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Abstract 

Background: High immune infiltration is associated with favourable prognosis in patients with non-small-cell lung 
cancer (NSCLC), but an automated workflow for characterizing immune infiltration, with high validity and reliability, 
remains to be developed.

Methods: We performed a multicentre retrospective study of patients with completely resected NSCLC. We devel-
oped an image analysis workflow for automatically evaluating the density of  CD3+ and  CD8+ T-cells in the tumour 
regions on immunohistochemistry (IHC)-stained whole-slide images (WSIs), and proposed an immune scoring system 
“I-score” based on the automated assessed cell density.

Results: A discovery cohort (n = 145) and a validation cohort (n = 180) were used to assess the prognostic value 
of the I-score for disease-free survival (DFS). The I-score (two-category) was an independent prognostic factor after 
adjusting for other clinicopathologic factors. Compared with a low I-score (two-category), a high I-score was associ-
ated with significantly superior DFS in the discovery cohort (adjusted hazard ratio [HR], 0.54; 95% confidence interval 
[CI] 0.33–0.86; P = 0.010) and validation cohort (adjusted HR, 0.57; 95% CI 0.36–0.92; P = 0.022). The I-score improved 
the prognostic stratification when integrating it into the Cox proportional hazard regression models with other risk 
factors (discovery cohort, C-index 0.742 vs. 0.728; validation cohort, C-index 0.695 vs. 0.685).

Conclusion: This automated workflow and immune scoring system would advance the clinical application of 
immune microenvironment evaluation and support the clinical decision making for patients with resected NSCLC.
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Background
Lung cancer is the leading cause of cancer-related deaths 
worldwide [1], and non-small-cell lung cancer (NSCLC) 
is the most common subtype of lung cancer, which com-
prises 85% of total diagnoses [2]. Surgery is the recom-
mended treatment for resectable NSCLC [3], whereas 
30–55% of patients develop recurrence and die despite 
the resection [4]. Precise risk assessment is crucial for 
developing individualized treatment strategies. The 
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American Joint Committee on Cancer (AJCC) tumour-
node-metastasis (TNM) staging system [5] is widely used 
for risk stratification, but patients prognosis varies within 
each stage due to biological heterogeneity [2]. Prediction 
models combining the TNM stage and clinicopathologic 
prognostic factors (e.g. histologic type, and treatment-
related factors) have improved the clinical validity of risk 
stratification, but the predictive performance is unsatis-
factory [6–8]. A novel prognostic biomarker that charac-
terizes the biological behaviour may improve the validity 
of risk stratification in NSCLC.

Recent tumour biological studies have implied that the 
interaction between the tumours and microenvironment 
is associated with tumour development, invasion, metas-
tasis, and outcome [9, 10]. Tumour-infiltrating lympho-
cytes (TILs) within the microenvironment has been 
reported to be the prognostic factor of resected NSCLC 
[11], among which T-cells  (CD3+), especially cytotoxic 
T-cells  (CD8+), play important roles in antitumour 
immunity [12, 13]. In recent years, many studies have 
attempted to characterize the in  situ immune infiltra-
tion based on the density of various T-cells subsets (e.g. 
 CD8+,  CD3+,  CD4+, FOX-P3+,  CD45RO+, etc.) [10, 14]. 
However, a generally accepted immune scoring system 
for NSCLC is still unavailable since there is no consen-
sus regarding the selection of T-cells subsets and the cell 
quantification approaches [13, 14].

Immunohistochemistry (IHC) on tissue sections is 
a simple and reliable method to identify  CD3+ and 
 CD8+ T-cells. The conventional method for quantifying 
positive cells is through manual counting performed by 
pathologists, which is time-consuming with poor repro-
ducibility. There have been prior attempts at automated 
histopathological analysis based on NSCLC tissue micro-
arrays (TMA), such as evaluating the density and spatial 
arrangement of TILs [15], and quantifying the different 
subsets of T-cells [16, 17]. However, the selection bias of 
TMAs may lead to high inter-observer variability [18]. In 
comparison, computer-aided analyses based on digital-
ized whole-slide images (WSIs) evaluate the whole tis-
sue sections without subjective selection of regions for 
analysis, which improve reproducibility across users, and 
the spatial heterogeneity within the tumour microenvi-
ronment could be better characterized [19]. Automated 
workflows for evaluating the immune infiltration on 
IHC-stained WSIs are expected to improve the validity 
and reliability of NSCLC risk stratification [20, 21], but 
such an algorithm remains to be developed.

This study aimed to achieve the following objectives 
using 2 retrospective cohorts of patients with resected 
NSCLC. Firstly, we developed an automated workflow 
for evaluating the density of  CD3+ and  CD8+ cells in 
the tumour regions on IHC-stained WSIs. Secondly, we 

proposed an immune scoring system based on the auto-
mated assessed cell density. We hypothesised that the 
integration of this immune scoring system into clinico-
pathological risk factors would improve the prognostic 
stratification in resected NSCLC.

