
Tahedl et al. Journal of Translational Medicine (2022) 20:488  2022, 20(1):488 
https://doi.org/10.1186/s12967-022-03576-4

RESEARCH

Early remission in multiple sclerosis is linked 
to altered coherence of the Cerebellar Network
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Abstract 

Background  The development of permanent disability in multiple sclerosis (MS) is highly variable among patients, 
and the exact mechanisms that contribute to this disability remain unknown.

Methods  Following the idea that the brain has intrinsic network organization, we investigated changes of func‑
tional networks in MS patients to identify possible links between network reorganization and remission from clini‑
cal episodes in MS. Eighteen relapsing–remitting MS patients (RRMS) in their first clinical manifestation underwent 
resting-state functional MRI and again during remission. We used ten template networks, identified from independ‑
ent component analysis, to compare changes in network coherence for each patient compared to those of 44 
healthy controls from the Human Connectome Project test–retest dataset (two-sample t-test of pre-post differences). 
Combining a binomial test with Monte Carlo procedures, we tested four models of how functional coherence might 
change between the first clinical episode and remission: a network can change its coherence (a) with itself (“one-
with-self”), (b) with another network (“one-with-other”), or (c) with a set of other networks (“one-with-many”), or (d) 
multiple networks can change their coherence with respect to one common network (“many-with-one”).

Results  We found evidence supporting two of these hypotheses: coherence decreased between the Executive Con‑
trol Network and several other networks (“one-with-many” hypothesis), and a set of networks altered their coherence 
with the Cerebellar Network (“many-with-one” hypothesis).

Conclusion  Given the unexpected commonality of the Cerebellar Network’s altered coherence with other networks 
(a finding present in more than 70% of the patients, despite their clinical heterogeneity), we conclude that remission 
in MS may result from learning processes mediated by the Cerebellar Network.

Keywords  Cerebellar Network, Functional connectivity, Independent component analysis, Multiple sclerosis, 
Remission
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Introduction
In multiple sclerosis (MS), the most commonly observed 
disease course is characterized by an alternating pattern 
of new or enhanced neurological symptoms (“relapses”) 
and phases of partial or complete recovery (“remission”). 
These clinical episodes often co-occur with an acute 
inflammatory insult, causing demyelination and neuro-
degeneration to the central nervous system (CNS). Such 
sudden injury is believed to be the source of the symp-
toms, as demyelination hampers signal transmission [1]. 
Consequently, given the network nature of the brain, 
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which relies on complex systemwide communication to 
carry out tasks [2], it is reasonable to assume that any 
interruption of signal transmission results in subopti-
mal task performance, which can present as neurological 
symptoms [3]. Although during remission the inflamma-
tion has subsided, sclerotic, demyelinated plaques remain 
[4]; nevertheless, patients are often completely symptom-
free, especially following early relapses [5]. Therefore, it 
would appear as though the brain employs mechanisms 
beyond lesion repair in order to regain and maintain 
function following lesion occurrence.

Classic work has shown that the brain is able to flex-
ibly reorganize (generally referred to as “neuroplasticity” 
[6, 7]), even in elderly people [8]. Studies using functional 
magnetic resonance imaging (fMRI) have demonstrated 
that the neural correlates underlying specific tasks differ 
between MS patients and healthy controls (HCs), thereby 
suggesting neuroplastic reorganization. For example, 
Pantano and colleagues [9] investigated the neural cor-
relates of hand movements in MS patients with an ipsi- 
as well as a contralateral hemiparesis. This study showed 
that, even in the absence of any clinical manifestation, 
the same task implicates different cortical areas in MS 
patients compared to HCs. Additionally, functional reor-
ganization in MS patients has been observed at clini-
cal recovery after pseudotumoral lesions [10]. Related 
observations have been reported by other similar studies 
[11–13].

One drawback of such task-based fMRI is that its find-
ings can generally only be interpreted within the context 
of specific tasks that probe specific functions. However, 
specific tasks that uncover large-scale changes in network 
organization between a heterogeneous group of MS-
patients and a group of HCs are not known or may not 
exist. Therefore, examining network properties speaks in 
favor of employing resting-state fMRI (rs-fMRI), which 
allows the analysis of network-level activity in the brain in 
an unconstrained manner [14]. Many investigations have 
looked into the reorganization of resting-state networks 
in MS patients, indeed demonstrating some general, fun-
damental differences in this organization compared to 
HCs (e.g. [15, 16], for a review see [17]). However, such 
studies do not address the mechanisms that underlie suc-
cessful or failed remission.

In this study, we recruited MS patients suffering from 
their first clinical manifestation. Our approach sought to 
investigate the changes in functional coherence (a type of 
functional connectivity, [14]) of brain networks between 
the first episode, during which patients exhibited neu-
rological symptoms, and remission (when they were 
symptom-free, on average four weeks after the first scan). 
With this experimental design, we investigated the fol-
lowing questions: although MS is a highly heterogeneous 

disease, is there nevertheless a common brain network 
that changes in all MS patients between a clinical epi-
sode and remission? If so, does this network change with 
respect to itself (1) a one-with-self change), with respect 
to a specific other network (2) a one-with-other change), 
or with respect to a variety of other networks (3) a one-
with-many change)? Furthermore, is there a particular 
region of the brain (or set of regions) to which patients’ 
networks systematically change their coherence (4) a 
many-with-one change)? These hypotheses (Fig.  1) fol-
low the idea of a putative general mechanism driving the 
recovery toward remission [18] but implicate different 
physiological levels with respect to the function of remis-
sion in MS.

