immune 
cell infiltration in GBM
Since functional enrichment analysis showed that the risk 
score is associated with immune related processes and 
pathways, we further explored the relationship between 
risk score and tumor immune microenvironment in 
GBM. First, we investigated the correlation between risk 
score and ESTIMATE scores, including ImmuneScore, 
StromalScroe, and ESTIMATEScore, calculated using 
the ESTIMATE algorithm in TCGA and GSE16011 GBM 
cohorts. The results showed that the risk score presented 
a significantly positive correlation with the ESTIMATED 
scores in both TCGA and GSE16011 datasets (Fig. 6A–C, 
Additional file 5: Fig. S5A–C). Furthermore, we estimated 
the infiltration levels of 28 immune cells in the TCGA 
and GSE16011 cohorts using the ssGSEA algorithm. 
Correlation analysis revealed that the risk score posi-
tively correlated with most immune cells in both TCGA 
and GSE16011 datasets (Fig. 6D and E, Additional file 5: 
Fig. S5D and E). In addition, we found that most of the 
immune cells were significantly higher in the high-risk 
group than in the low-risk group based on TCGA cohort 
(Fig. 6F). Similar results were observed in the GSE16011 
cohort (Additional file 5: Fig. S5F).

Correlation of SSBP1 with GBM cell proliferation 
and migration
Based on the previous study, we screened out 12 GBM 
candidates. Indeed, most of these 12 MRGs, includ-
ing PLAUR​ [21], RBP1 [22], MRPL36, AGK [23], HK1 
[23], APEX1 [24], NUDT1 [25], and PHB2 [26], have 
been reported to play critical roles in the development 
and invasiveness of GBM. However, the role of SSBP1 
in GBM remains unknown. Conversely, multiple stud-
ies have demonstrated that SSBP1 is vnvolved in vari-
ous human cancers and plays an important role [27–30]. 
Thus, we selected SSBP1 for further experiments.

Bulk RNA analysis also revealed that SSBP1 was sig-
nificantly upregulated in GBM compared to normal brain 

tissues based on the GEPIA database (Fig. 7A). WB anal-
ysis further confirmed that SSBP1 was only upregulated 
in U87 cells and not in HEB cells (Fig. 7B). To investigate 
the relationship between the SSBP1 expression levels 
and GBM prognosis, the KM survival curves were drawn 
based on TCGA and CGGA primary GBM databases. 
The results revealed that SSBP1 was markedly correlated 
with the OS of patients and a high level of SSBP1 indi-
cated a poor outcome based on TCGA and CGGA GBM 
dataset (Fig. 7C).

To investigate the biological function of SSBP1 in GBM 
cells, we knocked down SSBP1 by transfecting U87 cells 
with two siRNAs. After transfection with siRNA for 72 h, 
cell viability was determined using the CCK-8 assay and 
the results indicated that SSBP1 silencing significantly 
inhibited U87 cell proliferation (Fig.  7D). Furthermore, 
we knocked down SSBP1 using siRNA in U87 cells and 
seeded the cells into Transwell chambers. After 48  h, 
migration assay was performed; compared with nega-
tive control, U87 cell migration ability was suppressed on 
SSBP1 downregulation (Fig. 7E).

Effect of SSBP1 on mitochondrial morphology and ROS 
production
Since SSBP1 is a prognostic MRG, we next investigated 
the effect of SSBP1 knockdown on mitochondria in GBM 
cells. First, we observed that the mitochondria of U87 
cells aggregated after transfection with SSBP1 targeted 
siRNA for 72 h (Fig. 8A). It is well known that mitochon-
drial morphology is regulated by central mediator pro-
teins, we determined their expression levels by WB. The 
results showed that the expressions of OMA1 and OPA1 
were upregulated, while that of DRP1 was downregulated 
after silencing SSBP1 in U87 cells (Fig. 8B). Furthermore, 
we determined the expression levels of the five enzyme 
complexes, constituting the electron transport chain 
(ETC), and found that the expression levels of NDUFS1 
(complex I), UQCRC1 (complex II), SDHC (complex III), 
and Cox IV (complex IV) were highly upregulated after 
the knockdown of SSBP1 in U87 cells (Fig.  8C). These 
results suggested that SSBP1 knockdown upregulated 
most of the ETC content.

Considering that mitochondrial ROS production 
results from changes in mitochondrial ETC content or 
function [31], we speculated whether SSBP1 knock-
down might trigger a notable increase in mitochondrial 

(See figure on next page.)
Fig. 6  The risk score associated with immune cell infiltration. A Scatter plot showed the positive correlation between the risk score and 
ImmuneScore (Spearman’s rank correlation coefficient). B Scatter plot showed the positive correlation between the risk score and StromalScore 
(Spearman’s rank correlation coefficient). C Scatter plot showed the positive correlation between the risk score and ESTAMEScore (Spearman’s rank 
correlation coefficient). D The heatmap plot showed the relationship between risk score and 28 immune cells in the TCGA GBM dataset. E The 
correlations of risk score with abundance of 28 immune cells (Spearman’s rank correlation coefficient). F The boxplots showed the relationship 
between risk score and 28 immune cells in the TCGA GBM cohort
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ROS. Thus, we measured mitochondrial ROS and MMP 
using live cell imaging, and found that SSBP1 knock-
down resulted in a significant increase in mitochondrial 
ROS, as well as a dramatic decrease in MMP in U87 cells 
(Fig. 8D–F.). GSEA analysis also revealed that SSBP1 was 
enriched in 11 KEGG pathways based on TCGA GBM 
dataset (Fig.  8G). some of these pathways are associ-
ated with ROS, such as the PI3K-Akt (Fig.  8H), MAPK 
(Fig.  8I), and calcium signaling pathways. Furthermore, 
we observed AMPK activation and NF-κB pathway 
downregulation in TMZ-treated SSBP1 knockdown U87 
cells (Fig.  8J). GPX4 expression in TMZ-treated U87 
cells was slightly reduced compared with that in DMSO-
treated U87 cells. Taken together, these results indicated 
that SSBP1 downregulation promotes mitochondrial 
aggregation and increase ROS production in GBM cells.

