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Abstract 

Background:  Cervical cancer is the fourth most common cancer in women. N6-dimethyladenosine (m6A) mRNA 
methylation is closely associated with cervical cancer.

Methods:  Using TCGA database, we studied the expression and mutation of m6A-related genes in cervical squamous 
cell carcinoma and endocervical adenocarcinoma (CESC) and obtained genetic characteristics based on an m6A risk 
model and prognostic value of m6A. We studied the effects of the m6A risk score on immune features and genomic 
changes of patients with CESC, evaluated the sensitivity of patients with CESC to different small-molecule drugs 
based on the m6A risk score, and established a clinical prediction model.

Results:  Ten m6A-related genes were differentially expressed between CESC and normal tissues. High-risk patients 
had a low overall survival (OS) and significantly low immune scores but showed no significantly altered stromal scores. 
The tumor mutation burden (TMB) and tumor neoantigen levels significantly differed between the high- and low-
risk groups. In the high-risk group, copy number variation (CNV) changes mainly led to gene amplification, while in 
the low-risk group, CNV changes primarily manifested as gene copy number deletions. ZC3H13 expression was low 
in CESC tissues. ZC3H13 knockdown promoted CESC cell proliferation, migration, and invasion, reducing the RNA 
methylation levels. Rapamycin suppressed the CESC cell proliferation, migration, and invasion abilities, increasing the 
m6A levels.

Conclusion:  m6A mRNA methylation is closely related to the occurrence, development, immune invasion, drug 
sensitivity, and prognosis of cervical cancer. The prognostic m6A feature model of m6A signature genes can accurately 
predict the OS of patients with CESC. Drugs targeting factors regulating m6A mRNA methylation might offer a good 
prospect for treating cervical cancer.
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Introduction
Cervical cancer is the fourth most common cancer in 
women [1, 2]. More than 570,000 new cases of cervical 
cancer are diagnosed worldwide each year, with approxi-
mately 311,000 deaths [3]. Presently, at least 170 RNA 
modifications have been discovered in cervical can-
cer, for instance, N6-dimethyladenosine (m6A), inosine, 
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pseudouridine, 5-methylcytidine (m5C), 5-hydroxym-
ethylcytidine (hm5C), and N1-methyladenosine (m1A). 
Furthermore, most RNA species contain at least one 
chemical modification and are widely associated with 
physiopathological processes [4–7]. m6A is one of the 
most abundant mRNA modifications [8, 9]. m6A modi-
fies approximately 0.1–0.4% of all adenosines in RNA, 
accounting for ~ 50% of the total methylated ribonucle-
otides [10]. m6A is a dynamic and reversible epigenetic 
modification. The cellular m6A status is regulated by 
groups of proteins called m6A methyltransferases (“writ-
ers”), m6A demethylases (“erasers”), and m6A-binding 
proteins (“readers”), which add, remove, or recognize 
m6A-modified sites, respectively, modulating the stabil-
ity, splicing, intracellular distribution, and translational 
changes of mRNA while affecting certain biological pro-
cesses [11–14]. As a potential tumor biomarker, m6A 
plays a key role in various biological processes and malig-
nancies [15]. Changes in m6A-modifying enzyme lev-
els affect the expression of downstream oncogenes or 
tumor suppressor genes by altering mRNA methylation 
[16]. Furthermore, epigenetic markers potentially serve 
as diagnostic, prognostic, and predictive biomarkers and 
might be used as novel targets for cancer precision medi-
cine [17–20].

Here, we studied the expression and mutation of 
m6A-related genes in patients with cervical squamous cell 
carcinoma and endocervical adenocarcinoma (CESC), 
obtained the gene characteristics of patients with CESC 
based on an m6A-risk model, and constructed a prog-
nostic m6A feature model based on m6A signature genes. 
The effects of the m6A risk score on biological function, 
immune characteristics, and genomic changes of patients 
with CESC were analyzed. The sensitivity of patients 
with CESC to different small molecule drugs was evalu-
ated based on the m6A risk score, and a clinical predic-
tion model was constructed. Subsequently, we studied the 
expression and function of ZC3H13 in cervical cancer tis-
sues according to the screening results. We selected rapa-
mycin to study the effects of the screened drug on m6A 
and cervical cancer phenotype. Through this research, we 
attempted to study the gene signatures, immune infiltra-
tion, and drug sensitivity based on a comprehensive analy-
sis of m6A RNA methylation regulators in cervical cancer.

Materials and methods
Data
Data were downloaded from the TCGA GDC website 
(https://​portal.​gdc.​cancer.​gov/), and the cervical squa-
mous carcinoma and adenocarcinoma (cervical squa-
mous cell carcinoma and endocervical adenocarcinoma, 
CESC) expression profile data (FPKM results) of gene 
expression sequencing in patients were obtained. The 

FPKM values were converted into the TPM values as 
follows:

Clinical data of corresponding patients, including 
age, TNM stage, and survival prognosis, were down-
loaded. After excluding patients with CESC with miss-
ing clinical information, data regarding 279 tumor 
tissues and three paracancer tissues were obtained. 
The copy number variation (CNV) of somatic cells of 
patients with CESC was downloaded. RCircos pack-
age was used to map the gene CNV in 23 pairs of chro-
mosomes [21]. “Masked mutation” was selected as the 
somatic mutation data, and R’s MAfTools package was 
used to visualize somatic mutations. The tumor muta-
tion burden (TMB) of each patient was obtained [22]. 
The sequencing results of 19 cervical tissues were 
downloaded from the GTEx database and converted 
into TPM values.

In addition, gene expression data of the GSE52903 
chip, clinicopathological features, and prognostic infor-
mation of patients were downloaded from samples in the 
GEO database, including 55 tumor tissue and 17 normal 
cervical tissue samples [23]. Among them, all chip data 
samples were from Homo Sapiens, and the platform was 
mainly based on the GPL6244 [Hugene-1_0-ST] Affym-
etrix Human Gene 1.0 ST Array [Transcript (Gene) ver-
sion]. Next, TCGA data, GTEx data, and GEO chip data 
were combined, and the limma and sva packages of R 
were used for homogenization and batch removal [24, 
25]. The total process is composed of two steps. The first 
is data consolidation; only common genes and corre-
sponding expression values are retained in the three data 
sets. The second step involves removing the batch effects. 
The first step adopts the merge function in R to merge 
the three data sets. The second step uses the combat 
function in the SVA package to remove the batches. The 
demographic and clinical characteristics of the cervical 
cancer patients are shown in Additional file 1 materials.

