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Abstract 

Background:  Conventional and unconventional lipid parameters are associated with diabetes risk, the comparative 
studies on lipid parameters for predicting future diabetes risk, however, are still extremely limited, and the value of 
conventional and unconventional lipid parameters in predicting future diabetes has not been evaluated. This study 
was designed to determine the predictive value of conventional and unconventional lipid parameters for the future 
development of diabetes.

Methods:  The study was a longitudinal follow-up study of 15,464 participants with baseline normoglycemia. At 
baseline, conventional lipid parameters such as low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), total 
cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) were measured/calculated, and unconventional lipid 
parameters such as non-HDL-C, remnant cholesterol (RC), LDL/HDL-C ratio, TG/HDL-C ratio, non-HDL/HDL-C ratio, TC/
HDL-C ratio and RC/HDL-C ratio were calculated. Hazard ratio (HR) and 95% confidence interval (CI) were estimated by 
Cox proportional hazard regression adjusting for demographic and diabetes-related risk factors. The predictive value 
and threshold fluctuation intervals of baseline conventional and unconventional lipid parameters for future diabetes 
were evaluated by the time-dependent receiver operator characteristics (ROC) curve.

Results:  The incidence rate of diabetes was 3.93 per 1000 person-years during an average follow-up period of 
6.13 years. In the baseline non-diabetic population, only TG and HDL-C among the conventional lipid parameters 
were associated with future diabetes risk, while all the unconventional lipid parameters except non-HDL-C were sig-
nificantly associated with future diabetes risk. In contrast, unconventional lipid parameters reflected diabetes risk bet-
ter than conventional lipid parameters, and RC/HDL-C ratio was the best lipid parameter to reflect the risk of diabetes 
(HR: 6.75, 95% CI 2.40–18.98). Sensitivity analysis further verified the robustness of this result. Also, time-dependent 
ROC curve analysis showed that RC, non-HDL/HDL-C ratio, and TC/HDL-C ratio were the best lipid parameters for 
predicting the risk of medium-and long-term diabetes.

Conclusions:  Unconventional lipid parameters generally outperform conventional lipid parameters in assessing and 
predicting future diabetes risk. It is suggested that unconventional lipid parameters should also be routinely evalu-
ated in clinical practice.
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Background
The high prevalence of diabetes and its extensive compli-
cations have created a huge disease burden for mankind, 
which is one of the leading causes of death and disability 
worldwide [1–3]. Diabetes is known to be associated with 
a series of interrelated abnormalities of plasma lipids 
and lipoproteins. Diabetic individuals generally exhibit 
a pattern of atherogenic risk factors compared with indi-
viduals without diabetes [4]. Among them, metabolic 
disturbances of triglyceride-rich lipoproteins are thought 
to be key to the pathophysiology of this lipids-induced 
atherosclerosis, including increased hepatic secretion of 
VLDL and impaired clearance of VLDL and gut-synthe-
sized chylomicrons [4–7]. Clinically, the main manifesta-
tions in conventional lipids are decreased HDL-C levels 
and increased TG levels [4, 8], while that in unconven-
tional lipids are elevated levels of RC, TC/HDL ratio, 
non-HDL-C, TG/HDL-C ratio, non-HDL/HDL-C ratio, 
and LDL/HDL-C ratio [9–12]. These dyslipidemia char-
acteristics are associated with an increased risk of car-
diovascular disease [13–15], which is the leading cause 
of death in patients with type 2 diabetes [16]. Therefore, 
early identification of the above-mentioned diabetic 
dyslipidemia manifestations can effectively prevent and 
intervene the risk of diabetes, which is all-important for 
reducing the incidence of diabetes and diabetes-related 
mortality. In recent years, a series of studies have been 
carried out on the relationship between conventional 
and unconventional lipid parameters and the risk of dia-
betes [8–12, 17, 18]; on the whole, unconventional lipid 
parameters appear to have good application value, and 
they reveal excellent performance in the assessment and 
prediction of diabetes risk. However, comparative stud-
ies on lipid parameters for predicting future diabetes 
risk are still relatively limited [10, 18, 19], and the value 
of conventional and unconventional lipid parameters in 
predicting future diabetes has not been evaluated. To 
address this question, in the current study, we investi-
gated the independent association and predictive value of 
conventional and unconventional lipid parameters (addi-
tion the RC/HDL-C ratio on the basis of previous stud-
ies) with the future risk of diabetes based on NAGALA 
large longitudinal cohort study data.

Methods
Data sources and research population
In this current longitudinal analysis, we used NAGALA 
cohort data from 1994 to 2016 to investigate the 

predictive value of conventional and unconventional 
lipid parameters for future diabetes risk. The NAGALA 
cohort data has been uploaded, by Professor Okamura, to 
the Dryad database for public sharing [20], and a detailed 
description of the research design has been published 
previously [21]. In short, NAGALA is a longitudinal 
cohort study based on the health check-up population, 
which began in 1994 and continuously recruited peo-
ple who took health examinations at Murakami Memo-
rial Hospital (follow-up response rate was approximately 
60%) to assess non-communicable diseases and their 
related risk factors. In the current research dataset, 
12,498 male and 8446 female participants who registered 
to participate in the research from 1994 to 2016 were 
included, and the last visit was on December 31, 2016. 
According to the purpose of the study, we excluded par-
ticipants with diabetes, impaired fasting glucose, liver 
disease, excessive drinking [22], incomplete data, base-
line medication, and unexplained withdrawal from the 
survey. Figure  1 shows the current research population 
screening process.