Effect of SSBP1 downregulation on TMZ sensitivity
Recent studies have revealed that elevated ROS lev-
els weaken the TMZ resistance in glioma cells [32, 
33]. Considering that SSBP1 regulates ROS produc-
tion, we further explored the effect of SSBP1 knock-
down on TMZ sensitivity in GBM cells, and the result 
showed that SSBP1 knockdown significantly enhanced 
TMZ treatment efficacy in U87 cells (Fig.  9A and B). 
Recently, ferroptosis has become a hot topic and is 
a form of iron- and ROS-dependent cell death char-
acterized by changes in mitochondrial morphology 
[34]. Compared with control, the ROS level in SSBP1 
knockdown U87 cells increased significantly on TMZ 
treatment (Fig.  9C and D), indicating the initiation of 
ferroptosis. We subsequently calculated the ferropto-
sis score of GBM samples based on the CGGA data-
set and found that the ferroptosis driver score of the 

Fig. 7  SSBP1 was upregulated and related to proliferation and migration of GBM. A Gene expression of SSBP1 between GBM and normal tissue. B 
Expression of SSBP1 in different glioma cell lines detected by western blot analysis. C K-M curves of SSBP1 for primary GBM based on the TCGA and 
CGGA cohorts. D Cell proliferation ofU87 cells transferred with control or SSBP1 siRNA was detected by CCK-8 assays. E Transwell assay examined 
cell migration ability of U87 cells transferred with control or SSBP1 siRNA. Scale bar: 200 μm

(See figure on next page.)
Fig. 8  SSBP1 knockdown induced mitochondria dysfunction in U87 cells. A Representative confocal image of U87 cells labelled with MitoTracker 
red (red) and Tom40 (Green). B The effects of SSBP1 knockdown on the expressions of mitochondrial morphology mediators. C Western blot 
analysis showing the expression level of NDUFS1, UQCRC1, SDHC and Cox IV. D Representive live confocal images of U87 cell transferred with 
control or SSBP1 siRNA and incubated with MitoTracker Red and MitoSox Red. E–F Quantification fluorescence intensity of MitoTracker red and 
MitoSox. Data are represented as mean ± SD. n = 35. ****P < 0.0001. G The enriched KEGG pathways based on the GSEA. H The GSEA of PI3K-AKT 
signalling pathway. I The GSEA of MARPK signaling pathway. J Western blot analysis showing the expression level of AMPK, p-AMPK and GPX4 in 
SSBP1 knockdown U87 cells treated with DMSO or TMZ. Scale bars: 10 μm
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SSBP1 high group was lower than that of the SSBP1 low 
group (Fig. 9E), in contrast, the ferroptosis suppressor 
score of the SSBP1 high group was higher than that of 
SSBP1 low group (Fig.  9F). Furthermore, the silencing 
of SSBP1 downregulated the expression of GPX4 and 
FTH1 at the mRNA level in U87 cells treated with TMZ 
(Figs.  8J, 9G and H). In addition, SSBP1 knockdown 
remarkably increased iron and glutathione level (Fig. 9I 
and J). These results indicated that SSBP1 knockdown 
increased the sensitivity of GBM cells to TMZ by 
enhancing TMZ-induced ferroptosis.

Discussion
Multiple studies have revealed that MRGs are essential 
for tumorigenesis and tumor progression and target-
ing MRGs may be a promising therapeutic approaches 
for cancer treatment [4]. However, few studies have 
focused on MRGs and elucidated their role in GBM. In 
the present study, we constructed and validated a prog-
nostic risk score model for GBM based on 12 DE-MRGs 
through differential gene expression, univariate Cox, and 
LASSO-Cox analyse. Our risk model presented excellent 
performance in predicting the GBM prognosis; the risk 
score was an independent prognostic factor associated 
with the clinicopathological and molecular features of 
GBM. In addition, stratified analysis demonstrated that 
our risk model could well distinguish the prognosis of 
patients with radiotherapy or TMZ chemotherapy, which 
indicated that our model has potential clinical applica-
tion value and that the 12 DE-MRGs might be involved in 
chemoradiotherapy resistance in GBM. Indeed, some of 
these genes have been shown to be related to chemoradi-
otherapy sensitivity in GBM. Cho et al. reported that the 
relative expression of APEX1 (APE1) was significantly 
increased in TMZ-resistant cell lines [35]. Furthermore, 
functional enrichment and immune cell infiltration anal-
yses revealed that our risk score was significantly associ-
ated with inflammatory response, extracellular matrix, 
pro-cancer-related and immune related pathways, tumor 
mutation burden and immune cell infiltration in GBM. 
Therefore, these 12 genes are potential therapeutic tar-
gets for GBM treatment.

