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Abstract 

Background:  Except for B7-CD28 family members, more novel immune checkpoints are being discovered. They are 
closely associated with tumor immune microenvironment and regulate the function of many immune cells. Various 
cancer therapeutic studies targeting these novel immune checkpoints are currently in full swing. However, studies 
concerning novel immune checkpoints phenotypes and clinical significance in lung adenocarcinoma (LUAD) are still 
limited.

Methods:  We enrolled 1883 LUAD cases from nine different cohorts. The samples from The Cancer Genome Atlas 
(TCGA) were used as a training set, whereas seven microarray data cohorts and an independent cohort with 102 qPCR 
data were used for validation. The immune profiles and potential mechanism of the system were also explored.

Results:  After univariate Cox proportional hazards regression and stepwise multivariable Cox analysis, a novel 
immune checkpoints-based system (LTA, CD160, and CD40LG) were identified from the training set, which signifi-
cantly stratified patients into high- and low-risk groups with different survivals. Furthermore, this system has been well 
validated in different clinical subgroups and multiple validation cohorts. It also acted as an independent prognostic 
factor for patients with LAUD in different cohorts. Further exploration suggested that high-risk patients exhibited dis-
tinctive immune cells infiltration and suffered an immunosuppressive state. Additionally, this system is closely linked 
to various classical immunotherapy biomarkers.

Conclusion:  we constructed a novel immune checkpoints-based system for LUAD, which predicts prognosis and 
immunotherapeutic implications. We believe that these findings will not only aid in clinical management but will also 
shed some light on screening appropriate patients for immunotherapy.
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Introduction
Lung adenocarcinoma (LUAD) is the most common 
variant of non–small cell lung cancer (NSCLC) across 
the world. LUAD has become significantly more preva-
lent over the past two decades, with a similar decrease 
in squamous cell carcinoma during the same period [1]. 
There have been advances in the current strategy of com-
bining various therapies with tyrosine kinase inhibitors 
(TKIs) to treat patients with LAUD. However, the 5-year 
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overall survival (OS) rate for patients with LUAD remains 
poor [2, 3]. At present, there is an urgent need to identify 
specific prognostic biomarkers in patients with LAUD, to 
enable the development of optimized, appropriate treat-
ment protocols and clinical management for patients 
with different elements of risk. Several studies have 
attempted to predict and evaluate prognosis in patients 
with LAUD, through diverse gene expression profiles and 
bioinformatics approaches [4–6]. However, these stud-
ies usually incorporate genes from the entire genome or 
transcriptome and do not consider the intrinsic biologi-
cal functions. This may give rise to the fact that many of 
these signatures remain merely mathematical but unable 
to truly reflect the real characters inherent in the tumor.

In recent years, the treatment of LUAD has devel-
oped rapidly. In addition to traditional surgery, radio-
therapy, and chemotherapy, molecular targeted therapy, 
novel strategy like immunotherapy has been becoming 
of increasingly great concern [7, 8]. The introduction 
of immune checkpoint-blocking antibodies that target 
programmed death 1 (PD-1) receptor as well as against 
its ligand, programmed death-ligand 1 (PD-L1) of the 
B7-CD28 family has significantly improved survival rates 
in patients with advanced lung cancer. These antibodies 
are available for clinical use [9–11]. However, beneficial 
immunotherapeutic effects were only observed in a sub-
group of patients with response rates of 17–21% [12], 
suggesting that there may be other immune checkpoints 
in the LAUD tumor microenvironment (TME).

In addition to these star targets of the B7-CD28 fam-
ily, several emerging and promising immune checkpoints 
have been identified [13]. Most of these novel immune 
checkpoints are from the TNF superfamily, including 
the TNF ligand superfamily (TNFSF) as well as the TNF 
receptor superfamily (TNFRSF), which are responsible 
for regulating pathways related to cell survival, differ-
entiation, and non-immunogenic death. Most notably, 
these novel immune checkpoints belonging to the TNF 
superfamily also play a critical function in regulating the 
immune system, providing co-stimulatory or co-inhibi-
tory signals vital for natural and adaptive immunity with 
an emphasis on T-cell responsiveness [14, 15].