Risk model construction based on m6A‑related genes
To analyze the expression of m6A-related genes in cer-
vical cancer, we first analyzed the differential expres-
sion of m6A-related genes in cervical cancer and 
normal tissues, the correlation of gene expression, and 
its impact on the prognosis of patients with CESC. Sub-
sequently, expression data of patients with CESC were 
pooled using TCGA-CESC and GEO data. m6A-related 
genes were included in the model, and the least abso-
lute shrinkage and selection operator (LASSO) algo-
rithm was used to analyze the dimension reduction and 

TPMi =

(

FPKMi
∑

jFPKMj

)
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obtain characteristic genes associated with prognosis. 
A risk score formula was established using the penalty 
coefficient weighted normalized gene expression values 
obtained by LASSO Cox analysis. The patients were 
divided into high- and low-risk groups based on the 
median risk score.

Gene set enrichment analysis (GSEA)
Gene Ontology (GO) analysis is a common method for 
large-scale functional enrichment studies that includes 
three categories: biological process (BP), molecular 
function (MF), and cellular component (CC). KEGG is 
a widely used database that stores information regard-
ing genomes, biological pathways, diseases, and drugs. 
R’s clusterProfiler package was used for GO annotation 
analysis and KEGG pathway enrichment analysis of sig-
nature genes. A value of FDR < 0.05 was considered sta-
tistically significant [26].

To study the differences in BPs between different 
subgroups, we performed GSEA based on the gene 
expression profile dataset of patients with CESC. GSEA 
is a computational method to analyze whether a spe-
cific gene set has statistically significant differences 
between two biological states and is usually used to 
estimate changes in pathways and BP activity among 
samples [27]. The “h.all.v7.2.symbols.gmt” gene set was 
downloaded from MSigDB for GSEA analysis [27]. An 
adjusted P-value of less than 0.05 was considered statis-
tically significant.

Assessment of patients’ biological characteristics 
between risk groups
We further analyzed the correlation between differ-
ent subgroups and some biologically related processes 
using the GSVA method [27]. Mariathasan et  al. con-
structed a gene set for storing genes related to some 
BPs, including (1) immune checkpoint; (2) antigen 
processing; (3) characteristics of CD8+ T cells; (4) epi-
thelial-mesenchymal transformation (EMT) markers, 
including EMT1, EMT2, and EMT3; (5) angiogenesis; 
(7) characteristics of TGF-β response in pan-FTBRs; 
(8) WNT characteristics; (9) DNA damage repair; (10) 
mismatch repair; (11) nucleotide excision repair; (12) 
DNA replication; and (13) antigen handling and pres-
entation [28–30]. Gene sets corresponding to different 
biological characteristics were downloaded to calculate 
the corresponding enrichment scores of patients and to 
compare the differences between two groups.

riskScore =
∑

i

Coefficient
(

hubgenei
)

∗mRNAExpression(hubgenei)

Analysis of m.6A‑related differentially expressed genes 
(DEGs)
To identify genes associated with the m6A risk model, 
THE limma package of R was used to analyze DEGs 
between high and low subgroups in patients with CESC, 
and the DEGs with significant differences were defined as 

genes with absolute log (Fold change) > 0.5 and FDR < 0.05 
[24]. Hierarchical clustering was used to divide the 
tumors into different gene groups based on the Euclidean 
distance of differential gene expression and named them 
Geneclusters A, B, and C. Among them, R’s Consensus-
ClusterPlus package was used to determine the number 
of clusters in the dataset and was repeated 1000 times 
to ensure the stability of classification [31]. Meanwhile, 
based on the expression changes of specific genes, they 
were divided into signature-A and -B gene groups.

Calculation of dimensionality reduction and m6A score
First, unsupervised clustering was used to classify TCGA 
data of patients according to DEG values. m6A signature-
A and -B gene groups were reduced in dimension accord-
ing to the Boruta algorithm. The principal component 
PC1 was extracted by the principal component analy-
sis (PCA) algorithm as the A score. Finally, we applied 
a method similar to the gene expression grade index to 
define each patient’s immune checkpoint inhibitor (ICI) 
score:

Identification and correlation analysis of tumor immune 
infiltrating cells
To further quantify the proportion of different immune 
cells in CESC samples, the CIBERSORT algorithm, and 
LM22 gene set were used to investigate the phenotypes 
of 22 human immune cells (including B cells, T cells, 
and natural killer cells) in the tumor microenvironment 
(TME) [32]. Macrophages are highly sensitive and spe-
cific. CIBERSORT is a deconvolution algorithm that 
uses a set of reference gene expression values (with 547 
characteristic genes) considered to be the minimum rep-
resentative of each cell type. Based on these values, the 
proportion of cell types can be inferred in data from a 
large tumor sample with mixed cell types.

At the same time, R’s ESTIMATE package was used 
to assess tumor immune activity [33]. ESTIMATE an 

m6Ascore =
∑

i

PC1A−

∑

i

PC1B
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immune score for each tumor sample obtained by quan-
tifying the immune activity (level of immune invasion) in 
the tumor sample based on its gene expression profile. 
Then, differences in the characteristics of immune infil-
tration in patients with CESC between the high- and low-
risk groups were obtained.

Analysis of CNV
To analyze the changes in the copy number in differ-
ent risk score groups of TCGA-patients with CESC, the 
TCGAbiolinks package of R was used to download the 
masked copy number segment data of patients. GISTIC 
2.0 analysis of the downloaded CNV fragments was per-
formed by GenePattern5. During analysis, except for a 
few parameters (e.g., the confidence is 0.99; Excluding 
X chromosomes prior to analysis), GISTIC 2.0 analysis 
was used with the default settings. Finally, R’s MAfTools 
package was used to visually display the results of the 
GISTIC 2.0 analysis.

Sensitivity analysis of anticancer drugs
Genomics of Drug Sensitivity in Cancer (GDSC; https://​
www.​cance​rrxge​ne.​org/), which is used for molecular 
cancer therapy and mutation, was used to explore pub-
lic databases [34]. R’s pRRophetic package was used to 
download cell line gene mutation data and IC50 values 
of different anticancer drugs to analyze the correlation 
between patients with high- and low-risk scores and sen-
sitivity to different anticancer drugs [35].