Methods
Patients cohorts
This retrospective study was conducted using two inde-
pendent cohorts of patients: a discovery cohort (Guang-
dong Provincial People’s Hospital) and a validation 
cohort (Yunnan Cancer Hospital) (Fig.  1). The Institu-
tional Ethics Committees at Guangdong Provincial Peo-
ple’s Hospital (approval number: KY-Z-2021-030-02) and 
Yunnan Cancer Hospital (approval number: KY2020139) 
approved the use of WSIs of IHC-stained tissue sections, 
and informed consent was waived because only retro-
spective imaging analysis was performed. Consecutive 
patients with NSCLC who were treated with curative 
intent by surgery between 2007 and 2015 were enrolled. 
The patients that were treated with neoadjuvant therapy, 
remained residual tumour (R1/R2 resection), or died 
within 30  days after surgery were excluded. The end-
point of interest for this study was disease-free survival 
(DFS), which was defined as the time from surgery to the 
first recurrence, or death. Patients underwent followed-
up (contrast-enhanced chest computed tomography 
or phone interview) once every 6  months for the first 
2 years, and then annually. The duration of follow-up was 
calculated from the time of surgery until the occurrence 
of the event or the last follow-up, and information about 
the survival status was documented. Baseline and clin-
icopathologic characteristics, including age at surgery, 

35 excluded

215 patients with NSCLC treated with curative intent by surgery

180 patients enrolled in final validation cohort 

174 patients with NSCLC treated with curative intent by surgery
 94 (54.0%) had DFS events during follow-up

29 excluded

27 with missing clinicopathologic information
5 with missing CD3/CD8-stained WSIs
3 with insufficient WSIs quality

25 treated with neoadjuvant chemotherapy
4 remaining residual tumour (R1/R2 resection)

145 patients enrolled in final discovery cohort 

93 (43.3%) had DFS events during follow-up

78 (43.3%) had DFS events during follow-up

72 (49.7%) had DFS events during follow-up

Discovery cohort 

Validation cohort

Fig. 1 Discovery cohort and validation cohort enrolment, exclusions, 
and incidence of DFS events during follow up. NSCLC non-small-cell 
lung cancer, DFS disease-free survival, WSI whole slide image
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sex, smoking history, pT stage, pN stage, TNM stage, 
tumour location, histologic type, differentiation grade, 
type of surgery, and adjuvant chemotherapy were col-
lected from the medical records. Patients with any miss-
ing clinicopathologic information or WSIs for analysis 
were excluded, and no imputation of missing values was 
performed. The TNM stage was manually reviewed to 
ensure that it corresponded to the American Joint Com-
mittee on Cancer (AJCC) staging system (8th edition, 
2017) [5]. Adjuvant chemotherapy protocols were stand-
ardized according to National Comprehensive Cancer 
Network (NCCN) guidelines [3].

IHC‑stained sections digitalization
The surgical specimens of NSCLC were fixed by for-
malin and embedded in paraffin. Tumour sections 
were selected from the tissue blocks by an experienced 
pathologist from each hospital (LXY and LW) who were 
blinded to clinical information. Ensured that the selected 
tissue sections were complete and avoided large necrotic 
areas. Two adjacent sections were stained with anti-CD3 
and anti-CD8. Full details of the IHC staining was pre-
sented in Additional file 1: Note S1. The IHC-stained sec-
tions were digitalized by using the whole-slide scanner 
(Leica, Aperio-AT2, USA) at 40 × magnification with a 
resolution of 0.252 μm per pixel (Fig. 2a). We performed 
quality control manually by excluding artefacts, blurry 
images, and light- or over- stained tissues (Fig. 1).

Tumour region segmentation
Segmentation of the tumour region was a semi-auto-
mated interactive process. WSIs were first downsampled 
by a factor of 16, and then all three colour channels of 
Red–Green–Blue (RGB) were extracted. By convert-
ing the downsampled RGB images into Hue-Saturation-
Value (HSV) colourspace, the H and S channels were 
then extracted. Ostu’s segmentation algorithm [22] with 
automatic threshold was used to determine and segment 
the boundaries of tumour regions, removing adjacent 
normal tissue, blank area, and background. All segmen-
tation results were visually checked by 2 pathologists 
(LXY and LW), and if required, the algorithm parameters 
were fine-tuned to precisely determine the boundaries of 
the tumour region (ZYF). A binary mask of segmented 
tumour region was created for each WSI, for later pro-
cessing (Fig. 2b).