Ethical approval and consent to participation
In the initial survey, the Murakami Memorial Hos-
pital Institutional Ethics Review Board approved the 
NAGALA cohort study, and informed written consent 
was obtained from each participant for the use of their 
data (IRB2018-09-01) [21]. This study was a secondary 
analysis of data from the NAGALA cohort. The research 
scheme has been approved by the Ethics Review Commit-
tee of Jiangxi Provincial People’s Hospital (IRB2021-066), 
and the entire process followed the Helsinki Declaration. 
See STROBE statement in Additional file 1: Text S1.

Population and lifestyle data
Information on age, sex, smoking and drinking, medi-
cation history, disease history, and exercise habits was 
self-reported. Blood pressure, weight, waist circumfer-
ence, height, and body mass index (BMI) were measured 
according to the standard protocols. In terms of exercise 
habits, participants were assessed for the frequency of 
physical exercise per week, and more than one time per 
week was considered an exercise habit. Drinking status 
was assessed based on the amount and type of weekly 
alcohol consumption by participants in the past month 
and participants were classified as non/small drinkers, 
light drinkers, moderate drinkers, and heavy drinkers 
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[22]. For smoking status, participants were classified as 
nonsmokers, past smokers, and current smokers.

Determination and calculation of biomarkers
Venous blood samples were drawn from study partici-
pants after fasting for > 8  h, and the concentrations of 
HDL-C, gamma-glutamyl transferase (GGT), fasting 
plasma glucose (FPG), TC, aspartate aminotransferase 
(AST), TG, hemoglobin A1c (HbA1c), and alanine ami-
notransferase (ALT) were determined by the automatic 
biochemical analyzer in a standard laboratory.

The lipid parameters were calculated as follows:
TG/HDL-C ratio = TG/HDL-C [10];
TC/HDL-C ratio = TC/HDL-C [10];
Non-HDL-C = TC − HDL-C [11];
LDL-C = 90% non-HDL-C − 10%TG [23];
LDL/HDL-C ratio = LDL-C/HDL-C [12];
Non-HDL/HDL-C ratio = non-HDL-C/HDL-C [23];
RC = Non-HDL-C − LDL-C [24];
RC/HDL-C ratio = RC/HDL-C [25].

Determination of diabetes fatty liver, and metabolic score 
for insulin resistance (METS‑IR)
The diagnosis of diabetes was based on follow-up physi-
cal examination information of the participants. Refer-
ring to the criteria of the American Diabetes Association 
[26], participants were diagnosed with diabetes if they 
measured HbA1c ≥ 6.5% or FPG ≥ 7.0  mmol/L dur-
ing follow-up. Additionally, the diabetes diagnosis self-
reported by the participants during follow-up was also 
included in the analysis.

Fatty liver was diagnosed by gastroenterologists based 
on the following features of abdominal Doppler ultra-
sound: vascular blurring, liver brightness, deep attenua-
tion, and hepatorenal echo contrast [27].

METS-IR: Ln [BMI × (TG + 2FPG)]/[Ln(HDL-C)] [28].

Statistical analysis
Descriptive data were expressed as the count (percent-
age) of categorical variables and the median (interquar-
tile range) or mean (standard deviation) of continuous 

Fig. 1  Study profile
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variables. Pearson chi-square test for categorical vari-
ables and the Mann–Whitney U test or Student’s t-test 
for continuous variables were used to compare the dif-
ferences between groups. In addition, to further quan-
tify the differences between groups, we also calculated 
the standardized differences between groups (the differ-
ence > 10% was considered significant) [29, 30].

Several ancillary analyses were carried out before eval-
uating the association of lipid parameters with diabetes 
risk. Firstly, the Pearson correlation coefficient was calcu-
lated to evaluate the correlation of lipid parameters with 
METS-IR, in which the non-normal continuous variables 
were analyzed after the Box-Cox normal transformation 
[31]. Secondly, the collinearity of covariates was checked 
by multiple linear regression, in which covariates with a 
variance inflation factor (VIF)  > 5 would not be included 
in the subsequent multivariate adjustment model [32]. 
Thirdly, the proportional hazard assumption was checked 
by visual inspection of the Kaplan–Meier (KM) curve.

The associations and magnitudes of associations 
between baseline conventional and unconventional lipid 
parameter levels and follow-up endpoints were estimated 
using Cox proportional hazard regression model, and the 
corresponding HR and 95% CI were recorded. To system-
atically consider the influence of confounding factors on 
the outcome, we evaluated four multivariate Cox regres-
sion models based on epidemiology [33]. In the first 
model (Model 1), the effects of the principal basic demo-
graphic data (age, sex, and BMI) on the main endpoints 
were considered. On this basis, the second model fur-
ther incorporated important risk factors such as exercise 
habits, smoking status, drinking status, and fatty liver 
(Model 2). Model 3 further adjusted the related param-
eters of blood pressure and glucose based on model 2. To 
fully consider the potential role of covariates, we took the 
fourth model as the final model to adjust all non-collinear 
variables except lipid parameters (Model 4).

We conducted three sensitivity analyses based on 
model 4 to assess the robustness of the relationship 
between lipid parameters and diabetes risk. Sensitivity-1: 
exclude people diagnosed with diabetes within 2 years of 
entry into the study cohort to reduce the potential impact 
of reverse causality. Sensitivity-2: to minimize confound-
ing in the relationship between lipid parameters and dia-
betes due to baseline fatty liver, we limited the analysis to 
people without fatty liver. Sensitivity-3: participants with 
high blood pressure at baseline were excluded because 
hypertension was associated with an increased risk of 
diabetes.