Building a clinical prediction model based on the m6A risk 
model
To prove that the risk score combined with the clinico-
pathological features can help in the personalized assess-
ment of patient prognosis, univariate and multivariate 
Cox analyses were conducted to analyze the ability of the 
risk score combined with clinicopathological features to 
predict the overall survival (OS). Then, a nomogram was 
constructed by incorporating the risk scoring model and 
clinicopathological features into the model. To quantify 
the differentiated performance, Harrell’s Consistency 
index (C-index) was measured. A calibration curve was 
generated to evaluate the performance of the rosette by 
comparing the predicted values of the rosette with the 
actual observed survival rates.

Human tissue samples
Ten cervical cancer tissues and ten normal cervical tis-
sues were obtained from patients with cervical cancer 
who underwent ovariectomy prior to chemotherapy 
and radiotherapy. The resected cervical cancer tissues 
and normal tissues were immediately stored at − 80  °C 
for further study. All patients signed informed consent 

forms. This study was performed in accordance with the 
Helsinki Declaration and approved by the ethics com-
mittee of the Second Affiliated Hospital of Zhengzhou 
University.

Cell lines and culture conditions
The human cervical cancer cell lines HeLa and SiHa 
were purchased from Procell Life Science & Technology 
Co., Ltd. (Wuhan, P.R. China). To prepare the complete 
growth medium, the cell culture media were supple-
mented with fetal bovine serum (Gibco, Grand Island, 
USA) at a final concentration of 10%.

RNA extraction
Total RNAs of human cells were extracted using the 
Trizol reagent (Invitrogen, Carlsbad, CA, USA) accord-
ing to the manufacturer’s instructions and treated with 
RQ1 DNase (Promega, Madison, WI, USA) to remove 
DNA. The quality and quantity of purified RNA were 
determined by measuring the absorbance at 260 nm and 
280 nm (A260 and A280, respectively) using a SmartSpec 
Plus Spectrophotometer (Bio-Rad Laboratories, Inc., 
Hercules, CA, USA). RNA integrity was further veri-
fied by electrophoresis using a 1.5% agarose gel. All RNA 
samples were stored at -80 °C for future analysis. Reverse 
transcription reactions were carried out using the Rever-
Tra Ace qPCR RT Kit (TOYOBO Life Science, Shanghai, 
P.R. China), according to the manufacturer’s instructions.

Quantitative real‑time PCR (qRT‑PCR)
Expression levels of the ZC3H13 gene were detected by 
qRT-PCR. The human (species) ACTB gene was used as 
a control. Specific primers were designed based on cDNA 
sequences. Primer sequences of ZC3H13 were as fol-
lows: 5′- ACA​TTC​ATT​AGG​CTC​TGG​TGC -3′ forward), 
5′—TTC​TCC​TCA​TCC​TGT​TGG​TCC—3′ (reverse). 
qRT-PCR was performed on a Bio-Rad S1000 with Bestar 
SYBR GreenRT-PCR Master Mix (TOYOBO). PCR 
conditions consisted of denaturing at 95  °C for 1  min, 
and 40 cycles of denaturing at 95  °C for 15  s followed 
by annealing and extension at 60  °C for 30  s. The rela-
tive gene expression was calculated using the Livak and 
Schmittgen 2−ΔΔCt method (Livak and Schmittgen 2001), 
normalized with the reference gene actin. PCR amplifica-
tions were performed in triplicate for each sample.

Immunohistochemical analysis
The tissue slides (4-μm-thick sections) were initially 
treated for deparaffinization, rehydration, and antigen-
retrieval using 3% H2O2. The sections were incubated 
with anti-ZC3H13 (Bioss, P.R. China) and then with 
horseradish peroxidase (HRP)-labeled IgG second-
ary antibodies (Beyotime Institute of Biotechnology, 

https://www.cancerrxgene.org/
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Shanghai, P.R. China). Fields from each slide were exam-
ined and photographed using a light microscope (Olym-
pus, Japan).

Western blot analysis
Cells were lysed in a radioimmunoprecipitation assay 
buffer containing 1  nM phenylmethanesulfonyl fluo-
ride, and protein concentrations were determined using 
a bicinchoninic acid (BCA) protein assay kit (Biosharp, 
Guangzhou, China) according to the manufacturer’s 
instructions. Protein samples (40 μg) of each group were 
boiled with 6 × sodium dodecyl sulfate loading buffer 
for 10 min before electrophoresis on 12% sodium dode-
cyl sulfate–polyacrylamide gel electrophoresis gels. The 
resolved proteins were electrotransferred onto polyvi-
nylidene difluoride membranes (Millipore, Billerica, MA, 
USA) in a transferring buffer (25 mM Tris, 0.2 M glycine, 
and 25% methanol). After blocking with 5% skimmed 
milk, the membranes were incubated with anti-ZC3H13 
(Bioss, P.R. China) and anti-β-actin antibodies (Bioss, P.R. 
China), followed by incubation with appropriate HRP-
conjugated secondary antibodies (Abcam, England).

Cell transfection
ZC3H13-siRNA (5′-GAA​GAC​AUC​UGC​AGU​AUC​U-3′, 
antisense 5′-AGA​UAC​UGC​AGA​UGU​CUU​C-3′) was 
synthesized by GeneCreate Bioengineering Co., Ltd. 
Gene Create (Wuhan, P.R. China). According to the man-
ufacturer’s instructions, Lipofectamine 2000 (Invitrogen, 
USA) was used for transfecting siRNAs into HeLa and 
SiHa cells.

CCK8 assay
Cells were digested with trypsin and inoculated into 
96-well plates. The culture plate was placed in a 5% CO2 
incubator for 0, 24, and 48  h at 37℃. Next, rapamycin 
(GlpBio, USA) and/or FBS (Gibco, USA) were added. 
Then, the CCK-8 (Solarbio, Beijing, China) solution was 
added, and the samples were incubated for 0.5  h. The 
absorbance of each well was measured at 450 nm.

Transwell chamber assay
The cell invasion ability was evaluated using Transwell 
chambers precoated with Matrigel. A total of 1 × 104 cells 
were inoculated into the top chamber and incubated at 
37 °C with 5% CO2 for 48 h. After cells on top of the fil-
ter were removed, cells on the bottom of the filter were 
fixed in 4% paraformaldehyde and stained with 1% crys-
tal violet (Beyotime, P.R. China). The invading cells were 
counted under a microscope.