These novel immune checkpoints molecules can trig-
ger inflammatory activities in several cells in the TME, 
including cells like T and B lymphocytes as well as tissue-
resident cells such as epithelial and fibroblasts cells [16]. 
Therefore, modulating and controlling the interaction of 
these novel immune checkpoints would be a novel ther-
apeutic target with great potential for tumor treatment. 
Meanwhile, many cancer therapies targeting these novel 
immune checkpoints are in full swing, including preclini-
cal and clinical trials. For example, therapies targeting 
OX40, CD40, and CD27 have achieved favorable progress 

in various tumor treatments, including for patients with 
lung cancer [14, 17, 18]. This observation inspired us to 
explore and establish a novel immune checkpoints-based 
prognosis system for LUAD, revealing immune features 
for patients with LUAD.

Herein, we firstly enrolled 1883 LUAD samples from 
nine independent cohorts, including eight public cohorts 
and an independent cohort. Then, we systematically 
explored these novel immune checkpoints in LAUD and 
filtered out genes with the most prognostic value. From 
this, we constructed a signature based on the combi-
nation of LTA, CD160, and CD40LG, which was also 
well-validated in different cohorts. Finally, we further 
examined the clinical characteristics, immunotherapy 
responses, and immune cells infiltration of the prognos-
tic signature. The novel combination of LTA, CD160, and 
CD40LG, may help us understand the immune status of 
patients with LUAD, but also optimize available tumor 
immunotherapies.

Materials and methods
Publicly available mRNA expression datasets
We collected 1731 publicly available samples from The 
Cancer Genome Atlas (TCGA), including level three 
RNA-seq expression data from 502 LAUD cases (Illu-
mina HiSeq 2000). All samples had corresponding prog-
nostic data and other clinical information. These data 
were downloaded from the Cancer Genomics Browser of 
the University of California Santa Cruz (UCSC) (https://​
genom​ecanc​er.​ucsc.​edu) and served as the training 
cohort. The microarray data and corresponding sur-
vival information for the remaining 1670 samples were 
gathered from seven different Gene Expression Omni-
bus (GEO) datasets (http://​www.​ncbi.​nlm.​nih.​gov/​geo), 
including 90 samples from GSE11969, 83 samples from 
GSE30219, 226 samples from GSE31210, 106 samples 
from GSE37745, 127 samples from GSE50081, 442 sam-
ples from GSE68465 and 105 samples from GSE81089, 
which were used as public validation cohorts. First, we 
log2-transformed the mRNA expressions of these public 
validation sets. After the quantiles were normalized, we 
selected the expression of genes with several probes as 
the mean expression.

Sample analysis and quantitative real‑time polymerase 
chain reaction (qRT‑PCR)
Between May ‘13 and September ‘14, a total of 102 fro-
zen and surgically resected tissue samples from patients 
with LUAD were collected from the First Affiliated Hos-
pital of Zhengzhou University. The samples were snap-
frozen promptly after surgical resection and stored in 
liquid nitrogen. We extracted the total RNA from the 
stored tissues using RNAiso Plus reagent (Takara, #9109) 
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in accordance with the manufacturer’s instructions. Next, 
we reverse-transcribed the total RNA signature into 
single-stranded cDNA using the Prime Script™ RT rea-
gent kit (Takara, #RR047A). The expression of the three 
selected genes in this prognostic signature was then 
detected via qRT-PCR. We used SYBR Premix Ex Taq II 
(Takara, #RR820A) reagent and Agilent Mx3005P soft-
ware for data analysis. The three genes’ expression values 
were first standardized to GAPDH and then log2 trans-
formed for subsequent analysis. All primer sequences 
used for the three genes of interest, as well as GAPDH, 
are shown in Additional file 6: Table S1. The First Affili-
ated Hospital of Zhengzhou University’s Ethics Com-
mittee Board approved this protocol and monitored the 
study’s progress.

Functional enrichment analysis and prognostic 
meta‑analysis
We analyzed the gene ontology (GO) and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathways to ana-
lyze the prognostic signature using DAVID 6.8 (http://​
david.​abcc.​ncifc​rf.​gov/​home.​jsp). Then, we used STATA 
software (version 12.0) to carry out a prognostic meta-
analysis to better understand this signature’s prognostic 
significance across different public cohorts. We used a 
random-effects model to calculate the pooled HR value.

Immune cell infiltration analysis
The novel CIBERSORT method estimates cell fractions 
within complex tissues using gene expression levels in 
solid tumors. The results of this process stand in agree-
ment with ground truth evaluation [19, 20]. The LM22 
signature matrix included 547 genes that distinguished 
22 immune cell phenotypes. These included distinct T- 
and B-cell subsets, as well as natural killer (NK) cells and 
other various myeloid subsets. We used CIBERSORT and 
the LM22 signature matrix to calculate the immune cell 
infiltration of patients with high- and low-risk disease 
statuses.

