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Abstract 

Background:  Acute kidney injury (AKI) is the most common and serious complication of sepsis, accompanied 
by high mortality and disease burden. The early prediction of AKI is critical for timely intervention and ultimately 
improves prognosis. This study aims to establish and validate predictive models based on novel machine learning 
(ML) algorithms for AKI in critically ill patients with sepsis.

Methods:  Data of patients with sepsis were extracted from the Medical Information Mart for Intensive Care III 
(MIMIC- III) database. Feature selection was performed using a Boruta algorithm. ML algorithms such as logistic regres-
sion (LR), k-nearest neighbors (KNN), support vector machine (SVM), decision tree, random forest, Extreme Gradient 
Boosting (XGBoost), and artificial neural network (ANN) were applied for model construction by utilizing tenfold 
cross-validation. The performances of these models were assessed in terms of discrimination, calibration, and clinical 
application. Moreover, the discrimination of ML-based models was compared with those of Sequential Organ Failure 
Assessment (SOFA) and the customized Simplified Acute Physiology Score (SAPS) II model.

Results:  A total of 3176 critically ill patients with sepsis were included for analysis, of which 2397 cases (75.5%) devel-
oped AKI during hospitalization. A total of 36 variables were selected for model construction. The models of LR, KNN, 
SVM, decision tree, random forest, ANN, XGBoost, SOFA and SAPS II score were established and obtained area under 
the receiver operating characteristic curves of 0.7365, 0.6637, 0.7353, 0.7492, 0.7787, 0.7547, 0.821, 0.6457 and 0.7015, 
respectively. The XGBoost model had the best predictive performance in terms of discrimination, calibration, and clini-
cal application among all models.

Conclusion:  The ML models can be reliable tools for predicting AKI in septic patients. The XGBoost model has the 
best predictive performance, which can be used to assist clinicians in identifying high-risk patients and implementing 
early interventions to reduce mortality.
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Introduction
Acute kidney injury (AKI) is a common and complex 
clinical complication in intensive care unit (ICU) settings 
[1]. In the ICU, approximately 53% of AKI is caused by 
sepsis and subsequently contributes to longer hospital 
stay, higher morbidity, and heavier financial burden to 
patients [2, 3]. Despite improvements in clinical treat-
ment, the mortality of AKI remains unchanged and 
reaches as high as 40–44% in patients with sepsis due 
to multiorgan failure, microvascular dysfunction, and 
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systemic inflammatory response syndrome [4–6]. How-
ever, AKI can be reversed at the early stage through 
timely intervention and effective treatment, thereby 
reducing AKI-related mortality [7]. Therefore, identifying 
patients with high risk of AKI is of vital importance for 
the management of patients with sepsis in ICU settings.

The prediction of AKI in patients with sepsis has 
always been a hot topic in critical care medicine. Some 
biomarkers, such as microRNA-22-3p [8], neutrophil 
gelatinase-associated lipocalin [9], procalcitonin [10], 
urinary miR-26b [11], and soluble thrombomodulin [12], 
have been reported to be associated with AKI in sepsis. 
However, they are difficult to popularize in clinical set-
tings due to the high cost and requirement of testing 
technology. Some scoring systems, including acute physi-
ology and chronic health evaluation-II, the simplified 
acute physiology score (SAPS) II, and sequential organ 
failure assessment (SOFA), have also been used in AKI 
prediction, but their performances are unsatisfactory due 
to poor specificity and sensitivity [13, 14]. In addition, 
some multivariate predictive models based on traditional 
statistical methods, such as logistic regression (LR) and 
Cox proportional risk model, have been developed for 
predicting the development of AKI among patients with 
sepsis. Fan et al. [15] applied LR to develop a prediction 
model for AKI in 15,726 patients with sepsis, and the 
model showed a preferable predictive accuracy. Impor-
tantly, the relationship between variables is complex, 
including linear or nonlinear relationship, which is prom-
inent in ICU settings. However, LR is defaulted to handle 
the linear relationship between independent and depend-
ent variables, and may oversimplify the complex nonlin-
ear relationship. Moreover, LR is prone to be affected by 
multicollinearity between variables, which may reduce 
the performance of the model. Therefore, exploring 
more effective and accurate prediction tools is extremely 
important in the management of septic patients.