To the best of our knowledge, our study is the first to 
identify DE-MRGs in neoplastic and non-neoplastic cells 

based on single cell data for the first time. Single cell 
RNA sequencing presents great advantages over bulk 
RNA sequencing in dissecting heterogeneity in cell popu-
lations [36]. Therefore, single cell analysis is more con-
ducive to finding differentially expressed genes among 
cell types. Based on single cell analysis we screened 201 
DE-MRGs in GBM tissues. To further screen out impor-
tant DE-MRGs in GBM, univariate Cox and LASSO Cox 
analyses were performed and 12 DE-MRGs were iden-
tified, which were used to construct a prognostic risk 
score model for GBM patients. In addition, our risk score 
excellently predicted the prognosis of patients with GBM, 
which in turn indicates that our screening method is fea-
sible. The LASSO is a penalization method used to shrink 
and select variates for regression [37]. Moreover, our 
risk model also associated with the prognosis of other 
cancers and the predictive efficiency of our model was 
better than that of several reported signatures, includ-
ing immune-related gene signature, pyroptosis-related 
gene signature, and autophagy-related gene signature, in 
GBM. A possible reason behind the difference of predic-
tive power might be due to the involvement of mitochon-
dria in various biological processes, including immune 
response, hypoxia, and cell death [38]; thus, the screened 
12 DE-MRGs are likely to play an important role in GBM 
and might be therapeutic candidates. Indeed, some 
of these 12 genes have been reported to be involved in 
glioma tumorigenesis or to be significant in predicting 
OS. For example, the expression of RBP1 is significantly 
elevated in gliomas, and the overexpression of RBP1 
enhances the growth, self-renewal ability, invasion, and 
migration of glioma cells [22]. AGK is markedly overex-
pressed in glioma and might play an important role in 
glioma development and progression [23]. LINC00470 
inhibits the ubiquitination of HK1, the first key enzyme 
in the glycolysis pathway, thereby affecting glycolysis, and 
inhibiting cell autophagy in gliomas [39]. APEX1 (APE1) 
activity is elevated in gliomas and induces resistance to 
chemoradiotherapy [35]. NUDT1, also known as MTH1, 
is overexpressed in GBM, and its silencing significantly 
alters glioma cell viability [40]. These studies support the 
important role of the risk score. Therefore, the members 
of the 12 DE-MRGs that have not been studied in glioma 
are worth for further study.

Fig. 9  Downregulation of SSBP1 increased TMZ sensitivity and enhanced TMZ induces ferroptosis. A Representive images of U87 cells after SSBP1 
knockdown, the cells were incubated with TMZ or DMSO and stained with crystal violet. Scale bar: 200 μm. B Quantification of the U87 cell number 
in 8 random sights. Data are represented as mean ± SD. C Representive images of U87 cells after SSBP1 knockdown, the cells were treated with 
TMZ or DMSO and stained with MitoSox Red. Scale bar: 10 μm. D Quantification fluorescence intensity of MitoSox Red. Data are represented as 
mean ± SD. n = 30. ****P < 0.0001. E The ferroptosis driver score between SSBP1 high group and low group in the CGGA primary GBM samples. F 
The ferroptosis suppressor score between SSBP1 high group and low group in the CGGA primary GBM samples. G, H Real-time PCR analysis for 
GPX4 and FTH1 were performed in SSBP1 knockdown U87 cells treated with DMSO or TMZ. The data shown are the mean ± SD from three separate 
experiments. I, J Iron content and GSH level of SSBP1 knockdown U87 cells treated with DMSO or TMZ. The data shown are the mean ± SD from 
three separate experiments. ns = not significant, *P < 0.1, **P < 0.01, ***P < 0.001, ****P < 0.0001

(See figure on next page.)
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Recently, an increasing number of studies have 
demonstrated that SSBP1 is significantly correlated 
with poor patient prognosis and is involved in tumo-
rigenesis, proliferation, and drug sensitivity in certain 
human cancers [9, 17, 30]. The upregulation of SSBP1 
is associated with the aggressiveness of osteosarcoma 
cells [27]; whereas, its depletion triggers cell death in 
colorectal cancer cells by affecting the mitochondrial 
proteome [28]. SSBP1 is a suppressor of triple-negative 
breast cancer metastasis [29]. SSBP1 participates in 
mtDNA repair in cancer cells during oxidative stress 
by interacting with p53 [30]. However, as one of the 12 
DE-MRGs, the role of SSBP1 in GBM remains unclear. 
Therefore, we investigeted the role of SSBP1 in GBM. 
Based on bioinformatic analysis, we found that SSBP1 
is aberrantly upregulated in GBM tissue and signifi-
cantly related to the poor prognosis of primary GBM 
patients. Previous studies have shown that SSBP1 is 
essential for mtDNA maintenance and replication. 
mtDNA can lead to devastating, heritable, and mul-
tisystem diseases that have different tissue-specific 
presentations and are important in the initiation and 
maintenance of tumorigenesis in GBM [41–43]. There-
fore, we focused on exploring the role of SSBP1 in 
mitochondrial function. Our study demonstrates that 
silencing SSBP1 expression inhibits GBM cell prolifera-
tion and migration. SSBP1 enhances mtDNA replica-
tion under physiological conditions, resulting in ATP 
generation through oxidative phosphorylation [42]. 
Therefore, we speculated that SSBP1 knockdown might 
affect mitochondrial ROS production by regulating oxi-
dative phosphorylation.