Methods
Participants
Patients
For this study, we recruited 18 relapsing–remitting MS 
patients (14 females, 4 males, age (mean + /– standard 
deviation) = 28.33 + /– 9.36 years) in their initial clinical 
episode (diagnosed according to the 2017 revisions of the 
McDonald criteria [19]: dissemination in space was dem-
onstrated by MRI, dissemination in time by presence of 
oligoclonal bands). Each patient was scanned twice: once 
during the first episode [i.e., with ongoing presentation 
of symptoms (EDSS ≥ 1 in all cases)] and the second time 
during remission (when we expected a decrease in EDSS 
scores, on average four weeks after the first scan). The 
patients showed different clinical symptoms (Table  1). 
For six patients, no structured EDSS assessment was 
available in remission. We calculated the median EDSS 
scores during the first clinical episode and remission and 
used a Wilcoxon signed-rank test to test the null hypoth-
esis that median ranks from both time points are equal. 
We calculated T2 lesion load for all but one patient (for 
whom no T2 FLAIR image was available from the first 
session due to excessive motion) in both sessions using 
the Lesion Prediction Algorithm of the Lesion Segmen-
tation Toolbox [20] and assessed changes of lesion load 
between the two scans with a paired t-test. All patients 
provided written informed consent to participate in this 
study. All study procedures followed safety guidelines for 
MRI research at the University of Regensburg, complied 
with the 1964 Helsinki Declaration and its later amend-
ments, and were approved by the ethics committee of the 
University of Regensburg.

Healthy control participants
We used data from the Human Connectome Project 
1200 Subjects Data Release (www.​human​conne​ctome.​
org) as a control dataset [21, 22]. Specifically, we made 
use of the minimally-preprocessed rs-fMRI data, which 

http://www.humanconnectome.org
http://www.humanconnectome.org
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Fig. 1  Hypotheses. Conceptual representation of the hypotheses depicted as A brain maps and B adjacency matrices. We hypothesize that 
functional network coherence changes between relapse and remission can occur as changes from an original network to itself (one-with-self ), to 
another network (one-with-other), or to a set of networks (one-with-many), or that regardless of the original network, these networks change with 
respect to a common network (many-with-one)

Table 1  Demographic and clinical data of the patients

* No T2 FLAIR image was available at relapse due to excessive motion of the patient during that sequence
** No structured EDSS assessment was available in remission

EDSS expanded disability status scale, LL lesion load, n.a.  not available

Patient ID Age / Sex T2 LL (relapse) T2 LL (remission) EDSS score 
(relapse)

EDSS score 
(remission)

Neurological symptoms

MS01 28 / f 1.72 ml 1.30 ml 3.0 1.0 Internuclear ophthalmoplegia

MS02 23 / f 3.93 ml 6.06 ml 2.0 n.a. ** Facial nerve paralysis

MS03 54 / f 19.13 ml 21.61 ml 3.0 1.5 Paresis left leg, restricted walking range, limb ataxia

MS04 21 / f 0.36 ml 0.36 ml 2.0 1.5 Optic neuritis

MS05 23 / f 14.41 ml 13.42 ml 2.0 1.0 Optic neuritis, facial nerve paralysis, mild fatigue, 
sensory disturbances

MS06 27 / f n.a.* 1.53 ml 3.0 n.a. ** Optic neuritis, sensory disturbances

MS07 29 / m 0.85 ml 0.69 ml 2.5 1.0 Gait ataxia, sensory disturbances

MS08 22 / f 0.02 ml 0.14 ml 1.0 1.0 Optic neuritis

MS09 22 / f 1.41 ml 0.41 ml 2.0 0.0 Optic neuritis

MS10 21 / f 1.93 ml 1.62 ml 3.0 2.0 Optic neuritis

MS11 24 / f 8.97 ml 3.30 ml 3.0 n.a. ** Tetraparesis, gait ataxia

MS12 35 / m 0.44 ml 0.46 ml 2.5 n.a. ** Cerebellar ataxia

MS13 33 / f 4.58 ml 4.81 ml 2.0 n.a. ** Slight ataxia, paresis of the left leg

MS14 18 / m 1.28 ml 0.94 ml 1.0 1.0 Vertigo, gait ataxia

MS15 23 / f 0.03 ml 0.02 ml 2.0 1.0 Optic neuritis

MS16 35 / m 0.45 ml 1.41 ml 2.5 3.0 Sensory disturbances, fatigue

MS17 26 / f 1.67 ml 1.62 ml 2.0 n.a. ** Optic neuritis

MS18 46 / f 0.19 ml 0.16 ml 4.0 1.0 Optic neuritis
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includes complete test–retest data from 44 participants 
(30 females, age range = 22–35 years). Participants were 
scanned on two separate days, separated by an interscan 
interval between 3 and 11 months. All study procedures 
of the HCP protocol were approved by the Institutional 
Review Board at Washington University in St. Louis.