Recently, machine learning (ML) has attracted the 
attention of and gained recognition from clinicians due 
to the evolution of statistical theory and computer tech-
nology. Novel ML techniques have been widely used in 
predictive models of various diseases and show bet-
ter performance compared with those of traditional LR 
or Cox regression analyses [16, 17]. We can find quite a 
few efforts on the application of ML algorithms for AKI 
prediction. For example, Chiofolo et  al. [18] developed 
an AKI prediction model using automatic continuous 
random forest algorithm in critically ill patients, and 
achieved a preferable capability for early identification of 
high-risk patients. Le et al. [19] formulated a prediction 
system for AKI in the ICU settings using convolutional 
neural networks (CNNs), and found that the predic-
tive performance of the CNN model outperformed that 

of SOFA scoring system. Lin et  al. [20] found that ran-
dom forest had greater potential in predicting mortality 
in patients with AKI rather than support vector machine 
(SVM), artificial neural network (ANN), and SAPS II. 
However, evidence showing the advantage of the ML 
algorithms in the prediction of AKI in septic patients 
is still lacking. In this study, we aimed to develop and 
validate multiple ML models to predict AKI in septic 
patients and to find the model with the best predictive 
performance.

Methods
Data source
Using the Structured Query Language, data of patients 
with sepsis were extracted from a single-center pub-
licly available database called the Medical Information 
Mart for Intensive Care III (MIMIC-III) database [21]. 
The MIMIC-III database is an integrated, de-identified, 
comprehensive clinical dataset containing all patients 
admitted to the ICUs of Beth Israel Deaconess Medical 
Center in Boston, MA, from June 1, 2001, to October 
31, 2012. The MIMIC-III includes detailed information 
about admitted and discharged patients, such as demo-
graphic characteristics, monitoring vital signs, laboratory 
and microbiological examination, imaging examination, 
observation and recording of intake and output, drug 
treatment, length of stay, survival data, and discharge 
or death records. To apply for access to the database, we 
passed the protection of human research participants 
examination and obtained the certificate (No. 9983480).

Participants
When patients were diagnosed with sepsis using the 
International Classification of Disease 9th revision (ICD-
9) (99591, 99592, 78552) after first ICU admission, the 
patient eligibility was considered. Then, the Kidney Dis-
ease: Improving Global Outcomes (KDIGO) criteria 
[22] were used to determine whether AKI occurred in 
patients with sepsis during hospitalization. Patients who 
left the ICU within 48 h, aged < 18 years old and > 89 years 
old, or previously had AKI or renal failure were excluded. 
Moreover, patients with missing > 20% individual data or 
receiving renal replacement therapy (RRT) or continuous 
RRT at admission were excluded.

Data extraction
Patient data in the initial 24 h following admission were 
retrieved from the MIMIC- III database. The following 
information was used in this study: (1) demographic fea-
tures, including sex, age, and ethnicity; (2) comorbidities, 
including congestive heart failure, hypertension, chronic 
pulmonary, diabetes, and liver disease; (3) vital signs, 
including heart rate, temperature, oxygen saturation 
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(SpO2), systolic blood pressure (SysBP), and diastolic 
blood pressure (DiasBP); (4) laboratory parameters, 
including total bilirubin, anion gap, albumin, chloride, 
potassium, sodium, lactate, partial thromboplastin time 
(PTT), prothrombin time (PT), international normal-
ized ratio (INR), creatinine, blood urea nitrogen (BUN), 
and glucose; (5) therapeutic and clinical managements, 
including mechanical ventilation and vasopressor use. 
For some variables with multiple measurements, we 
included the maximum and minimum values for analysis. 
For SOFA and SAPS-II scores, we only included the ini-
tial test values for analysis. Because this was an epidemi-
ological study based on hypothesis, no attempt was made 
to estimate the sample size of the study. Instead, all eligi-
ble patients in the MIMIC- III database were enrolled to 
achieve a maximized statistical power.