In recent years, many biomaterials with new technolo-
gies have been developed for cancer treatment and have 
shown promising application prospects. Nanotechnol-
ogy-based approaches exhibit higher efficacy, higher 
target specificity, and great potential to bypass the limita-
tions of traditional therapies [44]. As a factory of energy 
involved in the proliferation of cancer cells, mitochondria 
are naturally regarded as an important target for cancer 
therapeutics. Th mitochondria in cancer cells are charac-
terized by ROS overproduction, which promotes cancer 
development. Recently, multiple novel agents specific 
for ROS targets have been shown to efficiently maximize 
chemotherapy efficacy and minimize side effects [45, 46]. 
ROS-responsive micro- and nano-particles specifically 
release their drug cargo guided by ROS concentration, 
which is enhanced in the cellular environment within 
specific tumors, and thus, show marked cytotoxicity 
for cancer cells compared to non-ROS responsive mol-
ecules [14]. Hence, a better understanding of the role 
of mitochondrial ROS in GBM will help identify novel 
therapeutic targets. In this study, we demonstrated that 

SSBP1 knockdown promotes ROS production and alters 
MMP in GBM cells, which is consistent with the results 
of SSBP1 knockdown in other cancers [28–30]. Ubiqui-
nol-cytochrome c reductase hinge protein (UQCRH) 
regulates electron transfer from cytochrome c1 to 
cytochrome c, and its upregulation enhances ROS pro-
duction [47]. UQCRC1 is a subunit of UQCRH, and its 
upregulation can result in enhanced ROS production. 
ROS production may also be elevated due to the upreg-
ulation of mitochondrial ETC function, as implied by 
upregulation of other ETC components. Our results indi-
cated that SSBP1 might regulates ROS by regulating the 
expression of UQCRC1, however, the exact mechanisms 
underlying these processes require further study.

We found that mitochondria of U87 cells with SSBP1 
knockdown were fragmented and aggregated. These 
changes seem to correlate with the expression of mito-
chondrial morphology mediators, such as the upregula-
tion of OMA1 and DRP1 and downregulation of OPA1. 
Since we demonstrated that SSBP1 is a potential mito-
chondrial biomarker of GBM, we further investigated 
whether it could also be a therapeutic target for GBM. 
Although TMZ is the first-line chemotherapy for GBM, 
its efficacy is limited by acquired chemoresistance. 
Oliva et  al. found that TMZ-dependent acquired chem-
oresistance might be due to a mitochondrial adaptive 
response to TMZ genotoxic stress with a major contribu-
tion from cytochrome c oxidase [48]. Lomeli et al. have 
also reported that TMZ can lead to mitochondrial dys-
function, oxidative stress, and apoptosis [49]. A recent 
study demonstrated that TMZ can suppress tumor cell 
proliferation by inducing ferroptosis, which might be a 
result of ROS accumulation [50]. Thus, targeting mito-
chondrial ROS may overcome the TMZ resistance and 
improve TMZ efficacy. Recently, ferroptosis has become 
a hot research topic, and several studies have investigated 
ferroptosis-related biomarkers through bioinformatics 
analysis or experiments [51, 52]. Here, we combined bio-
informatics and experimental methods to confirm that 
SSBP1 knockdown enhances ROS production to trigger 
ferroptosis in U87 cells. Furthermore, upon TMZ treat-
ment, SSBP1 knockdown activated the AMPK pathway 
and inhibited the NF-κB pathway in U87 cells. AMPK 
pathway activation and NF-κB pathway inhibition have 
been reported to enhance the anti-cancer effects of 
chemotherapy [53, 54]. Therefore, we can conclude that 
SSBP1 knockdown increases TMZ sensitivity by promot-
ing mitochondrial ROS to trigger ferroptosis and regulate 
the AMPK and NF-κB pathways. This result implied that 
the strategy of combining an SSBP1 inhibitor with TMZ 
would benefit tumour treatment by enhancing TMZ sen-
sitivity, however, additional efforts are required to trans-
late this strategy into the clinical setting to benefit GBM 
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patients. Further studies on the mechanisms of MRGs 
and ferroptosis in TMZ resistance would provide new 
ideas for the clinical reversal of TMZ resistance and 
improve the efficacy of chemotherapy.

Conclusions
We constructed a prognostic model based on 12DE-
MRGS that can predict the prognosis of GBM with 
excellent performance. We also determined the molecu-
lar and immunological characteristics of our prognostic 
model, thus providing potential therapeutic targets for 
GBM treatment. Furthermore, we demonstrated that 
the downregulation of SSBP1 in GBM suppresses tumor 
proliferation and results in mitochondrial dysfunction. 
Therefore, our results suggest that SSBP1 as a potential 
therapeutic target for GBM by enhancing TMZ sensitiv-
ity through ROS-mediated ferroptosis.