CD3+ and  CD8+ T cell segmentation and quantification
Segmentation and quantification of  CD3+ and  CD8+ 
cells were fully-automated processes. The tumour 
regions were first tiled into non-overlapping patches 
of 1024 × 1024 pixels (40 × magnification), ensur-
ing that the tumour area on each tile occupied no less 

than 50% of the entire tile area. The tile-level  CD3+/
CD8+ cell segmentation pipeline included: dye channel 
separation, background/blank areas and dust macules 
removal, Bernsen-based local threshold segmentation, 
and watershed segmentation of adhesive cells. Firstly, 
the Hematoxylin and DAB channels of IHC-stained tiles 
were extracted using a colour deconvolution algorithm. 
Secondly, the super-pixel segmentation method and 
k-means clustering algorithm were employed to remove 
the background/blank areas. The super-pixel segmenta-
tion method divided the image into irregular super-pixel 
blocks, and the k-means clustering algorithm was used 
to distinguish the background/blank area. Dust macules, 
which were specific to the lung tissues, were filtered out 
using a fixed threshold. Thirdly, morphological features 
of cells were used for preliminary image segmentation, 
and Bernsen-based local threshold segmentation was 
employed to further improve the segmentation accuracy. 
Lastly, adherent cells segmentation was carried out based 
on the watershed algorithm. The results of cell segmenta-
tion and identification were overlaid on tiles (Fig. 2c). The 
density of  CD3+/CD8+ cells was calculated as the count-
ing of  CD3+/CD8+ cells per unit of tissue surface area 
 (mm2, including only tumour area, excluding spaces and 
background).

Comparison of automated and manual counting 
of positive cells
To evaluate the agreement between manual counting and 
automated counting of positive cells, 60 tiles from the 
WSIs in the discovery cohort (30 CD3-tiles and 30 CD8-
tiles) and 60 tiles from the WSIs in the validation cohort 
(30 CD3-tiles and 30 CD8-tiles) were randomly selected. 
The gold standard of positive cell identification was 
determined by a lung pathologist (LXY) who was blind 
to the result of cell segmentation. The manual annota-
tion was performed using QuPath 0.3.2 (https:// qupath. 
github. io/).

Furthermore, the performance of our algorithm was 
compared to the QuPath built-in algorithm. Jointly con-
sidering of the size of lymphocytes (5–10  μm in diam-
eter) and segmentation performance, the minimum cell 
area threshold was at 100, 150, or 200  pixel2, respectively, 
and other parameters were maintained at default in 
QuPath software.

I‑score establishment
To facilitate the use of  CD3+ and  CD8+ cell density, they 
were normalized into CD3-score and CD8-score respec-
tively, ranging from 0 to 100. The CD3-score and CD8-
score were classified into low and high based on the 
cutoffs determined by maximally selected rank statistics 

https://qupath.github.io/
https://qupath.github.io/
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Fig. 2 Overall workflow of this study. a Two adjacent sections stained with CD3 and CD8 are digitalized by using the whole-slide scanner. b By 
using a semi-automated image analysis algorithm, a binary mask of segmented tumour region is created for each WSI. c The  CD3+ and  CD8+ T-cells 
in the tumour region are segmented and identified by using a fully-automated algorithm. d The CD3-score and CD8-score (normalized  CD3+ and 
 CD8+ cell density, ranging from 0 to 100) are classified into low and high based on the cutoffs determined by maximally selected rank statistics, 
respectively. e, f, g A three-category I-score and a two-category I-score are established by integrating the classifications of CD3-score and CD8-score 
based on the discovery dataset. h The validation cohort is used to assess the prognostic value of the I-score
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method (Fig. 2d, Additional file 1: Figure S2, Additional 
file  1: Figure S3). We developed a three-category and a 
two-category immune scoring system “I-score” by inte-
grating the classifications of CD3-score and CD8-score 
based on the discovery dataset (Fig.  2e). The three-cat-
egory I-score was defined as high when both the CD3-
score and CD8-score were classified as high; defined as 
intermediate when one of the CD3-score and CD8-score 
was classified as high; and defined as low when both the 
CD3-score and CD8-score were classified as low. The 
two-category I-score was defined as high when both the 
CD3-score and CD8-score were classified as high; and 
defined as low in other cases (combining the I-score-low 
and I-score-intermediate groups in the three-category 
scoring system).

Statistical analysis
Continuous data with non-normal distributions were 
reported as median (interquartile range, IQR) and com-
pared via Mann–Whitney U test. Categorical data were 
reported as count (percentage) and compared via Pear-
son Chi-square test. The median follow-up between the 
two cohorts was compared by the reverse Kaplan–Meier 
method. The association between I-score and TNM stage 
was analysed using linear-by-linear association. The 
agreement between manual cell counting and automated 
cell counting was assessed by Bland–Altman plot and 
intraclass correlation coefficient (ICC).

The Kaplan–Meier curves and Cox proportional haz-
ards models were used for survival analyses. The pro-
portional hazards assumption was tested using the 
Schoenfeld residuals test and log–log plots, and the 
assumption was not violated. The association between 
risk factors (I-score and clinicopathologic characteristics) 
and DFS were evaluated using univariable Cox models. 
Variables that reached statistical significance at P < 0.10 
in the univariable analysis were candidates for the mul-
tivariable Cox models. The final model (full model) was 
determined using stepwise regression based on the 
Akaike information criterion (AIC). Model discrimina-
tion was evaluated using the integrated area under the 
curve [23] (iAUC, resampling with 1000 times bootstrap-
ping) and Harrell’s concordance index (C-index) [24]. The 
iAUC and C-index of 1 indicated perfect concordance, 
and 0.5 indicated random prediction. Model calibration 
was evaluated by AIC, and a lower AIC indicated better 
calibration. The model performance was compared using 
the likelihood ratio test [25].