Neuroimaging data acquisition
Data acquisition of the 18 MS patients was carried out 
on a 3 Tesla Prisma scanner (Siemens, Erlangen, Ger-
many). Resting-state functional images were acquired 
with a T2*-weighted EPI sequence (instruction to partici-
pants: eyes closed, repetition time (TR) = 2000  ms, echo 
time (TE) = 30.0  ms, flip angle (FA) = 70°, field of view 
(FOV) = 192 × 192 mm2, matrix size = 64 × 64, voxel res-
olution (VR) = 3 × 3 × 3.6 mm3, 33 axial slices (acquired 
ascending-interleaved), phase encoding direction = ante-
rior–posterior, echo spacing = 0.58  ms, pixel bandwidth 
(BW) = 2605 Hz/Px, scan duration = 22 min 6 s, 660 vol-
umes per run; three dummy volumes were acquired at the 
beginning of the scan to account for T1-saturation). For 
co-registration of the functional data to high-resolution 
native anatomical space, we acquired a T1-weighted scan 
using a 3D Turboflash MPRAGE sequence (TR = 1910 ms, 
TE = 3.67  ms, inversion time (TI) = 1040  ms, 180 sag-
ittal slices, FA = 9°, FOV = 250 × 250 mm2, matrix 
size = 256 × 256, VR = 0.98 × 0.98 × 1 mm3, BW = 180 Hz/
Px, scan duration = 4 min 25  s). Additionally, to quantify 
lesion load, we acquired a T2-weighted 2D Fluid Attenu-
ated Inversion Recovery (FLAIR) image (TR = 9000  ms, 
TE = 108  ms, TI = 2500  ms, 27 axial slices, FA = 150°, 
FOV = 186 × 230   mm2, matrix size = 260 × 320, 
VR = 0.72 × 0.72 × 5.5 mm3, BW = 290  Hz/Px, scan dura-
tion = 2 min 14 s) and calculated the lesion load using an 
automatic lesion-segmentation method [20].

The HCP data was acquired on a 3 Tesla Connec-
tome Skyra Scanner (instruction to participants: 
eyes closed, TR = 720  ms, TE = 33.1  ms, FA = 52°, 
FOV = 208 × 180mm2, matrix size = 104 × 90, voxel 
resolution = 2 × 2 × 2 mm3, 72 slices, phase encoding 
direction = right–left, multiband factor = 8, echo spac-
ing = 0.58 ms, BW = 2290 Hz/Px, scan duration = 14 min 
33  s, 1200 volumes per run). The full imaging protocols 
can be found online at http://​proto​cols.​human​conne​
ctome.​org/​HCP/​3T/​imagi​ng-​proto​cols.​html.

Although the scanning parameters used to acquire the 
patient dataset differed from those used to acquire the 
HCP dataset, the concern of a methodological bias is miti-
gated by the fact that we did not compare groups directly; 
rather, we compared within-group longitudinal changes 
between the two groups [i.e., differences (groups) of differ-
ences (time points)]. As such, given that data at both time 
points for a given member of each group were acquired 

with the same parameters, one would only expect the pres-
ence of biases if one set of scanning parameters was inher-
ently more sensitive towards detecting connectivity-based 
differences over time. In this case, our method, compris-
ing fewer acquired volumes, was less sensitive, whereas 
the HCP method, comprising more acquired volumes, was 
more sensitive [23]. Thus, the scanning parameters applied 
to the patient sample were more statistically conservative 
and therefore less likely to yield false positives.

Neuroimaging data analysis
Analysis of the acquired neuroimaging data was carried 
out with the FMRIB Software Library (FSL, version 6.0) 
[24, 25], the Connectome Workbench (version 1.4.2) [26, 
27] and the CoSMoMVPA toolbox [28] for MATLAB 
R2018b (The Mathworks, Natick, USA). Additionally, the 
HCP data had already been pre-processed using tools 
from FreeSurfer, FSL and the Connectome Workbench at 
the time we used it; see [22] for details on this procedure.

Pre‑processing
Pre-processing steps included brain extraction [29], slice-
time correction, and motion correction with respect to the 
middle volume of each run (using trilinear interpolation 
with 6 degrees of freedom (DOFs) [30]). We did not apply 
spatial smoothing, as its implementation has recently been 
shown to artificially increase the similarity of networks 
between subjects in functional connectivity analyses [31]. 
Additionally, we did not apply temporal filtering, which 
would have interfered with subsequent automatic removal 
of motion artifacts (see below).

Each patient’s functional scan was then linearly co-reg-
istered to the native high-resolution anatomical scan using 
a rigid body (6 DOFs) transformation. For statistical com-
parisons, we also performed a second, non-linear, co-regis-
tration of each functional scan to MNI152 2 mm standard 
space. Because non-linear registrations are only reasonable 
within the same modalities (e.g., structural, functional, 
etc.), we first implemented a 12 DOF affine transformation 
of the high-resolution anatomical scan to MNI152 2 mm 
space, which we then used as a starting point for the non-
linear registration of the functional data to the standard 
space [32].

In the final pre-processing step, we corrected for head 
motion-induced artifacts using FSL’s Automated Removal 
Of Motion Artifacts (AROMA) tool, using its non-aggres-
sive strategy [33]. This algorithm consists of three steps: 
first, independent component analysis (ICA) is applied 
to decompose the functional data into a set of spatially 
independent components. Second, those components 
that most likely relate to head motion are automatically 
identified based on four criteria (high-frequency content, 
maximum correlation with realignment parameters, edge 

http://protocols.humanconnectome.org/HCP/3T/imaging-protocols.html
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fractions, and CSF fractions). Finally, the functional data is 
denoised by removing the variance explained by only the 
motion-related components. We performed this analy-
sis on the functional data in native space, which we later 
transformed into MNI standard space using the previously 
generated transformation matrices.