Analysis of mutations, neoantigens, and expression 
of PD‑L1 protein
We downloaded information on neoantigen and clonal 
neoantigen counts, mutation burden, and several sub-
clonal neoantigens in patients with LAUD from the Can-
cer Immunome Atlas (TCIA) (https://​tcia.​at/​home) [21]. 
We determined the PD-L1 protein expression based on a 
reverse-phase protein array (RPPA) analysis we obtained 
from the cbioPortal (http://​www.​cbiop​ortal.​org).

Tumor Immune Dysfunction and Exclusion (TIDE) analysis
TIDE is an accurate computational framework to predict 
immunotherapeutic responses, especially to therapeutic 

strategies based on checkpoint blockade [22]. We inte-
grated the mechanisms of primary tumor immune evasion 
(T-cell exclusion and dysfunction) into this novel method 
for modeling tumor immune evasion. The TIDE score is 
superior to many known biomarkers in predicting immu-
notherapy responses for melanoma and lung cancer, espe-
cially for patients who are treated with anti-PD-1/PD-L1 or 
anti-CTLA4 [22]. We uploaded the transcriptome profiles 
of patients from the TCGA cohort to the TIDE website 
(http://​tide.​dfci.​harva​rd.​edu), and after analyzing through 
the website, downloaded the scores for T-cell dysfunction 
and exclusion as well as the TIDE scores for all patients.

Tumor Inflammation Signature analysis
Tumor Inflammation signature (TIS) is a novel clini-
cal assay to predict immunotherapy responses in various 
tumors. We calculated the TIS scores for patients from the 
TCGA cohort according to the methods mentioned in the 
previous study [23].

Signature generation and statistical analysis
We used a univariate Cox proportional hazards regres-
sion model to screen for genes that were strongly associ-
ated with OS in patients with LAUD. Then, we chose to 
use stepwise Cox proportional hazards regression analysis 
to reduce the total number of covariates and filter out the 
most valuable prognostic genes for the prediction of OS. A 
risk formula was constructed for each patient based on the 
expression of selected genes and corresponding regression 
coefficients from the stepwise Cox proportional hazards 
regression analysis. This information was used to classify 
patients into two groups: low risk and high risk. Next, we 
used a Kaplan–Meier analysis to determine the OS and 
RFS among the two risk groups. We used the Mann–Whit-
ney U-test to explore estimates of immune cell infiltration, 
TMB load, the number of neoantigens (including clonal 
and subclonal neoantigens), expression of PD-L1 protein, 
the TIDE score, the T-cell dysfunction score, the T-cell 
exclusion scores, and TIS scores in the high- and low-risk 
patient subsets. Then, a Cox proportional hazards regres-
sion analysis was used to determine if the combined gene 
signature was capable of predicting prognoses dependently. 
We used R software version 3.5.1 (https://​www.r-​proje​ct.​
org) to analyze all data and generate the corresponding fig-
ures. A P-value < 0.05 indicated statistical significance. All 
statistical tests were two-tailed.

Results
Identification of prognostic novel immune checkpoint 
members in LUAD
After a careful literature review, 21 clearly defined novel 
immune checkpoint members, which all belong to the 
TNF superfamily, were included in this study[15, 24–27]. 
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We used a set of 502 patients with LUAD from the TCGA 
database as the training cohort for our model. The demo-
graphics of this cohort are listed in Table 1. The expres-
sion correlations among these 21 immune checkpoint 
members are displayed in Fig.  1A, which exhibited that 
many members have a strong positive association. The 
expression of the 21 defined members was explored in 
the training cohort. Then, a univariate Cox proportional 
regression analysis found that seven immune checkpoint 
genes were significantly associated with OS (P < 0.05, 
Additional file 6: Table S2). Interestingly, all seven genes 
(BTLA, CD160, CD27, CD40LG, LTA, TNFRSF14, and 
TNFSF8) with low hazard ratios (hazard ratio < 1) were 
positively correlated with favorable survival (Additional 
file 6: Table S2).