Based on the results of the association analysis, we fur-
ther drew time-dependent ROC curves and calculated 
the area under the 3-year, 6-year, 9-year, and 12-year 
time-dependent ROC curves to quantify the accuracy 

of lipid parameters for predicting the future diabetes 
risk, and calculated the corresponding best threshold. 
Additionally, to verify the validity of best thresholds 
of lipid parameters for predicting future diabetes risk, 
we also fitted the shape of the dose–response correla-
tion between lipid parameters and diabetes risk using a 
4-knots restricted cubic splines (RCS, based on model 4) 
analysis nested in Cox regression [34]. By visually assess-
ing the shape of the curve, the value of the lipid param-
eter corresponding to HR = 1 was determined as the 
best threshold. All analyses were done using the statisti-
cal programming language R (version 3.4.3; www.r-​proje​
ct.​org) and Empower (R) (version 3.4.3; X&Y Solutions, 
Inc., Boston, MA, USA). All tests were two-tailed and the 
significance was set to P < 0.05.

Results
Baseline characteristics
The study population consisted of 15,464 baseline dia-
betes-free participants, with a mean age of 43.7 (8.9) 
years. During a mean follow-up of 6.13 years (min.–max.: 
0.46–13.14 years), 373 participants were diagnosed with 
new-onset diabetes (3.93 per 1000 person-years). Differ-
ences in baseline characteristics of the study population 
were reported in Table 1 according to whether or not dia-
betes will develop in the future. As expected, there were 
already significant differences at baseline among peo-
ple with or without diabetes in the future (All P < 0.05). 
Notably, those without diabetes showed the greatest dif-
ferences in baseline glucose metabolism (FPG, HbA1c, 
METS-IR) compared with those who developed diabetes 
during follow-up (Standardized difference > 100%). Sec-
ondly, judging from the demographic characteristics of 
the data, there were big differences in weight, waist cir-
cumference, and BMI between the two groups (Standard-
ized difference: 76–92%). Among the lipid parameters, 
except non-HDL-C, LDL-C, and TC, all conventional 
and unconventional lipid parameters have shown great 
differences in the early stage of physical examination 
(Standardized difference > 70%). Finally, it is also worth 
mentioning that the difference between the two groups 
in the population with fatty liver at baseline should also 
be noted (Standardized difference: 99%). These findings 
suggested that early physical examination and assessment 
of these widely differing baseline characteristics may be 
useful for predicting future diabetes risk.

Correlation between baseline conventional 
and unconventional lipid parameters and METS‑IR
Pearson correlation analysis showed that all conven-
tional and unconventional lipid parameters were cor-
related with METS-IR at baseline (Additional file  3: 
Table  S1). In contrast, the lipid parameter/HDL-C ratio 

http://www.r-project.org
http://www.r-project.org
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and HDL-C showed stronger statistical linear correla-
tions with METS-IR than other lipid parameters (Pear-
son r = −  0.7139 for HDL-C; Pearson r = 0.7324 for 
TC/HDL-C ratio; Pearson r = 0.7447 for TG/HDL-C 

ratio; Pearson r = 0.7049 for LDL/HDL-C ratio; Pearson 
r = 0.7318 for non-HDL/HDL-C ratio; Pearson r = 0.7139 
for RC/HDL-C ratio).

Table 1  Baseline demographic, lifestyle, and laboratory characteristics in participants with and without diabetes

Values were expressed as mean (SD) or medians (quartile interval) or n (%)

BMI body mass index; WC waist circumference; ALT alanine aminotransferase; AST aspartate aminotransferase; GGT​ gamma-glutamyl transferase; HDL-C high-density 
lipoprotein cholesterol; TC total cholesterol; Non-HDL-C non-high-density lipoprotein-cholesterol; LDL-C low density lipoprotein cholesterol; TG triglyceride; RC 
remnant cholesterol; HbA1c hemoglobin A1c; FPG fasting plasma glucose; SBP systolic blood pressure; DBP diastolic blood pressure; METS-IR metabolic score for 
insulin resistance

Non-diabetic Diabetes Standardized difference, % 
(95% CI)

P value

Participants, n 15,091 373

Sex 49 (39, 59) < 0.001

 Women 6947 (46.03%) 87 (23.32%)

 Men 8144 (53.97%) 286 (76.68%)