The maps resulting from this procedure were in volu-
metric space, but a 2D representation of cortical data has 
several advantages over a 3D-representation, including 
enhanced alignment to the geometry of the cortex as well 
as increased statistical power [34]. Therefore, we trans-
formed the preprocessed data into CIFTI files (Connectiv-
ity Informatics Technology Initiative, https://​www.​nitrc.​
org/​proje​cts/​cifti/) using the Ciftify toolbox [35], a file 
format which renders cortical data on the surface while 
maintaining volumetric information of subcortical and 
cerebellar data. For simplicity, we will refer to the small-
est units of our data as “voxels”, comprising both surface-
based and cerebellar/subcortical representations.

As a control data set, we used minimally preprocessed 
data (both functional and structural scans) from the HCP-
retest dataset, which are also provided in CIFTI format. 
This data has been preprocessed following the HCP func-
tional preprocessing pipeline [22]. The main preprocess-
ing steps were identical between our pipeline and the HCP 
pipeline, encompassing removal of spatial/distortion arti-
facts, surface generation, registration and alignment to 
standard space.

Assessing changes in brain network organization 
between relapse and remission
The central goal of our analysis (illustrated in Figs. 2 and 
3) was to investigate whether the organization of patients’ 
brain networks changed between relapse and remission, 
compared to that of a sample of HC. Using dual regres-
sion [36] we generated subject-specific component maps 
based on ten previously published spatial components 
(from ICA, Table 2) and associated time courses [14] for 
both patients and HCs (Fig. 2A). Here, we used a version 
of this template in CIFTI file format [37]. Then, each of the 
ten component templates was regressed (as spatial regres-
sors in a multiple regression) into each participant’s (i.e., 
each patient and each of the HCs) 4D space–time data-
set. This procedure resulted in a set of ten subject-specific 
time series, one per spatial component. The resulting 
time series were used as temporal predictors in a multiple 
regression of each participant’s 4D dataset, resulting in ten 
subject-specific spatial maps of parameter estimates (PE). 
We then smoothed the PE maps with a Gaussian kernel 
of 5  mm FWHM (in order to improve the spatial corre-
spondence between the data from patients and HCs). We 
applied this procedure to the scan during the first clinical 
episode (or baseline in HC) and the scan at remission (or 

follow-up in HCs). As we were interested in changes in 
brain networks, we computed the difference between the 
PE maps (for each of the ten templates separately) for each 
patient/HC from the two scans (i.e., we calculated remis-
sion minus first clinical episode for the patients and fol-
low-up minus baseline for the HC, Fig. 2B, upper row). We 
then converted the patients’ difference maps, voxelwise, 
to z-score maps (Fig. 2B, lower row), using the mean and 
standard deviation from the difference maps (follow-up—
baseline) of the 44 HCs. We computed these maps for each 
of the ten ICA-networks separately.

In order to carry out statistical inference on the differ-
ence maps, we used a permutation testing scheme [38] 
based on the null hypothesis of no difference between 
patients and controls. The procedure was as follows 
(Fig.  3A): for each network, of all 62 analyzed subjects 
(combining 18 patients and 44 controls), we randomly 
selected the difference maps from 18 subjects (reflect-
ing the number of patients in our sample) and calculated 
18 z-scored difference maps, as described in the previ-
ous paragraph, from the distribution of the remaining 
44 subjects (which could contain patients). From each of 
the resulting z-scored difference maps, we stored both 
the maximum and the minimum z-scores [to control for 
the inflated family-wise error rate (FWER)] in order to 
generate two separate null distributions for testing both 
increases and decreases of coherence. We repeated this 
process 10,000 times and subsequently compared the 
z-scored difference maps of the 18 patients (i.e. ten maps 
for each patient, reflecting the ten analyzed networks) to 
the permutation-based null distributions by counting how 
many values of the null distributions were more extreme 
than the observed z-scores in each voxel of the patients’ 
maps. Dividing this count by the number of permutations 
yielded FWER-corrected p-values (pFWER) (Fig.  3B). We 
considered voxels with a pFWER lower than 0.025 (i.e., 0.05, 
two-tailed) to indicate changes in network organization 
that would not be predicted by chance. Hereinafter, we 
refer to networks in which we observed changes between 
the two time points as “altered networks”. For each altered 
network, if we identified one or more clusters of vox-
els with pFWER < 0.025, we extracted those clusters using 
Workbench’s cifti-find-clusters algorithm. In the following 
sections, we refer to such clusters of voxels as regions of 
interest (ROIs).