Generation of the prognostic signature in the TCGA cohort
The seven immune checkpoint genes with prognostic sig-
nificance in univariate comparisons were used for further 
analysis. Next, we used a stepwise Cox proportional haz-
ard regression model to determine which set of variables 
provided the most efficient estimate of patient prognoses. 
This procedure identified three genes of interest: CD160, 
LTA, and CD40LG. We established the risk score formula 
based on the expression of these three genes and their 
corresponding coefficients: risk score = 0.1379 × LTA—
0.1525 × CD160- 0.2595 × CD40LG. Each patient’s risk 

score was calculated, and patients were categorized 
as high- or low-risk based on the optimal cutoff point 
(determine from the training data set, Fig.  1B). The 
high-risk group had a worse OS (P < 0.0001) and RFS 
(P = 0.0050) than the low-risk group (Fig. 1C, D). Accord-
ing to the multivariable Cox analysis, this novel risk score 
independently predicted OS in the TCGA cohort even 
after correcting for potential confounding from the other 
clinical variables (Table 2).

Validating the prognostic signature in independent 
cohorts
To test the prognostic signature’s reproducibility in 
LAUD, we also applied this risk score formula in seven 
publicly available independent cohorts. Demographic 
data from these cohorts are presented in Table  1. All 
patients in these seven cohorts were divided into high- 
and low-risk groups based on the optimal risk-score 
cutoff that was determined from the training data set. 
Of interest, we found that patients in the high-risk 
group had an unfavorable OS than those in the low-risk 
group, especially in six of the test data sets: GSE11969 
(P = 0.0496, Fig.  2A), GSE30219 (P = 0.00019, Fig.  2B), 
GSE31210 (P = 0.0430, Fig. 2C), GSE50081 (P = 0.0350, 
Fig.  2E), GSE68465 (P = 0.0470, Fig.  2F), GSE81089 
(P = 0.0092, Fig.  2G). In the seventh group, strati-
fication based on the most optimal risk cutoff only 

Table 1  Clinical characteristics of the patients from multiple institutions

NA not available, OS overall survival

Characteristics TCGA​
n = 502

GSE11969
n = 90

GSE30219
n = 83

GSE31210
n = 226

GSE37745
n = 106

GSE50081
n = 127

GSE68465
n = 442

GSE81089
n = 105

Independent
n = 102

Age, year

 ≥ 60 356 58 46 130 64
42

108
19

314 87 53

  < 60 136 32 37 96 42 19 128 18 49

 NA 10 0 0 0 0 0 0 0 0

Sex

 Male 231 47 65 105 46 65 223 37 56

 Female 271 43 18 121 60 62 219 68 46

Smoking history

 Yes 72 45 NA 111 NA 92 300 94 60

 No 416 45 NA 115 NA 23 49 11 43

 NA 14 0 NA 0 NA 12 93 0

TNM stage

 I and II 389 65 81 226 89 127 371 78 79

III and IV 105 25 2 0 17 0 68 27 23

 NA 8 0 0 0 0 0 3 0 0

OS state

 Alive 320 50 43 35 77 51 236 48 76

 Death 182 40 40 191 29 76 206 57 26
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indicated a borderline difference between the OS in 
the high- and low-risk groups in the GSE37745 cohort 
(P = 0.0630, Fig. 2D). Furthermore, to validate the prog-
nostic value of the novel immune checkpoints-based 
signature, we also performed a prognostic meta-analy-
sis in these seven GEO cohorts and the TCGA cohort. 
The results of the analysis provide further evidence that 
this prognostic signature is a risk predictor in LAUD 
(P < 0.001) (Fig. 2H).

To assess our signature’s applicability to clinical set-
tings, we used qRT-PCR to validate this risk score in 
another independent cohort consisting of frozen samples 
from 102 patients with LUAD. This cohort’s demographic 
data are presented in Table 3. We used the risk score for-
mula to divide the patients into two groups (Fig. 3A). We 
found a significant difference in OS (P < 0.0001) and RFS 
(P = 0.00015) between the two risk groups (Fig.  3B, E). 
Since LUAD patients with different clinical stages have 
different treatment principles and prognoses [28], we 
also applied this risk score within early- (clinical stage 
I and II) and advanced-stage (clinical stage III and IV) 
subgroups. We observed that patients in these clinical-
stage subgroups who were at high risk had shorter sur-
vival than patients at low risk (Fig.  3C, D). Finally, we 
confirmed that this risk score was independently related 
to OS in these 102 patients with LAUD using qPCR data 
and multivariable Cox analysis (Table 3).