In order to minimize the bias resulting from miss-
ing data, variables with over 20% missing values were 
excluded in the final cohort, and other variables were 
duplicated using multiple imputation (MI) method. MI 
is an excellent and widely used method in dealing with 
missing values [23]. MI can impute each missing value 
with multiple plausible possible values. This procedure 
takes into account uncertainty behind the missing value 
and can produce several datasets from which parameters 
of interest can be estimated [24]. For example, if you are 
interested in coefficient for a covariate in a multivari-
able model, the coefficients will be estimated from each 
dataset, resulting in multiple coefficients. Considering 
the uncertainty in the estimation of missing values, these 
coefficients are combined to give a valid estimate of the 
coefficient. The coefficient variance estimated by MI is 
less likely to be underestimated than that estimated by 
single imputation [25].

Statistical analysis
Continuous variables were summarized as the median 
with interquartile range and were compared using the 
Wilcoxon rank-sum test. Categorial variables were 
expressed as number and percentage and were compared 
using the Chi-square tests or Fisher’s exact probability 
method.

Feature selection is an important step in model 
construction. The Boruta algorithm was used to 
identify the most important features by comparing the 
Z-value of each feature against that of “shadow features”. 
By duplicating all real features and shuffling them 
sequentially, the Z-value of each attribute is obtained 
from a random forest model in each iteration, and the 
Z-value of shadow is created by random shuffling of the 
real features. A real feature is regarded as “important” 
if its Z-value is greater than the maximal Z-value of 
shadow features in multiple independent trials [26]. 

After feature selection, seven ML algorithms, including 
LR, k-nearest neighbors (KNN), SVM, decision tree, 
random forest, extreme gradient boosting (XGBoost), 
and ANN, were employed for model construction. A 
tenfold cross-validation was applied for the training 
and validation sets to prevent overfitting, and it was 
also used to formulate predictive models. Accordingly, 
the whole dataset was randomly divided into 10 folds. 
Nine of them were used as the training set for model 
development, and the remaining one was used as the 
validation set for model validation. Because each of 
the 10 folds was used as the validation set, the above 
process was repeated 10 times. Finally, the performance 
of each model was validated and compared in the 
validation set. In our cases, the model with the highest 
area under curve (AUC) of the receiver operating 
characteristic (ROC) curve was selected as the optimal 
model of each algorithm. Because SOFA and SAPS II 
scores were used as common tools for predicting the 
illness severity and prognosis in critically ill patients, 
we also compared the predictive abilities of ML-based 
predictive models with those of the conventional 
scoring systems.

The performance of the predictive models was 
performed with respect to discrimination, calibration, 
and clinical utility. The discrimination was quantitatively 
evaluated by the AUC of the ROC curve, sensitivity, 
specificity, recall, accuracy, and F1 score. The 
calibration was visually assessed through the graphical 
representations of the consistency of the predictive 
probabilities and the observed outcomes based on 
1000 bootstrap resamples. The clinical application was 
investigated by decision curve analysis (DCA). The 
statistical analyses and modeling process were conducted 
by using R version 4.0.5, and a two-sided P-value < 0.05 
was regarded as statistically significant.

Results
Baseline characteristics
A total of 6138 patients were diagnosed with sepsis at 
admission according to ICD-9. Moreover, 2961 patients 
were excluded according to the exclusion criteria (Fig. 1). 
Finally, a total of 3176 patients were included in our anal-
ysis, of which 2397 patients (75.5%) had AKI after ICU 
admission.