Constructing adjacency matrices between altered networks 
and original networks
For all of the ROIs of a given altered network of a sin-
gle patient, we identified to which of the ten original net-
works the ROIs belong, according to the ICA z-scores 
from the ten spatial components. This procedure yielded 
a 10 × 10 adjacency matrix of altered networks (rows) 

https://www.nitrc.org/projects/cifti/
https://www.nitrc.org/projects/cifti/
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and original networks (columns). Thus, we counted the 
number of ROIs present for a given altered network and 
placed this count data in the corresponding column of the 
matrix. As we were interested in the number of patients 
that showed similar coherence changes, these data were 
binarized, so that, even if a patient had multiple ROIs 
reflecting coherence changes between the same two net-
works, this information appeared in the matrix as a one. 
This 10 × 10 binary adjacency matrix was populated for 
each patient and then summed across patients, yielding 
a group-level frequency matrix, which allowed us to per-
form group-level statistics to test our hypotheses. Such 
matrices were not necessarily symmetric because a pre- 
post change in an altered network that changed its con-
nectivity with an original network does not imply that the 
original network also showed a pre- post change.

Assessing the one‑with‑one, one‑with‑many, 
and many‑with‑one hypotheses
Our hypotheses asked whether specific patterns appeared 
in the adjacency matrices, which would indicate systema-
ticity between original networks and altered networks. 
Namely, we were interested in a one-with-one hypoth-
esis (denoted by a single square in the adjacency matrix, 
Fig. 1B), a one-with-many hypothesis (denoted by a row 
in the adjacency matrix), and a many-with-one hypoth-
esis (denoted by a column in the adjacency matrix). Thus, 
we needed to determine whether the frequencies for 
a single square or the pattern of frequencies for a given 
column or row were unlikely to occur by chance, which 
we carried out using a binomial test and Monte Carlo 
procedures.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 2  Calculating statistical maps of network changes. A First, we applied dual regression for a set of ten ICA-network templates to each control’s 
and each patient’s data sets, both for first clinical episode (baseline) and remission (follow-up). Next, (B, upper row) we computed the difference 
map for each patient between the two time points. Finally, (B, lower row) we converted the patients’ difference maps to z-maps, by calculating, for 
each voxel, the z-score with respect to the control group
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To this end, we first calculated the expected number 
of patients that would contribute to a given cell of the 
matrix, which we obtained by summing all 100 frequen-
cies of the group-level matrix (separately for coherence 
increases and decreases) and then dividing this sum by 
the number of elements of the matrix. This procedure 
yielded 1.99 patients for the increases and 2.58 patients 
for the decreases. Using these expected counts, we then 
ran a binomial test for each cell of the matrices to deter-
mine the probability of the observed number of patients, 
given the total number of patients that participated in 
the experiment. These p-values were then converted to 

z-scores (using a mean of 0 and standard deviation of 1) 
for ease of visually presenting heatmaps. The z-scores 
were ultimately thresholded at a value of 1.96 (i.e., 
p < 0.025) to be able to determine whether any column-, 
row, or cell-effects were present by counting how many 
elements in each column and row survived the threshold.

Assessing potential one-with-one effects was car-
ried out by seeking lone cells with a p-value lower than 
the Bonferroni-corrected threshold (to account for 
the inflated family-wise error rate [FWER] from per-
forming 100 tests in two matrices) of p < 0.025/200 
(i.e., z > 3.6623). Assessing potential one-with-many or 

Fig. 3  Statistical assessment. A Using a Monte-Carlo procedure, we generated null distributions to determine the expected degree of change 
in network organization between follow-up and baseline. B From these null distributions, we calculated empirical p-values for each voxel of the 
patients’ z-maps, which yielded regions reflecting a change in network organization

Table 2  Overview of the analyzed networks, according to Smith et al. [14]

In brackets we provide the abbreviations used throughout this text

Network name (abbreviation) Network name (abbreviation), continued Network name (abbreviation), continued

Medial visual areas (MVA) Cerebellar Network (Crb) Frontoparietal Network, right (rFP)

Occipital Pole (Occ) Sensorimotor Network (SMN) Frontoparietal Network, left (lFP)

Lateral Visual Areas (LVA) Auditory Network (Aud)

Default Mode Network (DMN) Executive Control Network (ECN)
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many-with-one effects (i.e., row- and column-effects, 
respectively) was carried out by first counting how many 
elements of a given row or column survived a threshold 
of p < 0.025 (i.e., z > 1.96) and then running a Monte Carlo 
procedure to determine how many elements of a row or 
column would be predicted by chance. This randomiza-
tion procedure consisted of shuffling each patient’s binary 
matrix, recomputing the group-level frequency matrix, 
recomputing the binomial test, thresholding the result-
ing random p-values at p < 0.025, summing the number of 
elements per row and column, and storing the maximum 
row and column sums (also to control for the inflated 
FWER from ultimately testing for multiple column and 
row effects). We repeated this procedure 100,000 times 
yielding two distributions of maximum expected ele-
ments per column (once for coherence increases, once 
for coherence decreases) and two distributions of maxi-
mum expected elements per row (again, for coherence 
increases and decreases separately). We used these maxi-
mum sums to determine whether the observed number 
of elements comprising a column- or row-effect in the 
original data (following thresholding) were not likely to 
be predicted by chance.

Follow‑up individual‑level analysis
Given that our results pointed to unexpected common-
alities across patients involving the Cerebellar Network 
and Executive Control Network, we opted to carry out 
a follow-up analysis to determine whether such effects 
were robustly present in all patients rather than merely 
being driven by a minority of the sample. To this end, as 
each ROI could belong to a different network (see above), 
for each patient we counted how often each “original 
network” appeared in the set of ROIs, ultimately yield-
ing an individual-level probability distribution of the ten 
networks. These probabilities were gathered separately 
for coherence increases and decreases and then arcsine 
transformed before being submitted to a two-factor 
repeated-measures analysis of variance (ANOVA) with 
factors Coherence and Network. This procedure was 
repeated but instead counting how often each “altered 
network” appeared in order to also obtain individual-
level probability distributions for the altered networks.