Validation of the prognostic signature in important clinical 
subsets.
We next explored the association between prognosis 
and risk score for early- and advanced-stage samples in 
the TCGA cohort since the clinical stage is known to 
affect prognosis. For the early-stage subgroup, high-
risk patients suffered shorter OS (P = 0.00012) and RFS 
(P = 0.0058) than their low-risk counterparts (Additional 
file 1: Fig. S1A, C). Similarly, in the advanced-stage sub-
group, high-risk samples had a worse OS relative to low-
risk ones (P = 0.17) (Additional file 1: Fig. S1B). However, 
among patients with advanced-stage disease, there was a 
borderline difference in RFS between the high- and low-
risk groups (P = 0.071) (Additional file 1: Fig. S1D).

Patients above the risk cutoff suggested significantly 
inferior OS in other important clinical feature subtypes 
of the TCGA cohort, including older (age ≥ 60), younger 
(age < 60), male, female, and smoker relative to non-
smokers (Additional file 2: Fig. S2). Next, considering the 
critical significance of the EGFR and KRAS mutations 
in LAUD, we further investigated the prognostic signa-
ture’s performance in patient subgroups with EGFR and 
KRAS mutation status. Our prognostic signature accu-
rately stratified varying OS for the EGFR wild-type (WT) 
vs. mutation (MUT), KRAS WT/MUT, or EGFR/KRAS 
WT subtypes (Additional file 3: Fig. S3). Last, we evalu-
ated the risk scores across the three expression subtypes 

Table 2  Univariable and multivariable Cox regression analysis of the novel immune checkpoints-based signature and overall survival 
in TCGA cohort

HR hazard ratio, CI confidence interval

Univariable analysis Multivariable analysis

Variable HR 95%CI P value HR 95%CI P value

Age

 ≥ 60 or < 60 1.0855 0.7524–1.5658 0.6609 1.3874 0.9432–2.0410 0.0963

Sex

 Male or female 1.1320 0.8254–1.5525 0.4419 0.9599 0.6849–1.3455 0.8125

Smoking history

 Yes or no 0.9332 0.6030–1.4444 0.7565 1.04711 0.6408–1.7110 0.8542

T stage

 1, 2, 3 or 4 1.9309 1.4885–2.5049  < 0.0001 1.1945 0.9648–1.4790 0.1029

Lymphatic metastasis

 Yes or no 1.0001 0.8281–1.2096  < 0.0001 1.2839 0.9116–1.8082 0.1526

TNM stage

 I, II, III or IV 1.5867 1.3685–1.8396  < 0.0001 1.3638 1.1063–1.6811 0.0037

EGFR status

 MUT or WT 1.4752 0.9718–2.2394 0.0679 1.4295 0.9034–2.2620 0.1270

KRAS status

 MUT or WT 1.2462 0.8864–1.7521 0.2054 1.3121 0.9148–1.8820 0.1397

Risk score

 High or low 2.5718 1.6286–4.0612  < 0.0001 2.5167 1.5408–4.1107 0.0002
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in LAUD: magnoid, squamoid, and bronchioid [29]. The 
risk score was also effective in stratifying patients with 
different OS in the magnoid and bronchioid subgroups, 
while showing a borderline difference in the squamiod 
subgroup (P = 0.0580) (Additional file 4: Fig. S4).

Biological pathways and inflammatory responses analysis 
of the prognostic signature
To explore this prognostic signature’s related and 
potential biological pathways, we selected the genes 
that are strongly related to the signature (Pearson 
|R|> 0.45). The results demonstrated that about 436 
genes were negatively, and 12 genes were positively 

associated with the risk score (Fig.  4A). Next, we per-
formed GO and KEGG analysis for these genes, which 
showed that they are mainly enriched in immune 
response and leukocyte activation pathways (Fig.  4B). 
Meanwhile, we sought to further investigate the rel-
evant inflammatory responses of the risk score. We 
analyzed the relationships between the seven clusters 
of metagenes identified from univariate (HCK, inter-
feron, LCK, MHC-I, MHC-II, STAT1, IgG) and risk 
score [30]. The seven clusters of metagenes found here 
broadly represent pathways related to inflammatory 
responses and immune regulation. The profiles of these 
metagenes are shown in Fig. 4C. A Gene Sets Variation 

Fig. 1  Generation of the novel immune checkpoint-based signature from a TCGA cohort. A Cellular interaction of novel immune checkpoints in 
LUAD. B Overview of risk score, survival outcomes, and gene expression distributions across included patients. C Kaplan–Meier curves of overall 
survival in all patients with LUAD, stratified by the novel immune checkpoint-based signature into a high- and low-risk group. D Kaplan–Meier 
curves of relapse-free survival in LUAD patients stratified by novel immune checkpoints-based risk signature
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Analysis (GSVA) was performed to validate the seven 
metagene clusters [31]. The findings from this analy-
sis indicated that the risk score was positively related 
to IgG, interferon, and STAT clusters, but negatively 
related to LCK and MHC-II clusters (Fig. 4D).