Statistical analyses were conducted using SPSS 20.0 
(SPSS Inc., Chicago, IL, USA) and R 4.0.3 (R Foundation 
for Statistical Computing, Vienna, Austria) with pack-
ages survival, survminer, Hmisc, gbm, MASS, riskset-
ROC, lmtest. A two-tailed P-value < 0.05 was considered 

statistically significant. The retrospective nature of this 
study predetermines the sample size. Hence, the maxi-
mum number of candidate risk factors was determined as 
7 based on the number of events in the discovery cohort, 
to ensure that there were at least 10 events per candidate 
predictor (10 EPP rule [26]).

Results
Patients characteristics
Based on the inclusion and exclusion criteria, 145 
patients (72 events occurred during follow-up) were 
enrolled in the final discovery cohort, and 180 patients 
(78 events occurred during follow-up) were enrolled 
in the final validation cohort (Fig. 1). Median (IQR) fol-
low-up was 102.7 (89.7–115.6) months for the discovery 
cohort and 60.0 (57.1–62.8) months for the validation 
cohort. Baseline and clinicopathologic characteristics of 
the two cohorts are shown in Table  1. There were sig-
nificant differences between the two cohorts in age at 
surgery, smoking history, pT stage, histologic type, dif-
ferentiation grade, type of surgery, and adjuvant chemo-
therapy (P < 0.050, Table 1).

Segmentation results and Bland–Altman analysis
The results of tumour region segmentation and  CD3+/
CD8+ T-cells segmentation were shown in Fig.  2b and 
Fig.  2c. Totally 120 tiles were randomly selected from 
the discovery cohort and validation cohort to evaluate 
the agreement between manual counting and automated 
counting of positive cells. Our algorithm (Additional 
file  1: Figure S1a) showed better segmentation per-
formance compared to the QuPath built-in algorithm 
(Additional file 1: Figure S1c, e, g), regardless of cell area 
threshold (100, 150, or 200  pixel2). The Bland–Altman 
plot showed good agreement between the manual count-
ing and automated counting using our algorithm (ICC, 
0.91; 95% confidence interval [CI], 0.87–0.94; P < 0.001; 
Fig.  3), but showed moderate agreement between the 
manual counting and automated counting using QuPath 
built-in algorithm (ICC, 0.44–0.72; Additional file 1: Fig-
ure S1d, f, h).

Prognostic value of I‑score
Using maximally selected rank statistics method, the cut-
offs of CD3-score and CD8-score were determined to be 
22.82 and 5.13, respectively, (Fig.  2d, Additional file  1: 
Figure S2 and Figure S3). We developed a three-category 
and a two-category immune scoring system “I-score” by 
integrating the classifications of CD3-score and CD8-
score based the discovery dataset (Fig. 2e). For the three-
category I-score, the number of patients was 29 (20.0%) 
for I-score-low, 35 (24.1%) for intermediate, and 81 
(55.9%) for high in discovery cohort (5-year DFS: 37.9%, 
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48.1%, and 72.4%); 26 (14.4%) for I-score-low, 64 (35.6%) 
for intermediate, and 90 (50.0%) for high in validation 
cohort (5-year DFS: 42.4%, 42.8%, and 68.2%). Kaplan–
Meier curves showed that DFS was superior for I-score-
high group compared with I-score-low group (discovery 
cohort, unadjusted hazard ratio [HR], 0.44; 95% CI, 0.25–
0.78; P = 0.005; Fig. 4a; validation cohort, 0.49; 0.26–0.93; 
0.029; Fig.  4b), but no significant difference of DFS was 
found between I-score-intermediate and I-score-low 
groups in both cohorts (P > 0.050).

In addition, we constructed a two-category I-score 
by combining the I-score-low and I-score-intermediate 
groups in the three-category scoring system. For the two-
category I-score, the number of patients were 64 (44.1%) 
for I-score-low, and 81 (55.9%) for high in discovery 
cohort (5-year DFS: 43.5%, 72.4%); 90 (50.0%) for I-score-
low, and 90 (50.0%) for high in validation cohort (5-year 
DFS: 43.0%, 68.2%). Kaplan–Meier curves showed that 
DFS was superior for I-score-high group compared with 
I-score-low group (discovery cohort, unadjusted HR, 
0.51; 95% CI, 0.32–0.81; P = 0.004; Fig.  4c; validation 
cohort, 0.47; 0.33–0.86; 0.001; Fig. 4d). The two-category 
I-score and TNM stage were associated with DFS in both 
cohorts (P < 0.001; Fig.  4e, Fig.  4f ). Besides, we noted 
that a low I-score was significantly associated with the 
advanced TNM stage, and this trend could be found in 
both cohorts (discovery cohort, χ2 = 9.74, P = 0.002; vali-
dation cohort, χ2 = 4.93, P = 0.026, Fig. 5a).