Results
Our primary goal was to investigate whether there were 
regions in the brain that changed their coherence to 
functional brain networks (obtained via dual-regression 
ICA) between the first clinical episode (pre) and remis-
sion (post) in MS patients. We addressed this question 
by investigating ten networks (Table 2) for each patient, 
analyzing increases and decreases of functional coher-
ence separately. To determine when pre-post changes in 

coherence differed from the expected degree of change 
present in a group of healthy controls, we employed 
Monte Carlo procedures, which revealed networks that 
differed between the first clinical episode and remission. 
We used these patterns of network alterations to test 
hypotheses regarding whether there exists systematicity 
across patients with respect to the networks that change 
and the networks to which they change.

Clinical scores, but not lesion load, change between first 
clinical episode and remission
The median EDSS score of our patient sample was 2.25 
(interquartile range = 1.0) at first clinical episode and 
1.0 (interquartile range = 0.50) at remission. The Wil-
coxon signed-rank test confirmed the decrease in EDSS 
scores over time (z = 53.50, p = 0.0059). On the other 
hand, we were unable to find differences in T2 lesion load 
(t16 = 0.4364, p = 0.6684) between the two time points.

Many‑with‑one and one‑with‑many: coherence changes 
for the cerebellar and executive control networks
The Monte Carlo procedures we used to test the one-
with-many (row-effects) and many-with-one (col-
umn-effects) hypotheses revealed evidence for both 
hypotheses. Evidence for the many-with-one hypothesis 
manifested with respect to the Cerebellar Network (Crb) 
in terms of both increased (six of ten networks present, 
pFWER = 9.9 × 10−6) and decreased coherence (seven of 
ten networks present, pFWER = 9.9 × 10−6) (Fig.  4). For 
the coherence increases, the networks contributing to the 
column-effect were the Occipital Pole (Occ, z = 2.8597, 
p = 0.002), Lateral Visual Areas (LVA, z = 3.906, 
p = 4.69 × 10−5), Sensorimotor Network (SMN, z = 3.906, 
p = 4.69 × 10−5), Auditory Network (Aud, z = 2.3105, 
p = 0.01), Executive Control Network (ECN, z = 4.4116, 
p = 5.13 × 10−6), and right Frontoparietal Network (rFP, 
z = 2.3105, p = 0.01). For the coherence decreases, the 
networks contributing to the column-effect were Medial 
Visual Areas (MVA, z = 2.356, p = 0.009), Occ (z = 3.3809, 
p = 3.6 × 10−4), LVA (z = 2.8749, p = 0.002), Default Mode 
Network (DMN, z = 2.356, p = 0.009), Crb (z = 2.356, 
p = 0.009) (SMN (, z = 3.8778, p = 5.3 × 10−5), and ECN (, 
z = 3.3809, p = 3.6 × 10−4) (Fig. 4).

Evidence for the one-with-many hypothesis con-
sisted of the ECN increasing its coherence with four of 
ten networks (pFWER =  = 2.9 × 10−4): the LVA (z = 2.31, 
p = 0.01), Crb (z = 4.4116, p = 5.13 × 10−6), SMN (2.31, 
p = 0.01), and lFP (z = 2.8597, p = 0.002) (Fig.  4). The 
z-scores and p-values presented in this section for the 
individual networks came from the binomial test.

Moreover, the binomial test did not reveal evidence for 
the “one-with-other” hypothesis between any networks 
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that were not already contributing to a “one-with-many” 
or “many-with-one” effect.

Robust coherence changes of the cerebellar network 
in vast majority of patients
Our individual-level analysis revealed that the unex-
pected commonality of the Cerebellar Network alter-
ing its functional coherence with other networks was 
not driven by only a few patients. Rather, the Cerebel-
lar Network was the most-likely (or equally-most-likely) 
“original network” [mean probability =  ~ 39 ± 6% (SEM)] 
for coherence increases (Fig.  5, left), occurring in 13 
patients (i.e., ~ 72% of the sample; p = 4.31 × 10−11, from 
a binomial test B(18, 0.1056); Additional file  1: Fig-
ure  S1). A fourteenth patient also showed coherence 
increases involving the Cerebellar Network, though it 
was not the most likely original network. With respect 

to the coherence decreases (Fig.  5, right), the Cerebel-
lar Network was the most-likely original network (mean 
probability =  ~ 39 ± 5% [SEM]), occurring in 14 patients 
(i.e., ~ 78% of the sample; p = 5.82 × 10−12, from a bino-
mial test B(18, 0.1167); Additional file 1: Figure S2). Two 
additional patients showed coherence decreases involv-
ing the Cerebellar Network, though it was not the most 
likely original network. The degree of coherence changes 
in the cerebellar network did not correlate with the 
changes in the EDSS scores (see Additional file 1). These 
observations were supported by the results from the 
ANOVA, which revealed differences between networks 
(F9,153 = 27.1, p = 1.49 × 10–27) and coherence directions 
(F1,17 = 6.15, p = 0.0239), but not an interaction between 
the two factors (F9,153 = 1.28, p = 0.2528). Moreover, 
post-hoc achieved power analyses using G*Power [39] 
revealed statistical power of 99.9985% for having found 
the effect of coherence increases involving the Cerebellar 
Network in 13 of 18 patients (needing only to be present 
in four patients, given an expected probability of 0.1056). 
Similarly, achieved statistical power was 99.9991% for 
having found the effect of coherence decreases involving 
the Cerebellar Network in 14 of 18 patients (needing only 
to be present in five patients, with an expected probabil-
ity of 0.1167).