Immune landscapes of the prognostic signature
Since the prognostic signature is linked to immune 
response pathways, we intend to delve into the immune 
cell infiltration in patients with LUAD. Next, we com-
bined CIBERSORT with LM22, a novel method for 
estimating 22 immune cell fractions and subtypes, to 
evaluate immune cell infiltration within the training 
cohort. We found that patients in the high and low-risk 
groups had distinct profiles of immune cells (Fig.  5A). 
The high-risk patient groups exhibited higher infiltra-
tion of resting CD4 T-cells, macrophagocyte M1, but 
lower infiltration of memory B-cells and resting T-cells 
(Fig. 5B, C). Meanwhile, because some immune check-
points can construct a communication system to mod-
ulate antitumor immune responses [32], we next sought 
to explore the correlation between patient risk scores 
and several essential immune checkpoints. The Pear-
son correlation analysis suggested that the risk score 
was positively correlated with CD276. CD276, a vital 
immune checkpoint of the B7-28 family, and the immu-
notherapies targeting CD276 have achieved positive 
results in various tumors (Fig.  5D–G) [33]. This may 
indicate that patients at higher risk may benefit from 
treatment with immunotherapies that target CD276.

Relationship between the prognostic signature 
and immunotherapy responses
Nowadays, immunotherapies targeting immune check-
points are increasingly significant to cancer treatment 
and become the first-line choice in various tumors, 
especially for LAUD. Meanwhile, these novel immune 
checkpoint members also are potential and crucial can-
didate checkpoints for immunotherapies. We sought 
to find out the relationship between this signature and 
immunotherapy responses. We selected some classical 
and widespread biomarkers and analyzed their connec-
tion to the risk score [22, 32]. First, we calculated and 
evaluated the tumor mutation burden (TMB), the num-
ber of neoantigens, as well as the number of clonal and 
subclonal neoantigens among the high- and low-risk 
patients. The high-risk group exhibited higher TMB, 
and these three kinds of neoantigens (Fig.  6A–D). Sec-
ond, we also compared the protein expression of PD-L1 
in high- and low-risk patients and found a borderline, 
difference between the patients in the high- and low-
risk groups in average PD-L1 protein expression levels 
(Fig.  6H). Finally, the TIDE score, an accurate and reli-
able biomarker for immunotherapy, was also applied in 
our analysis. We systematically explored the TIDE and 
T-cell dysfunction and exclusion scores in patients from 
different groups. As expected, high-risk patients exhib-
ited lower TIDE scores and higher T-cell dysfunction and 
exclusion scores (Fig.  6E–G). However, the TIS score is 
negatively associated our risk scores, and the low-risk 
patients also demonstrated a higher TIS score than high-
risk score counterparts, which contradicts with the above 

Table 3  Univariable and multivariable Cox regression analysis of the novel immune checkpoints-based signature and overall survival 
in independent cohort

HR hazard ratio, CI confidence interval

Univariable analysis Multivariable analysis

Variable HR 95%CI P value HR 95%CI P value

Age

  ≥ 60 or < 60 1.0729 1.0205–1.1280 0.0060 1.1151 1.0474–1.1871 0.0006

Sex

 Male or female 1.1943 0.5473–2.6062 0.6556 1.0806 0.4709–2.4796 0.8548

Smoking history

 Yes or no 1.0080 0.4618–2.2002 0.9841 0.6269 0.2693–1.4593 0.2787

T stage

 1, 2, 3 or 4 1.2456 0.8004–1.9384 0.3305 0.8782 0.4234–1.8216 0.7272

Lymphatic metastasis

 Yes or no 4.2542 1.8319–9.8794 0.0008 3.4297 1.0293–11.4279 0.0447

TNM stage

 I, II, III or IV 2.4857 1.4564–4.2426 0.0060 1.8899 0.6834–5.2266 0.2200

Risk score

 High or low 3.0210 1.4103–6.4713 0.0044 3.1143 1.3997–6.9293 0.0054
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Fig. 2  Validation of the novel immune checkpoint-based signature in patients with LUAD from GEO cohorts. A–G Kaplan–Meier curves of overall 
survival in the different GEO cohorts. H A meta-analysis of the prognostic value of the immune signature model when used to predict outcomes in 
the TCGA and GEO cohorts. The overall P-value (across all models) was determined from the meta-analysis
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results (Additional file 5: Fig. S5). Together, these results 
indicated high-risk patients may be more likely to benefit 
from immunotherapies.