Age, years 42.00 (37.00–50.00) 46.00 (41.00–53.00) 40 (30, 51) < 0.001

Height, m 1.65 (0.08) 1.67 (0.09) 19 (9, 29) < 0.001

Weight, kg 60.41 (11.48) 69.84 (13.32) 76 (65, 86) < 0.001

BMI, kg/m2 22.04 (3.07) 25.03 (3.82) 86 (76, 97) < 0.001

WC, cm 76.26 (8.97) 85.08 (10.20) 92 (82, 102) < 0.001

ALT, U/L 17.00 (13.00–23.00) 24.00 (18.00–39.00) 67 (56, 77) < 0.001

AST, U/L 17.00 (14.00–21.00) 20.00 (16.00–26.00) 44 (34, 55) < 0.001

GGT, U/L 15.00 (11.00–22.00) 24.00 (17.00–36.00) 47 (37, 58) < 0.001

HDL-C, mmol/L 1.42 (1.17–1.71) 1.13 (0.96–1.32) 77 (66, 87) < 0.001

TC, mmol/L 5.12 (0.86) 5.43 (0.90) 35 (25, 46) < 0.001

TG, mmol/L 0.72 (0.49–1.11) 1.21 (0.86–1.93) 73 (62, 83) < 0.001

LDL-C, mmol/L 3.03 (2.55–3.55) 3.46 (2.93–3.95) 52 (42, 63) < 0.001

Non-HDL-C, mmol/L 3.59 (3.00–4.23) 4.20 (3.57–4.82) 65 (54, 75) < 0.001

RC, mmol/L 0.53 (0.43–0.67) 0.71 (0.58–0.91) 80 (70, 91) < 0.001

TC/HDL-C ratio 3.50 (2.86–4.39) 4.71 (3.86–5.78) 87 (77, 97) < 0.001

TG/HDL-C ratio 0.50 (0.30–0.89) 1.09 (0.64–1.93) 74 (63, 84) < 0.001

LDL/HDL-C ratio 2.12 (1.59–2.83) 3.01 (2.38–3.85) 83 (73, 93) < 0.001

Non-HDL/HDL-C ratio 2.50 (1.86–3.39) 3.71 (2.86–4.78) 87 (77, 97) < 0.001

RC/HDL-C ratio 0.53 (0.43–0.67) 0.71 (0.58–0.91) 78 (67, 88) < 0.001

FPG, mmol/L 5.15 (0.41) 5.61 (0.36) 121 (111, 132) < 0.001

HbA1c, % 5.16 (0.32) 5.53 (0.37) 107 (97, 118) < 0.001

METS-IR 30.98 (6.36) 38.58 (7.74) 107 (97, 118) < 0.001

SBP, mmHg 114.31 (14.91) 122.03 (15.59) 51 (40, 61) < 0.001

DBP, mmHg 71.44 (10.47) 77.18 (10.23) 55 (45, 66) < 0.001

Fatty liver 2518 (16.69%) 223 (59.79%) 99 (89, 109) < 0.001

Exercise habits 2658 (17.61%) 51 (13.67%) 11 (1, 21) 0.048

Drinking status 21 (11, 31) < 0.001

 Non/small 11,539 (76.46%) 266 (71.31%)

 Light 1718 (11.38%) 40 (10.72%)

 Moderate 1323 (8.77%) 37 (9.92%)

 Heavy 511 (3.39%) 30 (8.04%)

Smoking status 45 (35, 55) < 0.001

 None 8886 (58.88%) 145 (38.87%)

 Past 2875 (19.05%) 77 (20.64%)

 Current 3330 (22.07%) 151 (40.48%)
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Relationship between baseline conventional 
and unconventional lipid parameters and future diabetes
Before performing multivariate Cox regression analy-
sis, our data passed the log-linear assumption and the 
proportional hazard assumption tests. Additional file  3: 
Table  S2 shows the collinearity screening procedure 
according to VIF, and the collinear variables waist cir-
cumference, SBP, and weight will not be included in the 
following multivariable model. Additional file  2: Fig. 
S1 takes the ratio of RC/HDL-C as an example to show 
the KM curve corresponding to the quartiles of the RC/
HDL-C ratio, and the results showed that there was no 
intersection between the KM curves.

Based on epidemiology, we ran four multivariate Cox 
regression models to evaluate the relationship of base-
line conventional and unconventional lipid param-
eters with future diabetes risk (Table  2). In the models 
adjusted for demographic and lifestyle factors (Model 1 
and Model 2), all lipid parameters were associated with 
future diabetes risk. However, the associations between 
LDL-C, non-HDL-C, and TC with the risk of diabetes 
disappeared after further consideration of the effects of 
blood pressure and glucose (Model 3). In the final model 
(Model 4), we adjusted all non-collinear variables except 
lipid parameters and obtained similar results to Model 
3. Among the conventional lipid parameters, only TG 
and HDL-C were related to the risk of diabetes, while 
all unconventional lipid parameters except non-HDL-C 
were associated with the risk of diabetes. It is worth men-
tioning that by comparing the HR of lipid parameters 
corresponding to the risk of diabetes, we found that RC/

HDL-C ratio can better reflect the risk of developing dia-
betes in the future than other lipid parameters (HR: 6.75, 
95% CI 2.40–18.98).

Table 2  Association of baseline conventional and unconventional lipid parameters and future diabetes

Model 1 adjusted for sex, age and BMI

Model 2 adjusted for sex, age, BMI, exercise habits, fatty liver, drinking status and smoking status

Model 3 adjusted for sex, age, BMI, exercise habits, fatty liver, drinking status, smoking status, SBP, FPG and HbA1c

Model 4 adjusted for sex, age, BMI, exercise habits, fatty liver, drinking status, smoking status, SBP, FPG, HbA1c, height, ALT, AST and GGT​

HR hazard ratios; CI confidence interval; other abbreviations as in Table 1

HR (95% CI)

Model 1 Model 2 Model 3 Model 4

HDL-C 0.32 (0.22, 0.47) 0.49 (0.33, 0.73) 0.55 (0.38, 0.81) 0.53 (0.36, 0.78)

TC 1.18 (1.05, 1.33) 1.13 (1.00, 1.28) 0.94 (0.83, 1.06) 0.92 (0.81, 1.04)