With respect to the individual-level probabilities of 
the original networks, the ANOVA revealed differences 
between networks (F9,153 = 3.13, p = 0.0017) and between 
coherence directions (F1,17 = 5.04, p = 0.038) but not 
an interaction between the two factors (F9,153 = 0.84, 
p = 0.58) (Fig. 6, Additional file 1: Figures 3, 4).

Discussion
“One‑with‑many effect”: executive control network
Our analysis revealed evidence for the “one-with-many” 
hypothesis, in that the functional coherence of the ECN 
increased with respect to the LVA, Crb, SMN, and lFP. 
This finding stands in partial contrast to previous work, 
which has shown, for example, that decreases in func-
tional connectivity between the ECN and the DMN 
at one time point (as compared to controls) predict 
increased clinical disability (i.e., higher EDSS scores) [40]. 
Our findings suggest instead that a relative increase of 
the ECN with other networks is compatible with remis-
sion (i.e., lower EDSS scores). One important distinction, 
however, is that our sample consisted of patients suffer-
ing from their initial clinical episode who were scanned 
during that first episode and again in remission, thereby 
allowing us to measure changes over time within patients. 
In contrast, such prior work investigated relapsing–
remitting (RRMS) patients that were scanned only once; 
as such, the authors were only able to describe differences 
with respect to healthy controls but not which changes 

Increases
MVA
Occ
LVA

DMN
Crb

SMN
Aud

ECN
rFP
lFP

Al
te

re
d 

ne
tw

or
k

Decreases

00.5 0.25
Relative frequency

Original network

Z-score
4 2 0

A

B

M
VA O
cc

LV
A

D
M

N
C

rb
SM

N
Au

d
EC

N
rF

P
lF

P

Original network

MVA
Occ
LVA

DMN
Crb

SMN
Aud

ECN
rFP
lFP

Al
te

re
d 

ne
tw

or
k

M
VA O
cc

LV
A

D
M

N
C

rb
SM

N
Au

d
EC

N
rF

P
lF

P

M
VA O
cc

LV
A

D
M

N
C

rb
SM

N
Au

d
EC

N
rF

P
lF

P

Original network

M
VA O
cc

LV
A

D
M

N
C

rb
SM

N
Au

d
EC

N
rF

P
lF

P

Original network
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z > 1.96) from inverting p-values obtained via a binomial test. 
Following all statistical procedures, the results provide support for 
the many-with-one hypothesis, as several altered networks across 
patients appeared to both increase and decrease their coherence 
with the Cerebellar Network. There was additional evidence for the 
one-with-many hypothesis, in that coherence increased between 
the ECN and a set of other networks. Column and row effects that 
surpassed the respective FWER-corrected threshold of p < 0.05 
(two-tailed) are highlighted by the red contours
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may have occurred within a given patient. It is therefore 
possible that the connectivity behavior of the ECN differs 
at different stages of MS.

“Many‑with‑one‑effect”: cerebellar network
Most critically, we found evidence for the “many-with-
one” hypothesis, in that functional coherence changed 
(both increasing and decreasing) between a set of net-
works and the Cerebellar Network (Fig. 4), and that this 
result is rather robust at the individual level (i.e., present 
in more than 70% of patients), despite the clinical hetero-
geneity of the sample. To demonstrate the robustness of 
this effect, we carried out a split-half analysis in which 
we compared the results from the first nine patients with 
the results from the second nine patients (see Additional 
file 1: Fig. S1).

Such a finding raises the question of whether there is 
some capacity of the Cerebellar Network that allows 
RRMS patients to overcome their symptoms; this idea 
is supported by converging evidence that has tied func-
tional and structural aspects of the cerebellum to the 
severity of MS disease progression. For example, MS 
patients with early cerebellar dysfunction tend to develop 
disability more quickly [41]. Similarly, Kutzelnigg and 
colleagues showed that the extent of cerebellar cortical 
demyelination is associated with overall MS pathology 
[42]. Recent cross-sectional studies investigating func-
tional connectivity of MS patients demonstrated a rela-
tionship between symptom severity and alterations of the 
cerebellum’s functional connectivity [43–45]. Our find-
ings extend such studies by providing additional evidence 
of functional changes with respect to the Cerebellar 
Network when measured at relapse and remission, and, 
more importantly, yield a new perspective that functional 
connectivity is altered between the Cerebellar Network 
and a variety of other networks, irrespective of clinical 
symptoms. These findings give rise to the idea that the 
Cerebellar Network may play a guiding role in recovery 
from diverse MS symptoms in the early disease course 
and may protect against permanent disability.