Wound‑healing assay
Approximately 5 × 105 HeLa cells were seeded in 6-well 
plates. The cells were washed with PBS three times, and 
fresh medium was added. Cells were cultured in a 37 ℃ 
5% CO2 incubator, photographed, and recorded under 
the microscope at 0, 24, and 48 h.

m6A ELISA
The total RNA extracted was detected by EpiQuik ™ m6A 
RNA Methylation Quantification Kit (Epigentek, USA), 
following the manufacturer’s instructions.

Statistical analysis
All data processing and analysis were completed in R 
(version 3.6.2). To compare two groups of continuous 
variables, the statistical significance of the normally dis-
tributed variables was estimated using the independent 
student’s t-test, and the differences between non-nor-
mally distributed variables were analyzed using the 
Mann–Whitney U test (i.e., Wilcoxon rank-sum test). 
The Chi-square test or Fisher’s exact test was used to 
compare and analyze the statistical significance between 
two groups of categorical variables. The correlation coef-
ficients of different genes were calculated using Pearson 
correlation analysis. R’s survival package was used for 
survival analysis, the Kaplan–Meier survival curve was 
used to highlight the survival difference, and the log-rank 
test was used to evaluate the significance of the survival 
time difference between two groups [36]. R’s pROC pack-
age was used to plot the receiver operating characteris-
tic (ROC) curve and calculate the area under the curve 
(AUC) to assess the accuracy of the risk score in estimat-
ing prognosis. Univariate and multivariate Cox analyses 
were used to determine independent prognostic factors 
[37]. All statistical P-values were bilateral, and P < 0.05 
was considered statistically significant.

Results
A flow chart of the study is shown in Fig. 1A.

Expression and mutation profile of m6A‑related genes 
in patients with CESC
To analyze the overall expression of m6A-related genes 
in patients with CESC, we analyzed the genomic muta-
tions and mRNA expression, including single nucleotide 
polymorphism, CNV, and gene expression level. SNP 
analysis showed that 37 of 289 samples had single nucleo-
tide mutations in m6A-related genes (Fig. 1B). Moreover, 
studies on the change frequency of CNV showed that the 
changes of m6A-related genes in CNV levels were wide-
spread in patients with CESC, and most were focused on 
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the loss of copy number. Fig.  1C and D show the posi-
tion and frequency of CNV changes on chromosomes, 
respectively.

Next, we comprehensively analyzed the expression of 
m6A-related genes in cervical cancer and cervical tissue 
in the TCGA database, GTEx database, and GSE52903 
dataset, and batch effects were removed. PCA results 
showed significant differences in overall expression levels 
between tumor samples and normal tissues after batch 
removal (Fig. 1E). We focused on m6A-related genes and 
compared the differences of m6A-related genes between 
the two groups by the Wilcoxon rank-sum test. Differ-
ential analysis results showed that many m6A-related 
genes were differentially expressed between cervical 
cancer tissues and normal tissues, including METTL14, 
METTL16, ZC3H13, YTHDC1, and YTHDC2 (Fig. 1F). 
After further correlation analysis, a heat map was con-
structed, which showed the correlation of m6A-related 
gene expression. Most genes showed a positive correla-
tion in CESC tissues (Fig. 1G).

We further selected and analyzed the influence of 
m6A-related genes on the prognosis of patients with 
CESC based on the TCGA and GEO databases. The 
gene network depicted a comprehensive picture of 
m6A-related gene interactions, source grouping, and 
their impact on OS in patients with CESC (Fig. 2A).

Subsequently, we constructed a risk scoring system 
based on the expression of m6A-related genes to quan-
titatively evaluate the impact of m6A-related genes 
on the prognosis of each patient with CESC. First, 20 
m6A-related genes were included in the LASSO Cox 
analysis, and 12 genes with the best prognostic value 
were selected and identified (Fig. 2B, C). Simultaneously, 
based on the penalty coefficient of important charac-
teristic genes calculated by LASSO Cox analysis, the 
gene expression was multiplied and added to the corre-
sponding coefficient to establish the risk score, and the 
final risk score of each sample was calculated. The sig-
nificance of the LASSO Cox analysis here was to elimi-
nate the multicollinearity between genes (resulting from 
the use of LASSO), and ultimately, to ensure that the 
genes included in the multivariate Cox regression are 

independent. The distribution of risk score, survival sta-
tus, and expression patterns of characteristic genes were 
shown in Fig. 2D. Kaplan–Meier analysis showed that the 
OS of patients with high-risk scores was relatively poor 
(log-rank P < 0.001; Fig.  2E). The time-dependent ROC 
analysis of the risk score showed that the risk score had a 
good predictive ability for the OS of patients with CESC, 
and the AUC of 1-, 3-, and 5-year OS were 0.734 (0.642–
0.825), 0.702 (0.648–0.797), and 0.723 (0.665–0.829), 
respectively (Fig. 2F).

Influence of m6A risk score on the biological function 
of patients with CESC
We then divided patients into high- and low-risk groups 
based on the median m6A risk score for patients with 
CESC and assessed the changes in biological function 
between the two groups. To analyze the variation in dif-
ferent pathways in patients with CESC, the enrichment 
scores of patients with CESC were analyzed using the 
GSVA method, and the related signaling pathways with 
significant differential expression in the high- and low-
risk patients were shown through heat maps (Fig.  2G). 
In addition, the analysis revealed significant differences 
in the enrichment of related biological pathways, such 
as CD8+ T cell effectors, immune checkpoints, EMT 
pathways, and angiogenesis, between high- and low-risk 
patients (P < 0.05; Fig. 2H).

Construction of genetic characteristics of patients 
with CESC based on the m6A risk model
To determine the underlying biological characteristics of 
different m6A-associated phenotypes, the LIMMA pack-
age was used to analyze differential genes between dif-
ferent risk models in the dataset and yielded 207 DEGs. 
The DEGs are shown in Additional file  2 materials. 
Subsequently, based on the DEGs, patients with CESC 
were divided into three different subtypes named Gene-
clusters A, B, and C (Fig.  3A) using unsupervised clus-
tering. According to the expression and correlation of 
DEGs between different groups, genes were divided into 
m6A signature gene-A and B groups. At the same time, 

(See figure on next page.)
Fig. 1  Overall expression of m6A-related genes in patients with CESC. A Workflow of the study. B Mutation map of m6A-related genes in 
TCGA-patients with CESC. Samples were sequenced according to the burden of nonsynonymous mutations in somatic cells, and genes were 
sequenced according to the mutation frequency. Different colors indicate different mutation types. The section above the legend shows the 
mutation load; C CNV differential changes and locations of m6A-related genes on 23 chromosomes of patients with TCGA-CESC; D change 
frequency of CNV level of m6A-related genes, where red represents CNV level amplification and green represents CNV level deletion; E PCA showed 
differences between cervical and normal cervical tissues before and after combination and batch effect removal in TCGA, GTEx, and GEO datasets. 
The left panel shows the result before batch effect removal, and the right shows the result after batch effect removal. F Differentially expressed 
m6A-related genes in cervical cancer and normal cervical tissue; G expression correlation analysis of m6A-related genes in CESC
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Fig. 1  (See legend on previous page.)
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survival analysis results showed significant differences in 
the prognosis of patients with three different gene sub-
types. Patients in Genecluster A had the worst prognosis 
(log-rank P < 0.001; Fig. 3B).