Abbreviations
GBM: Glioblastoma; DRP1: Dynamin-related protein 1; GSEA: Gene set enrich-
ment analysis; HR: Hazard ratio; MGMT: O6-methylguanine-DNA-methyltrans-
ferase; OS: Overall survival; SSBP: Single strand binding protein; siRNA: Small 
interference RNA; mtDNA: Mitochondrial DNA; MMP: Mitochondrial mem-
brane potential; SSBP1: Single-stranded DNA-binding protein 1; ROS: Reactive 
oxygen species; TMZ: Temozolomide; ETC: Electron transport chain; MRG: 
Mitochondria-related gene; OXPHOS: Oxidative phosphorylation; GO: Gene 
ontology; UQCRH: Ubiquinol-cytochrome c reductase hinge protein; LASSO: 
Least absolute shrinkage and selection operator; TCGA​: The cancer genome 
atlas; CGGA​: Chinese glioma genome atlas; GEO: Gene expression omnibus.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​022-​03657-4.

Additional file 1: Fig. S1. Validation of DE-MRGs related prognostic 
risk model for GBM. A, E Time dependent ROC curves for 12 DE-MRGS 
prognostic model in the GSE147352 and GSE16011 GBM cohort. B, F 
The distribution of risk scores, survival time, and status of GBM patients 
in the GSE147352 and GSE16011 GBM cohort. C, GThe heatmap of the 
12 model DE-MRGs in the GSE147352 and GSE16011 GBM cohort. D, H 
Kaplan–Meier curves for OS in the GSE147352 and GSE16011 GBM cohort 
stratified by 12 DE-MRGs model in high- and low-risk.

Additional file 2: Fig. S2. The predictivity of 12 DE-MRGs model for other 
cancers. A The univariate cox analysis showed that the risk score, based on 
our 12 DE-MRGs, significantly associated with other 12 types of TCGA can-
cers. B Kaplan–Meier curves for OS in the other 12 types of TCGA cancers. 
The patients were divided in to high- and low-risk groups based on the 
median value of risk score.

Additional file 3: Fig. S3. The time dependent ROC curves for other three 
prognostic models. A Time dependent ROC curves for immune-related 
gene signature in the TCGA GBM cohort. B Time dependent ROC curves 
for pyroptosis-related gene signature in the TCGA GBM cohort. C Time 
dependent ROC curves for autophagy-related gene signature in the TCGA 
GBM cohort.

Additional file 4: Fig. S4. Validation of independence of our risk score as 
a prognostic factor. A The forest plot showed the univariate cox analysis 
using risk score, age, radiotherapy, TMZ chemotherapy, and gender as 
variates in the GSE16011 GBM cohort. B The forest plot showed the mul-
tivariate cox analysis using risk score, age, radiotherapy, and TMZ chemo-
therapy as variates in the GSE16011 GBM cohort. C Stratified OS analysis 
in GSE16011 GBM patients with different age based on our risk model. D 

Stratified OS analysis in GSE16011 GBM patients with radiotherapy or not 
based on our risk model. E Stratified OS analysis in TCGA GBM patients 
with TMZ chemotherapy or not based on our risk model.

Additional file 5: Fig. S5. Validation of the association between risk score 
and immune cell infiltration. A Scatter plot showed the positive correla-
tion between the risk score and ImmuneScore (Spearman’s rank correla-
tion coefficient) in the GSE16011 GBM cohort. B Scatter plot showed the 
positive correlation between the risk score and StromalScore (Spearman’s 
rank correlation coefficient) in the GSE16011 GBM cohort. C Scatter plot 
showed the positive correlation between the risk score and ESTAMEScore 
(Spearman’s rank correlation coefficient) in the GSE16011 GBM cohort. 
D The heatmap plot showed the relationship between risk score and 28 
immune cells in the GSE16011 GBM dataset. E The correlations of risk 
score with abundance of 28 immune cells (Spearman’s rank correlation 
coefficient) in the GSE16011 GBM dataset. F The boxplots showed the 
relationship between risk score and 28 immune cells in the GSE16011 
GBM cohort.

Additional file 6: Table S1. The mitochondria-related genes extracted 
from the uniprot database.

Additional file 7: Table S2. The primer sequences used in the study.

Additional file 8: Table S3. The 201 DE-MRGs between neoplatstic and 
non-neoplastic cells.

Additional file 9: Table S4. The 21 prognositc DE-MRGs based on the 
TCGA GBM cohort.

Additional file 10: Table S5. GO enrichment analysis by using DAVID.

Acknowledgements
All contributors to this study are included in the list of authors.

Author contributions
JS conducted the bioinformatic analysis, analyzed the data, and revised the 
manuscript. QL and GP designed the experiments and supervised the study. 
YL and CQ collected and recorded the data. YL conducted the experiments, 
analyzed the data, and wrote the manuscript. All authors reviewed, read and 
approved the final manuscript.

Funding
This study was supported by The National Nature Science Foundation of China 
(No. 81801908).

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The study was conducted in accordance with the Declaration of Hel-
sinki, and approved by the Ethics Committee of Xiangya Hospital. 
(202103708;2021.10.08). Written informed consent has been obtained from 
the patients to publish this paper.