Discussion
High-throughput sequencing and genomics research 
has ushered in the identification of emerging biomark-
ers and therapeutic targets. These advancements have 

also improved our understanding of tumors. However, 
there is little information on which biomarkers may pre-
dict immune therapy responses and prognoses, revealing 
tumor immune phenotypes in LAUD. To improve our 
understanding of the co-stimulatory signals important in 
LAUD, we combined three crucial novel immune check-
points (LTA, CD160, and CD40LG) to create a novel sig-
nature. We used the TCGA database as a training cohort 

Fig. 3  Validating the prognostic value of novel immune checkpoints-based signature in an independent cohort of 102 frozen tissue samples. A 
The distribution of risk score, survival status and gene expression panel. B Overall survival in all patients with LUAD, separated on the basis of risk 
scores (Kaplan–Meier analysis). C Kaplan–Meier curves of overall survival in patients with early-stage (stage I and II) LUAD, stratified by risk groups. 
D Kaplan–Meier curves of overall survival in patients with advanced-stage (stage III and IV) LUAD, stratified by risk score. E Kaplan–Meier curves of 
relapse-free survival in all patients with LUAD, stratified by the risk groups
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and systematically explored the association between 
the gene expressions of some novel immune checkpoint 
members and prognostic outcomes in patients with 
LUAD. In the process, we identified a novel immune 
checkpoints-based risk signature, which is closely related 
to OS and RFS of patients with LAUD. This novel risk 
signature was validated in seven different publicly avail-
able cohorts as well as 102 samples of frozen tumor tis-
sues using qPCR data. The validity of our signature was 
further confirmed using a meta-analysis. Our results 
indicated that the risk signature was well-validated and 

significantly related to OS in various important clini-
cal and mutation subgroups. Our novel signature inde-
pendently predicted prognosis in patients with LAUD. 
We also explored and analyzed relevant mechanisms, 
immune predictors for immunotherapy, and immune 
cells infiltration of this risk signature. Thus, this signa-
ture may contribute to a deep and comprehensive under-
standing of precision immunotherapy for LAUD.

Currently, apart from B7-CD28 family members, there 
are several emerging and potential immune checkpoints 
for immunotherapy, such as some TNF superfamily 

Fig. 4  The prognostic signature-related biological pathways. A The primary genes in the novel immune checkpoint-based signature in patients 
with LUAD (Pearson |R|> 0.45). B GO and KEGG analysis of the genes. C The association between risk score and inflammatory activities in patients 
with LUAD. D corrgram of the prognostic signature and inflammatory metagenes
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Fig. 5  The immune landscape of the novel immune checkpoint-based signature in patients with LUAD. A Estimated immune cell expression 
proportion in high- and low-risk groups. B and C Detailed information on the different immune cell expression profiles across risk groups. D, 
F, G, and H The correlation between risk score and several critical immune checkpoints. *, **, and *** represent P < 0.05, P < 0.01, and P < 0.001, 
respectively
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members [16]. After analyzing the association between 
these novel immune checkpoints and prognoses in 
LUAD, we determined the most significant prognos-
tic genes in these novel immune checkpoints, including 
protective (LTA) and risky (CD160 and CD40LG) genes. 
Regarding the protective gene, LTA, a proinflamma-
tory cytokine, belongs to the TNF superfamily, involved 
in the inflammatory and immune responses [34]. This 
molecule also can assist lymphocytes and stromal cells 
to induce cytotoxic effects on tumor cells [34, 35]. It 
was reported that the polymorphisms of the LTA gene 
are closely related to cancer risk, including LAUD and 
other adenocarcinoma malignancies [36]. Meanwhile, 
researchers indicated that depleting LTA-expressing lym-
phocytes with LTA-specific monoclonal antibodies may 
be useful in treating autoimmune diseases [37]. Also, in 
terms of risky genes, CD160—also known as BY55, is 
an immunoglobulin-like, glycosylphosphatidylinositol-
anchored protein and expressed on natural killer cells, γδ 
T-cells, and a subset of CD4 + and CD8 + T-cells [38, 39]. 
CD160 was proven to bind to herpesvirus entry mediator 
(HEVM) with high affinity, which induces robust natu-
ral cells effector activity and suppressed T-cell responses 
in vitro [40, 41]. B and T lymphocyte attenuator (BTLA) 
is a novel checkpoint receptor for immunotherapy, while 
CD160 shares the same ligands with it as BTLA repaired 
receptor, suggesting that CD160 inhibitory also may be 
a promising target for immunotherapy [27]. CD40LG is 