DEGs were divided into two groups, m6A signature-
A and m6A signature-B, according to the correlation 
of gene expression. m6A signature-A gene set had 101 
DEGs, and m6A signature-B gene set included 106 DEGs. 
To explore differences in biological functions between 
the two groups of genes, functional enrichment analysis 
was performed (Tables 1 and 2). GO and KEGG enrich-
ment analysis showed that signature-A and -B gene 
sets showed different unique BPs. Signature-A gene set 
involved leukotriene catabolic processes, leukotriene 
B4 catabolic processes, leukotriene B4 metabolic pro-
cesses, glycosphingolipid biosynthesis-lacto and neolacto 
series, nicotine addiction, and other pathways (Fig.  3C, 
D). In contrast, the gene set of overexpressed signature 
gene-B mainly showed heat generation, positive regula-
tion of angiogenesis, positive regulation of vasculature 
development, AGE-RAGE signaling pathway in diabetic 
complications, pertussis, cellular senescence, and other 
pathways (Fig. 3E, F). The pathways are shown in Addi-
tional file 3 materials. 

Construction of prognostic m6A feature model based 
on m6A signature gene
To better predict the impact of m6A characteristics on 
patient prognosis, we constructed a new prognostic-
related risk scoring system. According to the expres-
sion of m6A Signature-A and -B gene sets in patients 
with CESC, the corresponding PCA1 of m6A signature-
A and -B gene sets in each patient was calculated by 
PCA, and the corresponding m6A score of each patient 

was obtained by subtraction, which was named the m6A 
group. Similarly, patients were divided into high- and 
low-risk groups based on the median prognostic model 
scores. The Sankey diagram showed the corresponding 
gene group (Geneclusters A, B, and C) of each patient 
with CESC, the prognosis model m6A group, and the 
corresponding relationship among the survival statuses 
of patients (Fig.  3G). Simultaneously, survival analysis 
showed that the prognostic score model could accurately 
predict the OS of patients with CESC (log-rank P < 0.001; 
Fig. 3H).

Subsequently, we analyzed the effect of the high- and 
low-risk m6A group on patients’ biology-related func-
tions. GSEA showed that epithelial-mesenchymal tran-
sition, angiogenesis, Myc target V1, and other pathways 
were mainly enriched in the high-risk group (Fig.  3I), 
whereas bile acid metabolism, KRAS signaling DN, estro-
gen response late, and other pathways were significantly 
enriched in low-risk patients (Fig. 3J) (Table 3).

Influence of m6A risk score on immune characteristics 
of patients with CESC
Next, we assessed the impact of the m6A risk score on 
the overall immune characteristics and different levels 
of immune cell infiltration in patients with CESC. The 
immune score was significantly lower in the high-risk 
group than in the low-risk group (P = 0.025, Fig.  4A), 
whereas the stromal score was not significantly different 
(P = 0.64, Fig.  4B). Meanwhile, the CIBERSORT algo-
rithm was further used to evaluate the invasion levels of 
22 different immune cells (Fig. 4C). The difference analy-
sis showed that the infiltration levels of various immune 
cell subsets differed significantly between the high- and 
low-risk groups (Fig. 4D), including T cells CD8, T cells, 
CD4 memory activated T cells, follicular helper cells, and 
M1 macrophages.

Fig. 2  Construction of m6A risk scoring model and influence of m6A risk model on different biological characteristics. A Expression and interaction 
of m6A-related genes in patients with CESC. The size of each cell represents the impact of each gene on patient survival, which was analyzed 
using the logarithmic rank test. The color of one half of the circles represents the m6A-related gene group, and the other half represents the effect 
on prognosis. The m6A-related genes were grouped as erasers (red), readers (orange), and writers (gray). Meanwhile, in terms of the impact on 
prognosis, purple represents risk factors, and green represents protective factors. The lines connecting the m6A-related genes represent interactions 
between genes. The thickness of the line represents the correlation intensity estimated by the Spearman correlation analysis. The positive 
correlation is represented by red, and the negative correlation is represented by blue. B, C LASSO Cox analysis identified 12 genes most associated 
with TCGA data set OS. D Distribution of risk scores for patients with CESC, patient survival, and heat maps of characteristic gene expression; E 
Kaplan–Meier curve analysis to assess the effect of risk score on overall survival in patients with CESC; F ROC curve analysis of time dependence 
of risk score. G GSVA analysis of patients in the high- and low-risk subgroups based on gene expression data of patients with CESC. Heat maps 
were used to demonstrate the relevant pathways with significant differential enrichment. H Enrichment of different pathway characteristics 
(immune-related characteristics, mismatch-related characteristics, and matrix-related characteristics) in the high- and low-risk score subgroups, 
where thick lines represent the median. The bottom and top of the box are the 25th and 75th percentiles (interquartile spacing) (*P < 0.05, 
**P < 0.01, ***P < 0.001)

(See figure on next page.)
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Influence of m6A risk score on genomic changes in patients 
with CESC
Subsequently, we further assessed the impact of the 
m6A risk score on changes in levels of genetic varia-
tion in patients with CESC, including single nucleotide 
polymorphism and CNV. Analysis of single nucleo-
tide mutations in driver genes during common tumo-
rigenesis revealed that SNP levels in different driver 
genes were different between the high- and low-risk 
subgroups (Fig.  5A). Simultaneously, the overall level 
analysis showed that the TMB (P = 0.035, Fig.  5B) 
and tumor neoantigen levels (P = 0.0079, Fig. 5C) sig-
nificantly differed between the high- and low-risk 
groups. Moreover, studies on the change frequency of 
CNV showed that CNV changes in high-risk patients 
were mainly focused on gene amplification (Fig.  5D), 
whereas in low-risk patients, CNV changes were 
mainly manifested as gene copy number deletion 
(Fig. 5E).