Subgroup analyses were further performed, with two 
cohorts pooling together to increase the discovery power 
(Additional file  1: Fig.  4). A high I-score (two-category) 
was associated with significantly superior DFS when 
stratified by TNM stage (stage I and II), histologic type, 
differentiation grade, type of surgery (lobectomy/ pneu-
monectomy), adjuvant chemotherapy, age (< 65  years), 
sex and smoking history (P < 0.050). A similar trend was 
found in the stage III disease subgroup (Additional file 1: 
Figure S4c), limited resection subgroup (Additional file 1: 
Fig.  S4i) and 65  years or older subgroup (Additional 
file  1: Figure S4m), but without statistical significance 
(P > 0.050).

The uni- and multivariable Cox regression analyses for 
DFS in the two cohorts were presented in Table  2. The 
factors that reached statistical significance at P < 0.10 in 
the univariable analysis (sex, TNM stage, differentiation 
grade, adjuvant chemotherapy, two-category I-score) 
were included in the multivariable analysis. Multivari-
able analyses demonstrated that I-score (two-category) 
was independently associated with DFS after adjusting 
for other clinicopathologic factors (discovery cohort, 
adjusted HR, 0.54; 95% CI, 0.33–0.86; P = 0.010; valida-
tion cohort, 0.57, 0.36–0.92; P = 0.022).

Development and validation of prognostic prediction 
models
Since I-score (two-category), TMN stage, differentia-
tion grade, and adjuvant chemotherapy were identified 
as independent factors of DFS in the discovery cohort, 
we developed a prognostic prediction model (full model) 
based on the factors above. We further compared the 
performance of the full model with four other models 
that included a TNM stage model, I-score model, TNM 
stage & I-score model, and clinicopathologic model 
(TMN stage & differentiation grade & adjuvant chemo-
therapy). The coding, partial regression coefficients and 
estimated 5-year baseline cumulated hazard of each 
model were summarized in Additional file 1: Table S1.

The model performance metrics were presented 
in Table  3. The full model showed better discrimina-
tion (evaluated by iAUC and C-index) and calibration 
(evaluated by AIC) than the clinicopathologic model in 
both cohorts (discovery cohort, iAUC, 0.717 vs. 0.698; 
C-index, 0.742 vs. 0.728; AIC, 610.9 vs. 614.2; validation 
cohort, iAUC, 0.684 vs. 0.671; C-index, 0.695 vs. 0.685; 
AIC, 734.8 vs. 739.2). The TNM-stage & I-score model 
showed better discrimination and calibration than the 
TNM-stage model in both cohorts (discovery cohort, 
iAUC, 0.699 vs. 0.674; C-index, 0.711 vs. 0.694; AIC, 
613.5 vs. 615.6; validation cohort (iAUC, 0.673 vs. 0.645; 
C-index, 0.679 vs. 0.651; AIC, 736.4 vs. 742.3). Integrat-
ing the I-score into a TNM stage model improved the 
prediction for DFS (likelihood ratio P = 0.044, Fig.  5b); 
also, integrating the I-score into a clinicopathologic 
model improved the prediction for DFS (likelihood ratio 
P = 0.022, Fig. 5b).

Discussion
In this study, we developed an automated workflow for 
evaluating the density of  CD3+ and  CD8+ cells in the 
tumour regions on IHC-stained WSIs of NSCLC, and 
further proposed an immune scoring system “I-score” 
based on the automated assessed cell density. The gener-
alizability of this automated workflow and novel scoring 
system was validated in an external independent cohort. 
To the best of our knowledge, this is the first study that 
utilized automated whole-slide images assessment of 
tumour-infiltrating  CD3+ and  CD8+ T-cells for the prog-
nostic stratification of resected NSCLC.

The past 10  years have seen remarkable progress in 
medical artificial intelligence, promoting the develop-
ment of digital pathology. Digital pathology implies not 
only the digitization of tissue sections, but also the auto-
mated assessment workflow with high validity and reli-
ability. The application of WSIs has expanded the scope 
of histopathological analyses to a whole-slide level, which 
places higher demands on automated algorithms. Some 
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Table 1 Baseline and clinicopathologic characteristics of the patients with NSCLC in the discovery and validation cohorts

Data in parentheses are IQR, percentages or 95% confidence intervals

NSCLC non-small-cell lung cancer, IQR interquartile range, CI confidence interval
a P-value is determined by Mann–Whitney U test
b P-values are determined by Pearson Chi-square test
c P-value is determined by Chi-square test with continuity correction
d P-value is determined by the reverse Kaplan–Meier method

Discovery cohort Validation cohort P

Age at surgery (year, median [IQR]) 61.0 (54.5–67.0) 56.0 (49.0–63.0)  < 0.001a

  < 65 95 (65.5%) 143 (79.4%) 0.005b

  ≥ 65 50 (34.5%) 37 (20.6%)