the ligand of CD40, and after they get combined, it will 
stimulate proinflammatory gene expression, including 
interleukins (IL)-1, IL-6, IL-8, IL-12, TNF-α, IFN-γ, and 
monocytic chemoattractant protein (MCP)-1. The activa-
tion of the CD40/CD40LG system is a major contributor 
to carcinogenesis. When CD40LG antibodies are used to 
disrupt the CD40/CD4OLG system’s function, it leads 
to the suppression of tumor cells [42]. However, some 
researchers demonstrated that the membrane-stable 
CD40LG mutant gene transfer into the CD40-positive 
LUAD cell line. This gene transfer reduces cell prolif-
eration and enhances apoptosis [43]. Thus, the role of 
CD40LG in LUAD is still uncertain and requires further 
in-depth study and exploration. Similarly, the functions 
of LTA and CD160 in LUAD are unclear, and more rel-
evant research are urgently needed.

We also investigated the potential genetic mecha-
nisms of this signature. Risk-score-related genes were 
mainly enriched in immune response and leukocyte 
activation processes and pathways after correlation 
analysis. We analyzed seven immune-related metagenes 
to better understand the relationship between risk sig-
nature and immune responses. We found that risk score 
was negatively associated with LCK and MHC_II clus-
ters, suggesting that high-risk patients have decreased 
B-cell function and impaired antigen-presentation 
ability. We also found higher infiltration of resting 
type CD4 + T-cells in high-risk patients, suggestive of 

Fig. 6  Distribution of immunotherapy response makers across risk groups. A, B, C, and D The distribution of TMB, number of neoantigens and 
clonal neoantigens, as well as the number of subclonal neoantigens across risk groups. E The distribution of PD-L1 expression across risk groups. F 
and H The distribution of TIDE score, T-cell exclusion score, and T-cell dysfunction score across risk groups. *, **, and *** represent P < 0.05, P < 0.01, 
and P < 0.001, respectively
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immunosuppression. Next, we found that the patient 
risk score was positively associated with the expres-
sion of CD276. CD276 is a crucial immune checkpoint 
member of the B7-28 family that plays a pivotal role in 
inhibiting T-cell function, and immunotherapies that 
target CD276 have achieved positive results in various 
tumors [33]. This showed that patients at elevated risk 
may benefit from immunotherapies that target CD276. 
We also found that patients at elevated risk exhibited 
higher average TMB levels, more T-cell dysfunction, 
greater exclusion scores, lower TIDE scores. Of inter-
est, despite this trend, PD-L1 protein expression dif-
fered across risk groups. PD-L1 and TMB are currently 
the most reliable biomarkers for predicting responses 
to PD-1/PD-L1 immunotherapy [44, 45]. These find-
ings suggest that high-risk patients are mostly immu-
nosuppressed and are therefore better candidates for 
immunotherapy.

Although this signature was successfully validated 
across multiple cohorts and appeared to act as an 
independent prognostic factor for LUAD, this study 
had several limitations. Firstly, it was a retrospective 
study that should be validated in prospective, large-
scale cohorts. Secondly, we only examined some novel 
immune checkpoint genes, which may limit our sig-
nature’s predictive capacity. However, this new classi-
fier also provides more information on the state of the 
TME. Finally, none of the patients in this study under-
went immunotherapy, thus our prediction of immu-
notherapy responsiveness is merely theoretical. Future 
studies should address these limitations.

In conclusion, we found that analyzing tumor expres-
sion of LTA, CD160, and CD40LG represents a novel 
immune signature that may be useful for predicting 
prognosis and response to immunotherapy in patients 
with LUAD. Further validation of these findings may 
improve the ability to shed some light on screening 
appropriate patients for are most likely to benefit from 
immunotherapy, enabling increasingly personalized, 
evidence-based care.
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