Sensitivity analysis of patients with CESC to different small 
molecule drugs based on m6A risk score
To analyze the sensitivity of the m6A risk score to dif-
ferent drugs and small molecule substances in patients, 
we downloaded the cell line gene mutation data and 
IC50 values of different anticancer drugs from the GDSC 
database. IC50 values for patients with CESC were pre-
dicted based on the reactivity of cell lines to 138 dif-
ferent chemotherapeutic agents and small molecule 
anticancer agents. The results showed that the IC50 val-
ues of multiple chemotherapeutic agents and small mol-
ecule anticancer agents significantly differed between 
patients with high and low m6A risk scores (P < 0.001; 
Fig.  6), especially, KIN001.135, Akt.inhibitor.viii, and 
rapamycin.

Construction of the clinical prediction model based 
on m6A risk score
Subsequently, we assessed the impact of the m6A risk score 
on the outcome of patients with CESC. Univariate and mul-
tivariate Cox analysis showed that the m6A risk score was 
an independent risk factor for predicting the prognosis of 
patients with CESC (Fig.  7A). Subsequently, the m6A risk 
score was combined with different clinicopathological fea-
tures to construct a predictive rosette to predict the OS 
of patients with CESC (Fig. 7B). The C-index was used to 
calculate the distinguishing ability of the lipogram, which 
showed a high degree of differentiation [0.736 (0.680–
0.792)]. Moreover, the calibration curves showed a good 
agreement between the 1-, 3-, and 5-year OS estimates from 
the rosettes and the actual patient observations (Fig. 7C).

ZC3H13 expression in tissues
We used qPCR to study ZC3H13 expression in ten nor-
mal cervical tissues and ten cervical cancer tissues and 
found that ZC3H13 was significantly downregulated 
in cervical cancer tissues (Fig.  8A). The IHC analysis 
showed that ZC3H13 was localized in the nucleus and 
had a low expression in cervical cancer tissues (Fig. 8B). 
We performed gray level difference analysis of IHC 
results using the Image-Pro Plus software. The results 
showed that the mean integral optical density (IOD) 
of ZC3H13 in normal cervical tissues was significantly 
higher than that of ZC3H13 in cervical cancer tissues. 
The WB analysis also demonstrated the low expression 
of ZC3H13 in cervical cancer tissues (Fig. 8C).

Function of ZC3H13 in cervical cancer and effects 
of rapamycin on cell phenotypes
The CCK8 assay showed that the proliferation of 
HeLa and SiHa cells was significantly enhanced after 

(See figure on next page.)
Fig. 3  Construction and functional annotation of the m6A gene characteristic model, construction of prognostic m6A feature model, and 
regulation of BPs in patients with CESC. A Based on the expression characteristics of DEGs between high and low m6A risk scores, unsupervised 
analysis and hierarchical clustering were performed to classify patients into three categories: Geneclusters A, B, and C, and DEGs were divided into 
signature -A and -B gene sets according to their expression changes. B Survival analysis showed significant differences in prognosis among the 
different Genecluster groups, and Genecluster A had the worst prognosis. C GO analysis showed that signature gene-A was involved in leukotriene 
catabolic processes, leukotriene B4 catabolic processes, and leukotriene B4 metabolic processes. D KEGG analysis showed that the signature-A gene 
set is closely related to glycosphingolipid biosynthesis-lacto and neolacto series, nicotine addiction, and other pathways. E GO analysis showed that 
the signature-B gene set was involved in heat generation, positive regulation of angiogenesis, and positive regulation of vasculature development. 
F KEGG enrichment analysis showed that signature-B and age-range signaling pathways in diabetic complications, pertussis, cellular senescence, 
and other pathways are closely related. G Sankey plots show correlations between the different gene clusters (Geneclusters A, B, and C, prognostic 
m6A traits (m6A group), and patient prognostic status (OS). H Survival analysis showed that the prognostic m6A feature model could better predict 
the OS of patients with CESC (log-rank P < 0.001). I, J GSEA for high- and low-risk patients. A signature gene set was downloaded from the MSigDB 
database, with 1,000 replicates per run. Epithelial-mesenchymal transition, angiogenesis, and Myc targets V1 were mainly enriched in high-risk 
groups, while bile acid metabolism, KRAS signaling DN, estrogen response late, and other pathways were significantly enriched in low-risk patients
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the ZC3H13 knockdown (Fig.  8D). Further, the CCK8 
assay showed a significant reduction in the prolif-
eration of HeLa and SiHa cells after rapamycin treat-
ment (Fig.  8E). The wound-healing assay showed that 
ZC3H13 knockdown significantly enhanced the inva-
sion ability of HeLa and SiHa cells (Fig. 8F). Transwell 
experiments showed that ZC3H13 knockdown signifi-
cantly enhanced the cell migration ability (Fig. 8G). The 

wound-healing assay showed a significant reduction 
in the invasion abilities of HeLa and SiHa cells after 
rapamycin treatment (Fig.  8F). The Transwell assay 
showed a significant reduction in the migration abili-
ties of HeLa and SiHa cells after rapamycin treatment 
(Fig. 8G). The m6A ELISA showed that the m6A levels 
decreased significantly after the ZC3H13 knockdown 
(Fig. 8H) and that the m6A levels increased significantly 

Table 1  GO analysis of m6A signature genes

ONTOLOGY ID Description Count P value Gene

m6A Signature gene-A

BP GO:0036100 leukotriene catabolic process 2 5.09E− 05 CYP4F12/CYP4F3

BP GO:0036101 leukotriene B4 catabolic process 2 5.09E− 05 CYP4F12/CYP4F3

BP GO:0036102 leukotriene B4 metabolic process 2 5.09E− 05 CYP4F12/CYP4F3

CC GO:0016324 apical plasma membrane 7 3.52E− 05 CEACAM5/CEACAM6/MUC20/CEACAM7/
CYP4F12/SCNN1B/DUOX1

CC GO:0045177 apical part of cell 7 0.000115 CEACAM5/CEACAM6/MUC20/CEACAM7/
CYP4F12/SCNN1B/DUOX1