Sex 0.997b

 Male 83 (57.2%) 103 (57.2%)

 Female 62 (42.8%) 77 (42.8%)

Smoking history 0.027b

 Never 101 (69.7%) 104 (57.8%)

 Former/current 44 (30.3%) 76 (42.2%)

pT stage  < 0.001b

 T1 44 (30.3%) 132 (73.3%)

 T2 78 (53.8%) 33 (18.3%)

 T3 16 (11.0%) 7 (3.9%)

 T4 7 (4.8%) 8 (4.4%)

pN stage 0.382b

 N0 109 (75.2%) 132 (73.3%)

 N1 12 (8.3%) 23 (12.8%)

 N2 24 (16.6%) 25 (13.9%)

TNM stage 0.815b

 I 92 (63.4%) 114 (63.3%)

 II 21 (14.5%) 30 (16.7%)

 III 32 (22.1%) 36 (20.0%)

Tumour location 0.051b

 Upper/middle lobe 96 (66.2%) 100 (55.6%)

 Lower lobe 49 (33.8%) 80 (44.4%)

Histologic type 0.001c

 Adenocarcinoma 111 (76.6%) 143 (79.4%)

 Squamous cell carcinoma 23 (15.9%) 37 (20.6%)

 Other 11 (7.6%) 0 (0.0%)

Differentiation grade 0.005b

 Well-moderately differentiated (G1/G2) 107 (73.8%) 106 (58.9%)

 Poorly-undifferentiated (G3/G4) 38 (26.2%) 74 (41.1%)

Type of surgery 0.046b

 Lobectomy/pneumonectomy 134 (92.4%) 175 (97.2%)

 Limited resection 11 (7.6%) 5 (2.8%)

Adjuvant chemotherapy  < 0.001b

 No 94 (64.8%) 74 (41.1%)

 Yes 51 (35.2%) 106 (58.9%)

Follow-up duration (month, median [95% CI]) 102.7 (89.7–115.6) 60.0 (57.1–62.8)  < 0.001d

No. of events 72 (49.7%) 78 (43.3%) 0.256b
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earlier pioneering WSI-based studies predicted the prog-
nosis of NSCLC based on automated derived image fea-
tures (e.g. Haralick texture features, radial distribution 
of pixel intensity, etc.) [27], or predicted the classifica-
tion and mutation status using end-to-end deep learning 
models in a data-driven manner [28], which had limita-
tions in biological interpretability.

Analysing the tumour microenvironment at the tis-
sue and cellular levels depends on precise segmentation 
and identification methods, but the high histologic het-
erogeneity in NSCLC presents a challenge to algorithm 
development [29]. This study optimized the automated 
positive cells assessment algorithm in the following two 
aspects. In the tissue segmentation process, we used a 

semi-automated interactive approach combining the 
automated algorithm and the experience of pathologists. 
The tumour region was determined by precisely remov-
ing adjacent normal tissues, blanks, and backgrounds 
to reduce the errors in estimating the tumour area. The 
tumour-adjacent atelectasis (belongs to normal tissue) 
was easily confused with tumour-associated stroma 
(belongs to tumour region) in this thresholding segmen-
tation framework, so the experience of the pathologist 
was dispensable for identifying these tissues. The blank 
area (residual alveolar cavity) was a unique structure for 
lung cancer tissue sections, and its size varied with his-
tologic subtypes [30]. In previous studies, the density 
of positive cells was defined as the counting of positive 
cells per unit area  (mm2) [31], and the area could be the 
high power field [32] or the tissue surface area [14]. Some 
other studies defined the density as the percentage of 
positive cells among total nucleated cells [14, 33]. Our 
study calculated the density of positive cells using tis-
sue surface area as the denominator, and the evaluation 
would be robust across histologic subtypes. As a result, 
the I-score based on the density of  CD3+ and  CD8+ 
T-cells showed good stratification performance in the 
adenocarcinoma and squamous cell carcinoma subgroup 
(Additional file 1: Figure S4d, e). In the cell segmentation 
process, dust macules (similar to, but slightly darker than 
positive cells) were filtered out to avoid being mistakenly 
identified as positive cells. As a result, there was a good 
agreement between manual counting and automated 
counting using our algorithm (ICC, 0.91).