TG 1.48 (1.34, 1.63) 1.34 (1.20, 1.50) 1.21 (1.07, 1.36) 1.20 (1.06, 1.35)

LDL-C 1.27 (1.10, 1.46) 1.17 (1.01, 1.35) 0.94 (0.81, 1.09) 0.93 (0.80, 1.08)

Non-HDL-C 1.33 (1.19, 1.50) 1.21 (1.07, 1.37) 1.00 (0.88, 1.13) 0.99 (0.87, 1.12)

RC 4.55 (3.16, 6.55) 3.06 (2.03, 4.60) 1.72 (1.11, 2.67) 1.66 (1.07, 2.58)

TC/HDL-C ratio 1.34 (1.24, 1.44) 1.21 (1.12, 1.32) 1.11 (1.02, 1.21) 1.11 (1.02, 1.21)

TG/HDL-C ratio 1.34 (1.25, 1.42) 1.26 (1.16, 1.36) 1.19 (1.09, 1.30) 1.18 (1.08, 1.29)

Non-HDL/HDL-C ratio 1.34 (1.24, 1.44) 1.21 (1.12, 1.32) 1.11 (1.02, 1.21) 1.11 (1.02, 1.21)

LDL/HDL-C ratio 1.39 (1.26, 1.52) 1.24 (1.11, 1.37) 1.11 (1.00, 1.24) 1.12 (1.00, 1.24)

RC/HDL-C ratio 25.49 (9.69, 67.06) 8.13 (2.84, 23.24) 6.08 (2.17, 17.08) 6.75 (2.40, 18.98)

Table 3  Adjusted hazard ratios and 95% confidence intervals for 
diabetes risk associated with the lipid parameters in different test 
populations: sensitivity analysis

Note 1: (1) sensitivity-1: subjects with a follow-up of less than 3 years were 
excluded (n = 11,237); (2) sensitivity-2: subjects diagnosed with fatty liver at 
baseline were excluded. (n = 12,823); (3) sensitivity-3: excluding subjects whose 
SBP ≥ 140 mmHg or DBP ≥ 90 mmHg (n = 14,878);

Note 2: sensitivity-1 adjusted for sex, age, BMI, habits of exercise, drinking 
status, smoking status, fatty liver, SBP, FPG, HbA1c, height, ALT, AST and GGT. 
Sensitivity-2 adjusted for sex, age, BMI, habits of exercise, drinking status, 
smoking status, SBP, FPG, HbA1c, height, ALT, AST and GGT. Sensitivity-3 
adjusted for sex, age, BMI, habits of exercise, drinking status, smoking status, 
fatty liver, FPG, HbA1c, height, ALT, AST and GGT​

HR hazard ratios; CI confidence interval; other abbreviations as in Table 1

HR (95% CI)

Sensitivity-1 Sensitivity-2 Sensitivity-3

HDL-C 0.63 (0.41, 0.99) 0.49 (0.29, 0.82) 0.50 (0.34, 0.75)

TC 0.99 (0.86, 1.14) 0.89 (0.73, 1.08) 0.97 (0.85, 1.10)

TG 1.17 (1.01, 1.34) 1.24 (1.00, 1.52) 1.30 (1.15, 1.46)

LDL-C 1.00 (0.85, 1.19) 0.94 (0.75, 1.18) 0.98 (0.84, 1.14)

Non-HDL-C 1.04 (0.90, 1.20) 0.99 (0.81, 1.20) 1.04 (0.92, 1.19)

RC 1.64 (0.98, 2.74) 1.74 (0.82, 3.72) 2.25 (1.44, 3.53)

TC/HDL-C ratio 1.10 (1.00, 1.21) 1.17 (1.01, 1.35) 1.15 (1.05, 1.26)

TG/HDL-C ratio 1.14 (1.02, 1.27) 1.19 (1.03, 1.37) 1.23 (1.13, 1.34)

Non-HDL/HDL-C 
ratio

1.10 (1.00, 1.21) 1.17 (1.01, 1.35) 1.15 (1.05, 1.26)

LDL/HDL-C ratio 1.11 (0.98, 1.26) 1.20 (1.00, 1.44) 1.16 (1.03, 1.29)

RC/HDL-C ratio 3.69 (1.09, 12.47) 14.01 (2.75, 71.47) 7.73 (2.68, 22.28)
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Sensitivity analysis
After adjusting for covariates based on model 4, the 
results of the three sensitivity analyses (Table  3) were 
consistent with the main results of Table  2: there were 
no significant correlations of LDL-C, non-HDL-C, TC 
with diabetes risk, while other lipid parameters were all 
significantly correlated with diabetes risk, and the HR of 
diabetes risk associated with RC/HDL-C ratio was higher 
than other lipid parameters.

Predictive value of conventional and unconventional lipid 
parameters for future diabetes risk
Time-dependent ROC curves were drawn to evalu-
ate the predictive value of HDL-C, TG, and unconven-
tional lipid parameters for future diabetes risk (Table 4). 
Figure  2 shows the area under the curve of these lipid 
parameters over time. Overall, the predictive value of all 
lipid parameters for diabetes risk decreased over time. 
Furthermore, relatively speaking, the predictive value 
of unconventional lipid parameters for the risk of dia-
betes was slightly higher than that of conventional lipid 
parameters. Among them, RC/HDL-C ratio had the best 
predictive value for predicting short-term diabetes risk, 
non-HDL/HDL-C ratio and LDL/HDL-C ratio had the 
best predictive value for the medium-term diabetes risk, 
while non-HDL/HDL-C ratio RC and TC/HDL-C ratio 
had the best predictive value for the medium-and long-
term diabetes risk.