Consent for publication
All authors agree to publish.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Neurosurgery, Hunan Children’s Hospital, No. 86 Ziyuan Road, 
Changsha 410007, Hunan, China. 2 Department of Neurosurgery, Xiangya 
Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, 
China. 

https://doi.org/10.1186/s12967-022-03657-4
https://doi.org/10.1186/s12967-022-03657-4


Page 18 of 19Su et al. Journal of Translational Medicine          (2022) 20:440 

Received: 20 July 2022   Accepted: 20 September 2022

References
	1.	 Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang 

L, Peng Y, et al. Glioma targeted therapy: insight into future of molecular 
approaches. Mol Cancer. 2022;21:39.

	2.	 Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche 
C, Sahm F, Chavez L, Reuss DE, et al. DNA methylation-based classification 
of central nervous system tumours. Nature. 2018;555:469–74.

	3.	 Wallace DC. Mitochondria and cancer. Nat Rev Cancer. 2012;12:685–98.
	4.	 Fulda S, Galluzzi L, Kroemer G. Targeting mitochondria for cancer therapy. 

Nat Rev Drug Discov. 2010;9:447–64.
	5.	 Eckl EM, Ziegemann O, Krumwiede L, Fessler E, Jae LT. Sensing, signaling 

and surviving mitochondrial stress. Cell Mol Life Sci. 2021;78:5925–51.
	6.	 Bianchi NO, Bianchi MS, Richard SM. Mitochondrial genome instability in 

human cancers. Mutat Res. 2001;488:9–23.
	7.	 Kasahara A, Scorrano L. Mitochondria: from cell death executioners to 

regulators of cell differentiation. Trends Cell Biol. 2014;24:761–70.
	8.	 Senft D, Ronai ZA. Regulators of mitochondrial dynamics in cancer. Curr 

Opin Cell Biol. 2016;39:43–52.
	9.	 Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, Counter 

CM, Kashatus DF. Erk2 phosphorylation of Drp1 promotes mitochondrial 
fission and MAPK-driven tumor growth. Mol Cell. 2015;57:537–51.

	10.	 Yang Y, Karakhanova S, Hartwig W, D’Haese JG, Philippov PP, Werner J, 
Bazhin AV. Mitochondria and mitochondrial ROS in cancer: novel targets 
for anticancer therapy. J Cell Physiol. 2016;231:2570–81.

	11.	 Leao Barros MB, Pinheiro DDR, Borges BDN. Mitochondrial DNA altera-
tions in glioblastoma (GBM). Int J Mol Sci. 2021. https://​doi.​org/​10.​3390/​
ijms2​21158​55.

	12.	 Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, Dombrowski 
SM, Huang Z, Fang X, Shi Y, et al. Mitochondrial control by DRP1 in brain 
tumor initiating cells. Nat Neurosci. 2015;18:501–10.

	13.	 Eugenio-Perez D, Briones-Herrera A, Martinez-Klimova E, Pedraza-Chaverri 
J. Divide et Impera: Drp1-mediated mitochondrial fission in glioma malig-
nancy. Yale J Biol Med. 2019;92:423–33.

	14.	 Rinaldi M, Caffo M, Minutoli L, Marini H, Abbritti RV, Squadrito F, Trichilo V, 
Valenti A, Barresi V, Altavilla D, et al. ROS and brain gliomas: an overview 
of potential and innovative therapeutic strategies. Int J Mol Sci. 2016. 
https://​doi.​org/​10.​3390/​ijms1​70609​84.

	15.	 Zhang H, Kong X, Kang J, Su J, Li Y, Zhong J, Sun L. Oxidative stress 
induces parallel autophagy and mitochondria dysfunction in human 
glioma U251 cells. Toxicol Sci. 2009;110:376–88.

	16.	 Sainero-Alcolado L, Liano-Pons J, Ruiz-Perez MV, Arsenian-Henriksson M. 
Targeting mitochondrial metabolism for precision medicine in cancer. 
Cell Death Differ. 2022;29:1304–17.

	17.	 Shi Y, Lim SK, Liang Q, Iyer SV, Wang HY, Wang Z, Xie X, Sun D, Chen 
YJ, Tabar V, et al. Gboxin is an oxidative phosphorylation inhibitor that 
targets glioblastoma. Nature. 2019;567:341–6.

	18.	 Hu L, Han Z, Cheng X, Wang S, Feng Y, Lin Z. Expression profile analysis 
identifies a novel seven immune-related gene signature to improve 
prognosis prediction of glioblastoma. Front Genet. 2021;12: 638458.

	19.	 Li XY, Zhang LY, Li XY, Yang XT, Su LX. A pyroptosis-related gene signature 
for predicting survival in glioblastoma. Front Oncol. 2021;11: 697198.

	20.	 Wang Z, Gao L, Guo X, Feng C, Lian W, Deng K, Xing B. Development and 
validation of a nomogram with an autophagy-related gene signature 
for predicting survival in patients with glioblastoma. Aging (Albany NY). 
2019;11:12246–69.

	21.	 Li J, Fan H, Zhou X, Xiang Y, Liu Y. Prognostic significance and gene co-
expression network of PLAU and PLAUR in gliomas. Front Oncol. 2021;11: 
602321.

	22.	 Wu W, Wang Y, Niu C, Wahafu A, Huo L, Guo X, Xiang J, Li X, Xie W, Bai X, 
et al. Retinol binding protein 1-dependent activation of NF-kappaB sign-
aling enhances the malignancy of non-glioblastomatous diffuse gliomas. 
Cancer Sci. 2022;113:517–28.