CC GO:1902711 GABA-A receptor complex 2 0.00136 GABRP/GABRE

MF GO:0070330 aromatase activity 3 1.01E− 05 CYP4X1/CYP4F12/CYP4B1

MF GO:0050051 leukotriene-B4 20-monooxygenase activity 2 5.67E− 05 CYP4F12/CYP4F3

MF GO:0020037 heme binding 5 6.14E− 05 CYP4X1/CYP4F12/CYP4F3/DUOX1/CYP4B1

m6A Signature gene-B

BP GO:0031649 heat generation 3 9.92E− 06 APLN/IL1B/IL1A

BP GO:0045766 positive regulation of angiogenesis 6 1.17E− 05 CXCL8/DLL1/ANGPTL4/IL1B/ITGA5/IL1A

BP GO:1904018 positive regulation of vasculature development 6 2.31E− 05 CXCL8/DLL1/ANGPTL4/IL1B/ITGA5/IL1A

MF GO:0005342 organic acid transmembrane transporter activity 4 0.000661 SLC19A1/SLC6A11/SLC7A5/SLC16A1

MF GO:0046943 carboxylic acid transmembrane transporter activ-
ity

4 0.000661 SLC19A1/SLC6A11/SLC7A5/SLC16A1

MF GO:0005149 interleukin-1 receptor binding 2 0.000775 IL1B/IL1A

Table 2  KEGG analysis of m6A signature genes

ID Description Count P value Gene

m6A Signature gene-A
hsa00601 Glycosphingolipid biosynthesis—lacto and neolacto series 2 0.00259 FUT2/FUT6

hsa05033 Nicotine addiction 2 0.005628 GABRP/ GABRE

hsa04080 Neuroactive ligand-receptor interaction 4 0.014459 GABRP/NPW/NMU/GABRE

hsa04727 GABAergic synapse 2 0.025976 GABRP/GABRE

hsa05032 Morphine addiction 2 0.02707 GABRP/GABRE

m6A Signature gene-B
hsa04933 AGE-RAGE signaling pathway in diabetic complications 5 3.41E-05 CXCL8/CCND1/COL4A6/IL1B/ IL1A

hsa05133 Pertussis 4 0.000185 CXCL8/IL1B/ITGA5/IL1A

hsa04218 Cellular senescence 5 0.000281 CXCL8/CCND1/CCND2/MYC/IL1A

hsa05323 Rheumatoid arthritis 4 0.000403 CXCL2/CXCL8/IL1B/IL1A

hsa05219 Bladder cancer 3 0.00049 CXCL8/CCND1/MYC
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Fig. 4  Association between m6A risk score and different immune cell infiltration. A Compared with the low expression group, the immune score 
was significantly lower in the high-risk group (P = 0.025). B There was no significant change in the stromal score in the high-risk group compared 
with that in the low-risk expression group (P = 0.64). C The CIBERSORT algorithm was used to analyze the overall level of immune cell infiltration 
in patients with CESC. D Correlation analysis showed significant differences in the expression of multiple immune cell subtypes between the 
high- and low-risk groups

Table 3  GSEA analysis results

Name Size Enrichment
Score

NES P value Leading
edge

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 193 0.690003 3.006838 2.12E− 33 tags = 56%, list = 10%, signal = 51%

HALLMARK_ANGIOGENESIS 34 0.773029 2.613681 3.62E− 09 tags = 44%, list = 5%, signal = 42%

HALLMARK_MYC_TARGETS_V1 187 0.535557 2.344755 8.78E− 16 tags = 48%, list = 19%, signal = 39%

HALLMARK_MYC_TARGETS_V2 54 0.60481 2.295545 1.48E− 06 tags = 59%, list = 16%, signal = 50%

HALLMARK_ESTROGEN_RESPONSE_EARLY 187 -0.4833 − 1.50217 0.000929 tags = 33%, list = 12%, signal = 29%

HALLMARK_ESTROGEN_RESPONSE_LATE 188 -0.49748 − 1.54745 0.000127 tags = 43%, list = 16%, signal = 36%

HALLMARK_KRAS_SIGNALING_DN 191 -0.51553 − 1.60538 1.91E− 05 tags = 29%, list = 15%, signal = 25%

HALLMARK_BILE_ACID_METABOLISM 111 -0.53704 − 1.61638 0.000452 tags = 41%, list = 21%, signal = 32%
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in both HeLa and SiHa cells after rapamycin treatment 
(Fig. 8I).

Discussion
As one of the most common RNA modifications, m6A 
mRNA methylation is closely associated with cervical 
cancer. m6A mRNA methylation might promote cer-
vical cancer development. The m6A level was signifi-
cantly reduced in cervical cancer compared to adjacent 

normal tissue. The reduction in m6A levels significantly 
correlated with the FIGO stage, tumor size, differentia-
tion, lymph invasion, and cancer recurrence [38]. m6A 
methyltransferase methyltransferase-like 3 (METTL3) 
enhanced the stability of FOXD2-AS1, and its expres-
sion was maintained. METTL3/FOXD2-AS1 acceler-
ated cervical cancer progression via an m6A-dependent 
modality [39]. METTL3 enhanced the HK2 stability 
through YTHDF1-mediated m6A modification, thereby 

Fig. 5  Influence of different m6A risk groups on genetic variation of patients with CESC. A Mutation profiles of common tumorigenesis drivers in 
the high- and low-risk patient groups. In the waterfall diagram, mutation information of each gene in each sample is displayed, and various colors 
indicate different mutation types. The section above the legend shows the mutation load. B The tumor mutation levels were significantly reduced 
in high-risk patients compared with those in low-risk patients (P = 0.035). C Tumor neoantigen levels were significantly lower in high-risk patients 
than in low-risk patients (P = 0.0079). D, E Changes in gene copy number levels in the high- and low-risk groups, where red represents genes with 
significantly increased copy numbers and blue represents genes with significantly missing copy numbers
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promoting the Warburg effect in cervical cancer [40]. 
GAS5-AS1 interacted with the tumor suppressor GAS5 
and increased its stability by interacting with RNA dem-
ethylase ALKBH5 and decreasing GAS5 m6A modifica-
tion. m6A-mediated GAS5 RNA degradation relied on 
the m6A reader protein YTHDF2-dependent pathway 
[41]. FTO can control the m6A modification of E2F1 and 
Myc transcripts to regulate the proliferation and migra-
tion of cervical cancer cells [42]. The FTO-mediated 
stabilization of HOXC13-AS epigenetically upregulated 
FZD6 and activated Wnt/β-catenin signaling, driv-
ing CC proliferation, invasion, and EMT [43]. FTO and 
its substrate m6A may be critical factors for regulating 
chemo-radiotherapy resistance [44]. YTHDF1 regu-
lated the translation of RANBP2, which potentiated the 
growth, migration, and invasion of cervical cancer cells 

in an m6A-dependent manner without any effect on its 
mRNA expression [45]. circARHGAP12 exerted the 
oncogenic role in cervical cancer progression through 
the m6A-dependent IGF2BP2/FOXM1 pathway [46]. 
KCNMB2-AS1 and IGF2BP3 formed a positive regu-
latory circuit that increased the tumorigenic effect of 
KCNMB2-AS1 in cervical cancer [47]. m6A-associated 
downregulation of miR-193b promoted cervical cancer 
aggressiveness by targeting CCND1 [48]. ZFAS1 and its 
m6A modification may be a promising target for cervical 
cancer treatment [49].