Threshold analysis of conventional and unconventional 
lipid parameters for predicting the risk of diabetes 
in the future
Using the time-dependent ROC curve, we also calculated 
the best thresholds of conventional and unconventional 
lipid parameters for predicting the risk of diabetes at 3, 
6, 9, and 12 years. As can be seen from Fig. 3, despite the 
passage of time, the thresholds of all lipid parameters 

used to predict future diabetes risk only fluctuated within 
a narrow range (HDL-C: 1.3602–1.5025; TG: 0.8242–
0.8580; RC: 0.5578–0.6280; TC/HDL-C ratio: 3.6975–
3.9741; TG/HDL-C ratio: 0.5983–0.7276; LDL-HDL-C 
ratio: 2.2192–2.3191; Non-HDL/HDL-C ratio: 2.6975–
2.9741; RC/HDL-C ratio: 0.3509–0.3681). Moreover, 
through RCS, we confirmed that the thresholds of HDL-
C, TG, RC, TC/HDL-C ratio, TG/HDL-C ratio, LDL/
HDL-C ratio, non-HDL/HDL-C ratio, and RC/HDL-C 
ratio were 1.46 mmol/L, 0.90 mmol/L, 0.58 mmol/L, 3.75, 
0.71, 2.30, 2.75 and 0.36, respectively (Additional file  2: 
Fig. S2A–H). In the threshold analysis of RCS and ROC, 
the thresholds of all lipid parameters were within the sta-
ble fluctuation range, except for the slight differences in 
the threshold levels of TG.

Discussion
There were four main findings in this longitudinal cohort 
study: (1) In the baseline non-diabetic population, only 
TG and HDL-C among the conventional lipid param-
eters were associated with future diabetes risk, while all 
the unconventional lipid parameters except non-HDL-
C were significantly associated with the future risk of 
diabetes. (2) Compared with other conventional and 
unconventional lipid parameters, the RC/HDL-C ratio 
can better reflect the future diabetes risk. (3) Compared 
with conventional lipid parameters, unconventional lipid 
parameters were of higher value for predicting the diabe-
tes risk in the future. (4) RC/HDL-C ratio had the best 
predictive value for the short-term diabetes risk, non-
HDL/HDL-C ratio and LDL/HDL-C ratio for the short-to 
medium-term diabetes risk, while RC, non-HDL/HDL-C 
ratio, and TC/HDL-C ratio for the mid-to long-term and 
long-term diabetes risk.

Diabetes mellitus, one of the most rapidly growing 
chronic non-communicable diseases in this century, is a 
complex metabolic disease that presents with different 

Table 4  Best threshold and areas under the time-dependent receiver operating characteristic curves for each lipid parameters 
predicting future diabetes risk

AUC​ area under the curve; other abbreviations as in Table 1

3-years 6-years 9-years 12-years
AUC (best threshold) AUC (best threshold) AUC (best threshold) AUC (best threshold)

HDL-C 0.55142 (1.5025) 0.55667 (1.5025) 0.55579 (1.3602) 0.52807 (1.4792)

TG 0.66443 (0.8242) 0.66771 (0.8468) 0.67733 (0.8242) 0.64812 (0.8580)

RC 0.66802 (0.6280) 0.69109 (0.5832) 0.68682 (0.5705) 0.66872 (0.5578)

TC/HDL-C ratio 0.6753 (3.9741) 0.7185 (3.7134) 0.69438 (3.6975) 0.66934 (3.7351)

TG/HDL-C ratio 0.6731 (0.6567) 0.69201 (0.5983) 0.68738 (0.6118) 0.65279 (0.7276)

LDL/HDL-C ratio 0.67259 (2.3345) 0.71343 (2.3191) 0.6872 (2.2192) 0.6591 (2.3001)

Non-HDL/HDL-C ratio 0.67532 (2.9741) 0.71851 (2.7134) 0.69438 (2.6975) 0.66935 (2.7351)

RC/HDL-C ratio 0.68861 (0.3610) 0.69989 (0.3509) 0.67917 (0.3645) 0.65162 (0.3681)
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subphenotypes according to various etiologies [35, 36]. 
The most common one is the metabolic syndrome-
related phenotype, which is mainly characterized by 
dyslipidemia and obesity. Effective management of these 
complex lipid metabolic disorders and obesity is an 
important part of comprehensive diabetes prevention, 
treatment, and care, and can reduce the risk of cardio-
vascular morbidity and mortality [37]. The relationship 
between conventional lipid parameters HDL-C, TC, 
LDL-C, and TG and diabetes has been widely studied 
in the past, in which high concentrations of TG and low 
concentrations of HDL-C significantly increased diabetes 
risk has become the consensus of almost every scholar 
in the field of metabolism [37–39], but there is still some 
debate about the direct relationship between LDL-C, TC, 
and diabetes [10, 40, 41]. However, it should be men-
tioned that in terms of treatment, reducing LDL-C levels 

is still the primary task of lipid management in patients 
with diabetes [37], and multifaceted treatment strate-
gies for hyperlipidemia, hyperglycemia, and hypertension 
can further improve the health status of diabetic patients 
[42]. In the current study, we also observed, from the 
comparison of baseline information, that compared with 
those who did not develop diabetes during the follow-up 
period, people with new-onset diabetes showed signifi-
cant differences in all conventional and unconventional 
lipid parameters except non-HDL-C, LDL-C, and TC 
at baseline. Moreover, in regression analysis, when only 
adjusting for lifestyle and demographic data, all conven-
tional lipid parameters were associated with future dia-
betes risk. In further covariation-adjusted models, the 
associations of LDL-C and TC with diabetes risk disap-
peared. A similar situation was also described in the work 
of Khaloo et  al. [10]. This phenomenon suggested that 

Fig. 2  The area under the receiver operator characteristics curve of lipid parameters varying with time to predict the future risk of diabetes. AUC​ 
area under the curve
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LDL-C and TC may play a certain role in the risk of dia-
betes in the future, but this role may be weak and unsta-
ble compared with other lipid parameters.