	23.	 Liu N, Wang Z, Cheng Y, Zhang P, Wang X, Yang H, Liu H, Zhang Y, Tu Y. 
Acylglycerol kinase functions as an oncogene and an unfavorable prog-
nostic marker of human gliomas. Hum Pathol. 2016;58:105–12.

	24.	 Yang J, Yang D, Cogdell D, Du X, Li H, Pang Y, Sun Y, Hu L, Sun B, Trent J, 
et al. APEX1 gene amplification and its protein overexpression in osteo-
sarcoma: correlation with recurrence, metastasis, and survival. Technol 
Cancer Res Treat. 2010;9:161–9.

	25.	 Bhavya B, Easwer HV, Vilanilam GC, Anand CR, Sreelakshmi K, Urulangodi 
M, Rajalakshmi P, Neena I, Padmakrishnan CJ, Menon GR, et al. MutT 
Homolog1 has multifaceted role in glioma and is under the apparent 
orchestration by Hypoxia Inducible factor1 alpha. Life Sci. 2021;264: 
118673.

	26.	 Zhao X, Zhang L, Wang J, Zhang M, Song Z, Ni B, You Y. Identification of 
key biomarkers and immune infiltration in systemic lupus erythematosus 
by integrated bioinformatics analysis. J Transl Med. 2021;19:35.

	27.	 Shapovalov Y, Hoffman D, Zuch D, de Mesy Bentley KL, Eliseev RA. 
Mitochondrial dysfunction in cancer cells due to aberrant mitochondrial 
replication. J Biol Chem. 2011;286:22331–8.

	28.	 Yang Y, Pan C, Yu L, Ruan H, Chang L, Yang J, Zheng Z, Zheng F, Liu T. 
SSBP1 upregulation in colorectal cancer regulates mitochondrial mass. 
Cancer Manag Res. 2019;11:10093–106.

	29.	 Jiang HL, Sun HF, Gao SP, Li LD, Huang S, Hu X, Liu S, Wu J, Shao ZM, Jin W. 
SSBP1 suppresses TGFbeta-driven epithelial-to-mesenchymal transition 
and metastasis in triple-negative breast cancer by regulating mitochon-
drial retrograde signaling. Cancer Res. 2016;76:952–64.

	30.	 Wong TS, Rajagopalan S, Townsley FM, Freund SM, Petrovich M, Loakes 
D, Fersht AR. Physical and functional interactions between human mito-
chondrial single-stranded DNA-binding protein and tumour suppressor 
p53. Nucleic Acids Res. 2009;37:568–81.

	31.	 Yamamori T, Yasui H, Yamazumi M, Wada Y, Nakamura Y, Nakamura H, 
Inanami O. Ionizing radiation induces mitochondrial reactive oxygen spe-
cies production accompanied by upregulation of mitochondrial electron 
transport chain function and mitochondrial content under control of the 
cell cycle checkpoint. Free Radic Biol Med. 2012;53:260–70.

	32.	 Lo Dico A, Salvatore D, Martelli C, Ronchi D, Diceglie C, Lucignani G, 
Ottobrini L. Intracellular redox-balance involvement in temozolomide 
resistance-related molecular mechanisms in glioblastoma. Cells. 2019; 8.

	33.	 Chien CH, Hsueh WT, Chuang JY, Chang KY. Dissecting the mechanism 
of temozolomide resistance and its association with the regulatory roles 
of intracellular reactive oxygen species in glioblastoma. J Biomed Sci. 
2021;28:18.

	34.	 Jezek J, Cooper KF, Strich R. Reactive oxygen species and mitochondrial 
dynamics: the yin and yang of mitochondrial dysfunction and cancer 
progression. Antioxidants (Basel). 2018. https://​doi.​org/​10.​3390/​antio​
x7010​013.

	35.	 Cho HR, Kumari N, Thakur N, Vu HT, Kim H, Choi SH. Decreased APE-1 
by nitroxoline enhances therapeutic effect in a temozolomide-resistant 
glioblastoma: correlation with diffusion weighted imaging. Sci Rep. 
2019;9:16613.

	36.	 Ding S, Chen X, Shen K. Single-cell RNA sequencing in breast cancer: 
Understanding tumor heterogeneity and paving roads to individualized 
therapy. Cancer Commun (Lond). 2020;40:329–44.

	37.	 Tibshirani R. The lasso method for variable selection in the Cox model. 
Stat Med. 1997;16:385–95.

	38.	 Klein K, He K, Younes AI, Barsoumian HB, Chen D, Ozgen T, Mosaffa S, Patel 
RR, Gu M, Novaes J, et al. Role of mitochondria in cancer immune evasion 
and potential therapeutic approaches. Front Immunol. 2020;11: 573326.

	39.	 Liu C, Zhang Y, She X, Fan L, Li P, Feng J, Fu H, Liu Q, Liu Q, Zhao C, et al. A 
cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to 
mediate glioblastoma cell autophagy. J Hematol Oncol. 2018;11:77.

	40.	 Tu Y, Wang Z, Wang X, Yang H, Zhang P, Johnson M, Liu N, Liu H, Jin 
W, Zhang Y, Cui D. Birth of MTH1 as a therapeutic target for glioblas-
toma: MTH1 is indispensable for gliomatumorigenesis. Am J Transl Res. 
2016;8:2803–11.