Although for colon cancer, there has been a well-devel-
oped workflow for WSI assessment of Immunoscore [18], 
a generally accepted immune scoring system for NSCLC 
prognostic stratification is still unavailable. Selecting 
which types of TILs and which regions/compartments 
of TILs for scoring has always been controversial. We 
referred to the findings of previous Immunoscore-related 
studies on NSCLC [13, 14], and selected  CD3+ (pan 
T-cells) and  CD8+ (cytotoxic T-cells), two robust progno-
sis-associated markers in various solid cancers including 
NSCLC [10, 31], for quantitative assessments. Concern-
ing the regions for cell quantification, some studies (espe-
cially TMA-based studies) quantified the positive cells in 

Fig. 3 Bland–Altman plot for agreement between manual counting 
and automated counting using our algorithm for quantifying  CD3+/
CD8+ cells. The Bland–Altman analysis is performed by using 120 
tiles randomly selected from the WSIs in the discovery cohort (30 
CD3-tiles and 30 CD8-tiles) and the validation cohort (30 CD3-tiles 
and 30 CD8-tiles). The solid horizontal line in red is the mean of the 
difference between manual counting and automated counting 
of positive cells, and the dashed lines in blue are the upper/lower 
bounds of 95% limits of agreement (95% LoA). The intraclass 
correlation coefficient (ICC) is 0.91 (95% confidence interval, 
0.87–0.94; P < 0.001), which indicates good agreement between 
manual counting and automated counting. ICC intraclass correlation 
coefficient. Data in parentheses are 95% confidence intervals

(See figure on next page.)
Fig. 4 Kaplan–Meier curves of patients stratified by three-category I-score, two-category I-score, and two-category I-score and TNM stage. 
Compared with a low I-score (three-category), a high I-score is associated with superior DFS in discovery cohort (a P = 0.005) and validation 
cohort (b P = 0.029), whereas an intermediate I-score is not significantly associated with DFS in both cohorts (P > 0.050). Compared with a low 
I-score (two-category), a high I-score is associated with significantly superior DFS, in both discovery cohort (c P = 0.004) and validation cohort (d 
P = 0.001). The two-category I-score and TNM stage are significantly associated with DFS in both discovery cohort (e P < 0.001) and validation cohort 
(f P < 0.001). The unadjusted HRs, corresponding 95% confidence intervals, and P-values are determined by univariable Cox regression models. 
DFS disease-free survival. HR hazard ratio. Data in parentheses are 95% confidence intervals
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the central tumour and the invasive margins respectively 
[33, 34]. Instead, we constructed the immune scoring 
system based on the positive cell density in the entire 
tumour regions (tumour nests) on WSIs, as in some pre-
vious studies [14, 35]. Therefore, the characteristics of 
immune infiltrations in the central tumour and the inva-
sive margins (if it existed on a WSI) had been taken into 
account, and the selection bias could be reduced.

The I-score (two-category) that integrated the CD3-
score and the CD8-score was associated with DFS after 
adjusting for TNM stage and other clinicopathologic 
factors. This finding was verified in an external valida-
tion cohort with significant differences in baseline char-
acteristics compared with discovery cohort, suggesting 
that the I-score obtained by the automated workflow 
was an independent and robust prognostic factor of 

DFS in resected NSCLC. Furthermore, the prognostic 
value of the I-score was confirmed in the vast major-
ity of subgroups (Additional file  1: Figure S4). The pre-
dictive accuracy (iAUC and C-index, C-index: 0.588 vs. 
0.58 for validation cohort) of the I-score was similar to 
that of the Immunoscore of colon cancer [36]. By inte-
grating the I-score (two-category) into the TNM stage 
model and clinicopathologic model, respectively, the 
models with I-score showed better discrimination and 
calibration than those without I-score in both cohorts 
(Fig. 5b), which suggested that the I-score based on the 
automated assessed cell density would improve the prog-
nostic risk stratification in resected NSCLC. Also, the full 
model yielded better discrimination compared with the 
reported prediction models that involved only clinico-
pathologic prognostic factors [6–8] (C-index, 0.695 vs. 
0.67, 0.664, 0.66 for validation cohort).

As for the I-score distribution across TNM stages, an 
interesting trend was found that a low I-score was sig-
nificantly associated with the advanced TNM stage. We 
speculated that this might be attributable to the evolu-
tion of immune escape. A similar finding was reported 
in a recent genomic study on the spectrum of immune 
infiltration from preneoplasia to invasive lung adeno-
carcinomas [37]. Still, the underlying mechanism of 
these findings warrants further investigation.

This study has limitations inherent to most retro-
spective studies. The clinical validity of this automated 
workflow and immune scoring system needs to be fur-
ther validated in larger prospective cohorts. Besides, 
the quality control of WSIs was performed manually, 
and some parameters for tumour region segmentation 
were fine-tuned, if required, according to the patholo-
gists’ proofreading. Based on the findings in this study, 
we are currently developing a deep-learning frame-
work to perform NSCLC tissue segmentation, which 
would enable automated segmentation and identifica-
tion of tumour regions and tumour-associated stroma. 
The density of  CD8+ cells in the stroma compart-
ment was reported to be an independent prognostic 
factor in resected NSCLC [10, 33, 38], and a precise 
segmentation algorithm would be an essential prereq-
uisite for evaluating immune infiltration in the stroma 
compartment.
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Fig. 5 I-score (two-category) distribution across TNM stages and the 
predictive accuracy of each model in the two cohorts. a A low I-score 
is associated with advanced TNM stages in both discovery cohort 
(χ2 = 9.74, P = 0.002) and validation cohort (χ2 = 4.93, P = 0.026). b The 
iAUC (resampling with 1000 times bootstrapping) for each model is 
shown as a box-and-whisker plot; median (lines), interquartile range 
(boxes), 2.5–97.5 percentile (whiskers). iAUC  integrated area under the 
curve
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Table 2 Uni- and multivariable Cox regression analyses for DFS in the discovery cohort and validation cohort