Unconventional lipid parameters such as lipid ratio, 
RC, and non-HDL-C are hot topics in recent years. These 
lipid parameters are calculated by conventional lipid 
parameters according to certain formulas or direct divi-
sion [10–12, 23–25]. At present, a series of epidemiologi-
cal studies have been carried out using unconventional 
lipid parameters as novel markers in the endocrine sys-
tem, cardio-cerebrovascular system, digestive system, 
respiratory system, and urinary system diseases [8–12, 
43–48]. In general, unconventional lipid parameters 
improved the ability of conventional lipid parameters to 
assess and identify the risk of most diseases.

The relationship between conventional and unconven-
tional lipid parameters and diabetes has been reported 

in many studies [8–12, 17, 18], but comparative studies 
on lipid parameters for predicting future diabetes are 
extremely limited. There were still some differences in 
the results of several longitudinal studies that have been 
published. Hadaegh et  al. conducted the first compara-
tive study in Iran in 2010 to evaluate the utility of con-
ventional and unconventional lipid parameters to predict 
future diabetes risk [19]. They measured/calculated TG/
HDL-C ratios, non-HDL-C, HDL-C, TC, and TG in 5,201 
baseline diabetes-free subjects. After a median follow-up 
of 5.6 years, they found that the TG/HDL-C ratio was a 
better indicator of future diabetes risk in women, while 
the TC/HDL-C ratio was a better indicator of future dia-
betes risk in men. Subsequently, in 2011, South Korea’s 
Seo et  al. conducted another longitudinal study of 5577 
subjects without diabetes [18]. During the 4-year fol-
low-up, they found that TC/HDL-C ratio had the best 

Fig. 3  Threshold fluctuation of lipid parameters used to predict future diabetes risk
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performance in reflecting future diabetes risk. It should 
be noted that in the study of Professor Hadaegh and Pro-
fessor Seo [18, 19], despite their follow-up, the time fac-
tor was not taken into account in the final data analysis. 
The results of their final analysis were based on multi-
variate Logistic regression analysis, which may be biased. 
Recently, a longitudinal study by Khaloo et al. involving 
5474 non-diabetic subjects showed that Ln-TG/HDL-C 
ratio was a better lipid parameter to predict future dia-
betes risk [10]. Summing up the results of several similar 
studies above, among multiple lipid parameters, the TC/
HDL-C ratio and TG/HDL-C ratio may be good param-
eters for predicting future diabetes. In our current study, 
we included more unconventional lipid parameters in a 
cohort of 15,464 participants with baseline normogly-
cemia. During a follow-up of up to 13 years, we further 
confirmed their findings: both TC/HDL-C ratio and TG/
HDL-C ratio were good lipid parameters for predict-
ing future diabetes risk. On this basis, our results added 
more evidence, and we found that among all lipid param-
eters, the RC/HDL-C ratio was the best parameter to 
reflect the risk of developing diabetes in the future. This 
finding has not been reported in previous similar studies, 
and so far as we know, this is the first study to evaluate 
the relationship between diabetes and RC/HDL-C ratio.

Several studies have been reported on the thresholds 
of conventional versus unconventional lipid parameters 
for the diagnosis/prediction of diabetes [9, 18, 49, 50]. In 
summary, the main differences between the results of the 
threshold analysis of lipid parameters in the published 
studies and the analysis in our current study are in the 
TG and the consideration of time variables. Compared 
with other threshold analysis studies, our current study 
fully considered time-dependent variables and assessed 
baseline lipid parameters as predictors of future diabetes 
risk, while the existing similar studies focused more on 
the present [9, 18, 49, 50]. Furthermore, in the current 
study, we also evaluated the predictive value of conven-
tional and unconventional lipid parameters for predicting 
short -, medium-and long-term diabetes risk. Overall, the 
RC/HDL-C ratio had the best predictive value for pre-
dicting the short-term diabetes risk, non-HDL/HDL-C 
ratio and LDL/HDL-C ratio for the short-to medium-
term diabetes risk, while RC, non-HDL/HDL-C ratio, 
and TC/HDL-C ratio for the mid-to long-term and long-
term diabetes risk.