	41.	 Silva-Pinheiro P, Minczuk M. The potential of mitochondrial genome 
engineering. Nat Rev Genet. 2022;23:199–214.

	42.	 Dickinson A, Yeung KY, Donoghue J, Baker MJ, Kelly RD, McKenzie M, 
Johns TG, St John JC. The regulation of mitochondrial DNA copy number 
in glioblastoma cells. Cell Death Differ. 2013;20:1644–53.

	43.	 Barbieri E, Scorrano L. When numbers matters: mitochondrial DNA and 
gliomagenesis. Cell Death Differ. 2013;20:1601–2.

https://doi.org/10.3390/ijms22115855
https://doi.org/10.3390/ijms22115855
https://doi.org/10.3390/ijms17060984
https://doi.org/10.3390/antiox7010013
https://doi.org/10.3390/antiox7010013


Page 19 of 19Su et al. Journal of Translational Medicine          (2022) 20:440 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	44.	 Mani S, Swargiary G, Tyagi S, Singh M, Jha NK, Singh KK. Nanotherapeutic 
approaches to target mitochondria in cancer. Life Sci. 2021;281: 119773.

	45.	 Fard JK, Hamzeiy H, Sattari M, Eftekhari A, Ahmadian E, Eghbal MA. Tria-
zole rizatriptan induces liver toxicity through lysosomal/mitochondrial 
dysfunction. Drug Res (Stuttg). 2016;66:470–8.

	46.	 Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: 
the impact of passive and active targeting in the era of modern cancer 
biology. Adv Drug Deliv Rev. 2014;66:2–25.

	47.	 Raimondi V, Ciccarese F, Ciminale V. Oncogenic pathways and the elec-
tron transport chain: a dangeROS liaison. Br J Cancer. 2020;122:168–81.

	48.	 Oliva CR, Nozell SE, Diers A, McClugage SG 3rd, Sarkaria JN, Markert JM, 
Darley-Usmar VM, Bailey SM, Gillespie GY, Landar A, Griguer CE. Acquisi-
tion of temozolomide chemoresistance in gliomas leads to remodeling of 
mitochondrial electron transport chain. J Biol Chem. 2010;285:39759–67.

	49.	 Lomeli N, Di K, Pearre DC, Chung TF, Bota DA. Mitochondrial-associated 
impairments of temozolomide on neural stem/progenitor cells and hip-
pocampal neurons. Mitochondrion. 2020;52:56–66.

	50.	 Hu Z, Mi Y, Qian H, Guo N, Yan A, Zhang Y, Gao X. A potential mecha-
nism of temozolomide resistance in glioma-ferroptosis. Front Oncol. 
2020;10:897.

	51.	 Wang G, Wei W, Jiang Z, Jiang J, Han J, Zhang H, Hu J, Zhang P, Li X, Chen 
T, et al. Talaromyces marneffei activates the AIM2-caspase-1/-4-GSDMD 
axis to induce pyroptosis in hepatocytes. Virulence. 2022;13:963–79.

	52.	 Xu Z, Peng B, Liang Q, Chen X, Cai Y, Zeng S, Gao K, Wang X, Yi Q, Gong 
Z, Yan Y. Construction of a ferroptosis-related nine-lncRNA signature for 
predicting prognosis and immune response in hepatocellular carcinoma. 
Front Immunol. 2021;12: 719175.

	53.	 Ahmadian E, Eftekhari A, Babaei H, Nayebi AM, Eghbal MA. Anti-cancer 
effects of citalopram on hepatocellular carcinoma cells occur via 
cytochrome C release and the activation of NF-kB. Anticancer Agents 
Med Chem. 2017;17:1570–7.

	54.	 Hsu CC, Peng D, Cai Z, Lin HK. AMPK signaling and its targeting in cancer 
progression and treatment. Semin Cancer Biol. 2021. https://​doi.​org/​10.​
1016/j.​semca​ncer.​2021.​04.​006.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.semcancer.2021.04.006
https://doi.org/10.1016/j.semcancer.2021.04.006

	Identification of SSBP1 as a ferroptosis-related biomarker of glioblastoma based on a novel mitochondria-related gene risk model and in vitro experiments
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusion: 

	Background
	Materials and methods
	Data acquisition
	Identification of prognostic mitochondrial-related genes (MRGs) in GBM
	Construction and validation of prognostic risk score model based on the DE-MRGs
	Gene Oncology (GO) and pathway enrichment analysis of our risk model
	Ferroptosis score
	Immune infiltration analysis
	Cell culture and transfection
	RNA extraction and quantitative PCR (qPCR)
	Cell proliferation and migration assay
	Measurement of ROS level, iron content, and GSH level
	Western blotting
	Immunofluorescence
	Statistical analysis

	Results
	Identification of prognostic DE-MRGs in GBM
	Construction and validation of prognostic risk score model for GBM based on MRGs
	Prognostic model is an independent predictor and a valuable hierarchical factor
	Clinical and mutational characteristics of risk score
	Correlation between the risk score correlated and immune cell infiltration in GBM
	Correlation of SSBP1 with GBM cell proliferation and migration
	Effect of SSBP1 on mitochondrial morphology and ROS production
	Effect of SSBP1 downregulation on TMZ sensitivity

	Discussion
	Conclusions
	Acknowledgements
	References