Data in parentheses are 95% confidence intervals

DFS  disease-free survival, HR hazard ratio, CI  confidence interval
a Variables that reach statistical significance at P < 0.10 in the univariable analysis (sex, TNM stage, differentiation grade, adjuvant chemotherapy, two-category I-score) 
are included in the multivariable analysis
b The unadjusted hazard ratios (HR) and P-values are determined by univariable Cox regression analyses
c The adjusted hazard ratios (HR) and P-values are determined by multivariable Cox regression analyses

Variables Discovery cohort Validation cohort

Univariable analysis Multivariable 
 analysisa

Univariable analysis Multivariable  analysisa

Unadjusted  HRb

(95% CI)
P Adjusted  HRc

(95% CI)
P Unadjusted  HRb

(95% CI)
P Adjusted  HRc

(95% CI)
P

Age at surgery (years)

  ≥ 65 vs. < 65 1.13 (0.70–1.82) 0.624 1.00 (0.58–1.73) 0.991

Sex

  Female vs. male 0.63 (0.39–1.03) 0.067 0.58 (0.36–0.94) 0.026

Smoking status

  Former/current vs. never 1.08 (0.66–1.78) 0.748 1.18 (0.76–1.84) 0.469

TNM stage

  Stage II vs. stage I 3.82 (1.99–7.34)  < 0.001 2.41 (1.13–5.18) 0.024 2.95 (1.68–5.18)  < 0.001 2.87 (1.64–5.06)  < 0.001

  Stage III vs. stage I 5.69 (3.33–9.73)  < 0.001 2.84 (1.33–6.06) 0.007 3.62 (2.15–6.09)  < 0.001 3.23 (1.91–5.48)  < 0.001

Differentiation grade

  G3/G4 vs. G1/G2 2.79 (1.72–4.52)  < 0.001 1.68 (1.01–2.82) 0.047 1.56 (1.00–2.43) 0.050

Surgical resection

  Limited resection vs.
lobectomy/pneumonec-

tomy

1.37 (0.63–2.99) 0.429 1.56 (0.49–4.94) 0.451

Adjuvant chemotherapy

  Yes vs. no 3.83 (2.38–6.15)  < 0.001 1.77 (0.91–3.41) 0.090 2.23 (1.35–3.68) 0.002

I-score (three-category)

  Intermediate vs. low 0.79 (0.42–1.46) 0.447 1.05 (0.57–1.96) 0.867

  High vs. low 0.44 (0.25–0.78) 0.005 0.49 (0.26–0.93) 0.029

I-score (two-category)

  High vs. low 0.51 (0.32–0.81) 0.004 0.57 (0.36–0.92) 0.022 0.47 (0.30–0.75) 0.001 0.54 (0.33–0.86) 0.010

Table 3 Performance metrics for integrated I-score (two-category) models and reference models

Data in parentheses are 95% confidence intervals

iAUC  integrated area under the curve, Harrell’s C-index Harrell’s concordance index, AIC Akaike information criterion
a iAUC refers to the integrated area under the ROC curve
b  TNM-stage model vs. TNM Stage & I-score model: likelihood ratio P = 0.044
c Clinicopathologic model (TMN stage & differentiation grade & adjuvant chemotherapy) vs. Full model: likelihood ratio P = 0.022

Models Discovery cohort Validation cohort

iAUC a Harrell’s C‑index AIC iAUC Harrell’s C‑index AIC

TNM stage model b 0.674 0.694 (0.640–0.749) 615.6 0.645 0.651 (0.596–0.705) 742.3

I-score model 0.584 0.592 (0.532–0.651) 647.4 0.592 0.588 (0.533–0.644) 758.6

TNM Stage & I-score model b 0.699 0.711 (0.651–0.772) 613.5 0.673 0.679 (0.623–0.736) 736.4

Clinicopathologic model c 0.698 0.728 (0.676–0.781) 614.2 0.671 0.685 (0.627–0.743) 739.2

Full model c 0.717 0.742 (0.688–0.795) 610.9 0.684 0.695 (0.639–0.751) 734.8
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Conclusion
In summary, we presented an automated workflow for 
characterizing the immune infiltration in the entire 
tumour regions based on IHC-stained WSIs, and pro-
posed an immune scoring system “I-score” based on the 
automated assessed cell density. This automated work-
flow and novel scoring system would advance the clini-
cal application of immune microenvironment evaluation 
with satisfactory validity and reliability. This study sug-
gested that integration of I-score into clinicopathological 
risk factors would improve the prognostic stratification, 
and support the clinical decision making for patients 
with resected NSCLC.
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