Conventional methods for measuring lipids and lipo-
proteins include chemical methods and enzymatic meth-
ods. Generally speaking, chemical methods are relatively 
time-consuming, so they are usually only used for cali-
bration in the clinic, while the enzyme method has been 
used as the most commonly used analysis method in 
automatic biochemical analytical instruments due to its 

relative simplicity and accuracy [51, 52]. Although the 
conventional lipid measurement methods have excel-
lent diagnostic performance, they still require expensive 
instruments, trained operators, and dedicated laborato-
ries. Therefore, conventional lipid measurement methods 
may not be optimal for primary health care institutions 
and people with limited mobility [53]. Recently, biosen-
sors for measuring lipids and lipoproteins have been 
developed for preventive and therapeutic monitoring of 
chronic diseases at the proof-of-concept stage, allowing 
simultaneous measurement of multiple lipid parameters 
in a home setting by a user with minimal training [54–
56]. Compared with conventional methods, biosensors 
for lipids and lipoproteins are more convenient, rapid, 
and easy to operate. In addition, recent studies have 
shown that new biomaterials (such as nanomaterials) 
have better biocompatibility, stability, and unique physi-
cal, electronic and chemical properties [52, 57, 58]. These 
new materials and techniques may have great potential 
for early screening of people at high risk of diabetes by 
testing lipid parameters [59].

There are many mechanisms by which lipid param-
eters are associated with diabetes. From a clinical point 
of view, the atherogenic effect of lipid parameters and 
IR caused by lipid parameters may be the main factors 
associated with diabetes [4, 60–62]. Among them, the 
vasoactive hormone pathway including the renin–angi-
otensin–aldosterone system (RAAS) seems to play an 
important role in this process [63]. The RAAS is known 
to be an important system in the body for maintaining 
plasma sodium concentration, arterial blood pressure, 
and extracellular volume [64]. The imbalance between 
renin and angiotensin II can lead to a large number of 
chronic and acute diseases [64, 65], and plaque forma-
tion induced by angiotensin II in the early stage is one 
of the most important effects of RAAS on atherosclero-
sis [66], while under pathological conditions, RAAS also 
contributes directly or indirectly to the development of 
atherosclerosis and its various complications through its 
effects on other systems [67]. In addition to this, when 
renin and angiotensin II are imbalanced, the RAAS detri-
mental axis will also increase the release of inflammatory 
cytokines, and generate and increase oxidative stress; 
these pathological changes will further promote the for-
mation of atherosclerosis, exacerbated IR, and decreased 
insulin secretion [66, 68]. On the other hand, it should 
also be noted that serum hepcidin and hepcidin/ferritin 
ratio also play an important role in the development of IR 
and diabetes [69, 70]. In the current research, we calcu-
lated the IR substitute index METS-IR, and the correla-
tion analysis showed that all lipid parameters were closely 
related to METS-IR, among which TG/HDL-C ratio had 
the strongest correlation (Pearson r = 0.7447 for TG/
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HDL-C ratio). Additionally, it is worth noting that uncon-
ventional lipid parameters were also more powerful in 
identifying atherosclerosis and IR than conventional 
lipid parameters [61, 71]. Combining current research 
findings, we have several simple suggestions for a series 
of possible future work: (1) it is suggested that medical 
staff should strengthen their understanding of unconven-
tional lipid parameters. (2) It is suggested that based on 
conventional lipid measurement, the inspection center of 
medical institutions can add unconventional lipid param-
eters as detection items to the display list by adding an 
algorithm to the computer. (3) It is suggested that more 
comparative studies on conventional and unconventional 
lipid parameters should be carried out to find out the 
value of lipid parameters in the risk assessment of other 
diseases. (4) It is suggested to add more unconventional 
lipid parameters on the basis of non-HDL-C as the main 
target of lipid management [72]. (5) It is suggested that 
unconventional lipid parameters should be considered as 
a potential target for developing high-sensitivity biosen-
sors for diabetes.

Advantages and limitations of research
While interpreting the current research results, there are 
several research advantages to be mentioned: (1) Com-
pared with similar studies, the current study further 
expanded the sample size based on longitudinal design 
and included more unconventional lipid parameters. (2) 
We investigated the relationship of RC/HDL-C ratio with 
diabetes for the first time, and through multivariate Cox 
regression analysis found that compared with other con-
ventional and unconventional lipid parameters, the RC/
HDL-C ratio could better reflect the future risk of diabe-
tes. (3) The current study compared the predictive value 
of lipid parameters for future diabetes by time-dependent 
ROC curve analysis for the first time.

Several research limitations need to be acknowledged: 
(1) the endpoint of the current study is new-onset diabe-
tes events, while the death events during follow-up are 
not recorded in the current dataset, which may have a 
certain competitive risk to the current research results. 
(2) In this study, we analyzed the predictive value of sev-
eral lipid parameters for the risk of developing diabetes 
in 3, 6, 9, and 12 years respectively, but the results of the 
current study may be more suitable for the short-and 
medium-term risk prediction of diabetes because the 
body’s metabolic profile gradually deteriorates with age 
[73], the previously predicted risk of diabetes may no 
longer apply. (3) The participants of the current study 
were ordinary people who underwent health check-ups. 
Generally speaking, most people who receive a health 
examination do not have a routine measurement of 

postprandial glucose. Therefore, the current study may 
underestimate the incidence of diabetes. (4) The types of 
diabetes have not been distinguished in the current study, 
but based on a large number of published research data 
[1, 8, 74], the current results are more suitable for type 
2 diabetes, and the applicability in other special types of 
diabetes needs further study.

Conclusion
In summary, our results demonstrated the importance 
of unconventional lipid parameters for predicting the 
risk of diabetes in the future. Compared with conven-
tional lipid parameters, it is worthwhile to use uncon-
ventional lipid parameters to predict the future risk 
of diabetes. It is recommended to incorporate uncon-
ventional lipid parameters as soon as possible in clini-
cal practice for routine assessment of diabetes risk and 
treatment monitoring.
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