According to our study, differential analysis results 
showed differences in the expression of multiple 
m6A-related genes between cervical cancer tissues and 
normal tissues; furthermore, these genes were related 
to prognosis. The established m6A risk scoring system 

Fig. 6  Sensitivity of the m6A risk score to different chemotherapy drugs and small molecule anticancer drugs was analyzed based on the GDSC 
database
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is closely related to the biological function of cervical 
cancer, immune invasion of cervical cancer, and sen-
sitivity to small molecule drugs. The model based on 
the m6A signature genes and the model based on the 
m6A risk score can accurately predict the prognosis 
of patients with cervical cancer. Studies showed that 
m6A was closely related to epithelial–mesenchymal 
transition, angiogenesis, Myc targets V1, KRAS signal 
pathway, and estrogen in the occurrence and develop-
ment of tumors [43, 50–54]. Our results showed that 
epithelial-mesenchymal transition, angiogenesis, Myc 
targets V1, and other pathways are mainly enriched in 

the high-risk groups, while bile acid metabolism, KRAS 
signaling DN, late estrogen response, and other path-
ways are significantly enriched in low-risk patients. The 
results of the present study may help understand the 
relationship between these pathways and m6A, reveal-
ing their mechanism in cervical cancer occurrence and 
development. We also showed that the m6A regulator 
correlates with the survival and clinicopathological 
characteristics of patients with CESC. The m6A regula-
tor-based prognostic signature may predict the progno-
sis of CESC [55].

Fig. 7  Prediction ability of the m6A risk score for patients with CESC. A Multivariate Cox regression analysis of HR and P-values of risk score 
combined with clinicopathological features. Analysis showed that the risk score was an independent risk factor for the prognosis of patients with 
CESC. B m6A risk scores coupled with clinicopathological features were selected to construct a clinical prediction model. C Calibration curve of the 
line diagram. The abscissa is the survival predicted by the line graph, and the ordinate is the actual observed survival, which was repeated 1000 
times. The curve shows that the model has a good prognostic value for patients at 1, 3, and 5 years
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Fig. 8  Expression and function of ZC3H13 in cervical cancer and the effects of rapamycin on cell phenotypes. A The qPCR analyses showed 
that ZC3H13 was significantly downregulated in cervical cancer tissues (P = 0.0019). B The IHC analysis showed that ZC3H13 was localized in the 
nucleus and was expressed at low levels in cervical cancer tissues (× 20) (scale bar: 50 μm). Gray level difference analysis showed that the IOD of 
ZC3H13 in normal cervical tissues was significantly higher than that in cervical cancer tissues. C The WB analysis demonstrated the low expression 
of ZC3H13 in cervical cancer tissues. D The CCK8 assay showed that the proliferation ability of HeLa and SiHa cells was significantly enhanced 
after ZC3H13 knockdown. E The CCK8 assay showed that the proliferation ability of HeLa and SiHa cells was significantly reduced after rapamycin 
treatment. F The wound-healing assay showed that ZC3H13 knockdown significantly enhanced the invasion abilities of the HeLa and SiHa cells. The 
wound-healing assay showed that the invasion ability of HeLa and SiHa cells was significantly reduced after rapamycin treatment. G The Transwell 
experiments showed that ZC3H13 knockdown significantly enhanced the migration abilities of the cells. The Transwell assay showed that the 
migration ability of HeLa and SiHa cells was significantly reduced after rapamycin treatment. H The m6A ELISA analyses showed that the m6A levels 
decreased significantly after the ZC3H13 knockdown. I The m6A ELISA analyses showed that the m6A levels increased significantly in both HeLa and 
SiHa cells after rapamycin treatment. All experiments were repeated at least three times (*P < 0.05, **P < 0.01, ***P < 0.001)
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According to our analysis, the IC50 of multiple chemo-
therapy drugs differed significantly between patients with 
high and low m6A risk scores. Meanwhile, previous stud-
ies have also shown a close relationship between m6A, 
mTOR pathway, and rapamycin. mTORC1 could stimu-
late oncogenic signaling and control anabolic cell growth 
via m6A [56, 57]. m6A has been reported to play a fun-
damental role in the function of the mTOR pathway in 
gastrointestinal cancer [58]. Reductions in the m6A lev-
els increased the expression of mTORC2 in endometrial 
cancer [59]. The FTO protein was reported to partici-
pate in tumorigenesis via interactions with the target of 
the mammalian target protein Rapamycin (mTOR) [60]. 
METTL3 was shown to cause the activation of mTORC1 
signaling and colorectal cancer development in an 
m6A-dependent manner [61]. Rapamycin may regulate 
the m6A levels and affect the biological characteristics 
of OSCC cells [62]. METTL3-high tumors showed more 
sensitivity to everolimus, a rapamycin analog, in gastric 
cancer [63].

Our study showed that knocking down ZC3H13, an 
m6A methyltransferase, can promote the proliferation, 
migration, and invasion abilities of cervical cancer cells 
and reduce the m6A levels. Rapamycin suppresses the 
proliferation, migration, and invasion abilities of cancer 
cells and can enhance the m6A levels, demonstrating the 
role of the m6A methylation modulator in the develop-
ment of cervical cancer and the effectiveness of the drugs 
targeting the modulators of m6A methylation in treating 
cervical cancer.

In conclusion, our study shows that m6A regulatory 
factors are closely related to the occurrence, develop-
ment, immune invasion, drug sensitivity, and prognosis 
of cervical cancer. Drugs targeting the factors regulating 
m6A offer good prospects for treating cervical cancer.
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