Despite these findings, the question of how the Cer-
ebellar Network may alleviate MS symptoms remains 
open. One mechanism by which the Cerebellar Network 
might be involved in remission is that of learning. Build-
ing off of the original theory of cerebellar learning [46], 
the current Albus-Marr-Ito theory of cerebellar learn-
ing posits that information from sensory consequences 
of actions is directly conveyed to the cerebellum via the 
inferior olive [47, 48]. Additionally, copies of any effer-
ent motor program are propagated to the cerebellum via 
collaterals from cortical neurons [49, 50]. Thus, as the 
cerebellum can access both efferent plans and afferent 
consequences, it has the potential to register when there 

is a deviation between the two and correct if necessary 
[51]. Though Marr originally thought that the cerebellum 
was involved only in learning motor programs, recent 
work has shown that the cerebellum receives input from 
distributed cortical areas and is involved in a broad range 
of cognitive functions beyond movement [52].

With respect to MS and the idea of a protective role 
of the cerebellum, earlier work provides evidence that 
such motor and/or cognitive learning may underlie the 
improvement of symptoms in MS patients. For example, 
using fMRI Saini and colleagues observed activation pat-
terns in clinically stable MS patients that are reportedly 
found in healthy controls during motor learning [53]. 
Similarly, MS patients, whose performance on cognitive 
tasks successfully improved following cognitive train-
ing programs (as compared to MS patients that did not 
receive cognitive training), showed increased activation 
within the cerebellum [54] and altered functional con-
nectivity of the cerebellum [55]. Thus, a link between 
learning, altered cerebellar recruitment, and MS symp-
tom decline may explain the effectiveness of cognitive/
motor training programs in MS rehabilitation [56, 57].

Limitations and future outlook
One limitation of our study concerns the interpretation 
of the “many-with-one” effect that we observed impli-
cating the Cerebellar Network in processes underlying 
remission in MS. By definition, a “many-with-one” effect 
is composed of multiple “one-with-one” effects that sur-
passed a particular threshold and, together, form the pat-
tern of a column. Because these columnar patterns were 
statistically unlikely to occur by chance, we interpreted 
them as evidence for the “many-with-one” hypothesis, 
rather than a set of isolated effects, each favoring the 
“one-with-one” hypothesis. Regardless, we cannot rule 
out the possibility that treating these effects in isolation 
would be the correct interpretation. For example, con-
sider a scenario in which different patient subtypes have 
different altered networks that change their coherence to 
the Cerebellar Network. By analyzing these patients as a 
single group, one would observe what looks like a “many-
with-one” effect, which is merely the result of the hetero-
geneous sample. However, our sample size is too small to 
differentiate subtypes. As such, this idea should be scru-
tinized in larger studies that can test the effectiveness 
of methods such as ours in identifying patient subtypes, 
thereby potentially improving personalized treatment 
strategies [58].

Despite this interpretational shortcoming of the 
“many-with-one” effect, there remain the facts (1) that 
functional coherence was commonly altered between a 
variety of networks and the Cerebellar Network and (2) 
that the Cerebellar Network was either the most likely 



Page 12 of 14Tahedl et al. Journal of Translational Medicine (2022) 20:488  2022, 20(1):488

original network or tied for most likely original network 
(in at least 70% of the patients for both the coherence 
increases and decreases). Therefore, this unexpected 
commonality across patients still speaks in favor of our 
general interpretation, providing evidence that the Cer-
ebellar Network’s specific role in MS should be further 
investigated, for example, as a possible target for symp-
tom-alleviating therapies.

Additionally, the open question regarding the meaning 
of increases and decreases of functional coherence of the 
Cerebellar Network remains unknown. Such differences 
in functional connectivity are believed to reflect different 
underlying mechanisms [59]; with respect to our findings, 
it is possible that the coherence increases and decreases 
reflect different types of plasticity at the synaptic level, 
specifically long-term potentiation (LTP) and long-term 
depression (LTD). Both of these learning mechanisms 
have been observed for cerebellar neurons [60–63], and 
LTP has been associated with symptom decline in MS 
patients [64, 65]. Moreover, prior work has shown that 
LTP increases functional connectivity in the rat cor-
tex [66, 67]; it is thus conceivable that LTD analogously 
decreases functional connectivity, but this relation-
ship has yet to be experimentally demonstrated. Conse-
quently, alterations of cerebellar functional connectivity 
in MS patients may underlie neuroplastic changes that 
could theoretically predict symptom severity.

Conclusion
In summary, we investigated changes of functional con-
nectivity in MS patients between their first clinical epi-
sode and remission using ICA-based rs-fMRI. Our 
analyses revealed that, the Cerebellar Network and a 
heterogeneous set of other networks across different MS 
patient tended to alter their functional coherence to one 
another, and that there is approximately a 39% chance of 
observing functional coherence changes in the Cerebellar 
Network for a given patient following the initial clinical 
episode. This finding suggests that the Cerebellar Net-
work may be functionally compensating for structural 
damage to distributed brain regions, which could help 
explain the oft-observed mismatch between structural 
damage and clinical disability [68]. Furthermore, these 
alterations in functional coherence manifested as both 
increases and decreases, which may reflect neuroplastic 
mechanisms of learning. Within this framework, subse-
quent studies could investigate the cerebellum’s capacity 
for such learning mechanisms as a potential biomarker 
that predicts an individual’s clinical progression; more 
generally, future work could seek to understand the spe-
cific role of the cerebellum in the presence of distributed 
damage to the structural and functional architecture of 
the brain, especially at different stages of MS.
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