The differences in characteristics between AKI and 
non-AKI groups are described in Table 1. Male patients 
were more likely to develop AKI than female patients 
during hospitalization. Patients who suffered from AKI 
had higher age and BMI; higher incidence of congestive 
heart failure, cardiac arrhythmias, hypertension, liver 
disease, paralysis, chronic pulmonary disease, diabetes, 
and coagulopathy; and higher rate of mechanical 
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ventilation and vasopressor use compared with those 
without AKI. The maximum values of anion gap, 
albumin, bilirubin, creatinine, chloride, glucose, lactate, 
potassium, PTT, INR, PT, BUN, heart rate, temperature, 
and SpO2 and the minimum values of anion gap, albumin, 
bilirubin, creatinine, chloride, lactate, potassium, PTT, 
INR, PT, BUN, heart rate, temperature, SpO2, sodium, 
SysBP, and DiasBP were much higher in septic patients 
with AKI compared with those without AKI (P < 0.05). 
However, the levels of urine output and eGFR in the 
AKI group were lower than those in the non-AKI group 
(P < 0.05).

Feature selection
The result of feature screening based on the Boruta algo-
rithm is shown in Fig. 2. In order of Z-values, the 35 vari-
ables most closely associated with AKI were age, BMI, 
cardiac arrhythmias, liver disease, urine output, eGFR, 
mechanical ventilation, vasopressor, the maximum val-
ues of anion gap, bilirubin, creatinine, chloride, lactate, 
platelet, potassium, PTT, INR, PT, sodium, BUN, tem-
perature, and the minimum values of anion gap, biliru-
bin, creatinine, chloride, lactate, platelet, PTT, INR, PT, 
sodium, BUN, temperature, SysBP, and DiasBP.

Model performance comparisons
We generated seven ML models and two scoring sys-
tems to predict the development of AKI in patients 

with sepsis after ICU admission. Figure  3 shows the 
discriminative performance of nine models in terms 
of ROC curves. Among the nine models, XGBoost 
model (AUC = 0.817) had the best predictive effect 
for AKI in septic patients, followed by random for-
est (AUC = 0.779), ANN (AUC = 0.755), deci-
sion tree (AUC = 0.749), LR (AUC = 0.737), SVM 
(AUC = 0.735), SAPS II (AUC = 0.702), KNN 
(AUC = 0.664) and SOFA (AUC = 0.646) models. 
When using the LR model (AUC = 0.7265) as refer-
ence, the XGBoost model, random forest model, the 
ANN and decision tree outperformed it in the pre-
dictive ability of AKI in septic patients. However, 
the discrimination of SVM model (AUC = 0.735), 
KNN (AUC = 0.664), SOFA (AUC = 0.646), and SAPS 
II (AUC = 0.702) models were inferior to that of the 
LR model. Table  2 presents a set of detailed perfor-
mance metrics for the nine models. The XGBoost 
model had the best discrimination with the highest 
sensitivity (0.945), accuracy (0.832), recall (0.852), F1 
score (0.895), and the third highest specificity (0.913). 
In Additional file  1: Figure S1, the calibration curves 
showed that the XGBoost model performed best 
among the seven ML models. According to the DCA 
curves (Fig.  4), the XGBoost model exhibited greater 
net benefit along with the threshold probability com-
pared with other models, indicating that the XGBoost 
model was the optimal model with favorable clinical 
utility.

Fig. 1  The flowchart of patient selection. MIMIC: Medical Information Mort for Intensive Care; ICU: intensive care unit
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Table 1  Baseline characteristics of the patients with sepsis

Characteristics Total (n = 3176) Non-AKI (n = 779) AKI (n = 2397) P value

Male, n (%) 1756 (55.3%) 465 (59.7%) 1291 (53.9%) 0.004

Age (years) 66 (54–77) 62 (52–73) 67 (55–78)  < 0.001

Ethnicity, n (%) 0.147

 White 2391 (75.3%) 566 (72.7%) 1825 (76.1%)

 Black 260 (8.2%) 71 (9.1%) 189 (7.9%)

 Other 525 (16.5%) 142 (18.2%) 383 (16.0%)

BMI (kg/m2) 27 (23–32) 26 (23–30) 28 (23–32)  < 0.001

Congestive heart failure, n (%) 1034 (32.6%) 193 (24.8%) 841 (35.1%)  < 0.001

Cardiac arrhythmias, n (%) 1256 (39.5%) 222 (28.5%) 1034 (43.1%)  < 0.001

Hypertension, n (%) 1422 (44.8%) 317 (40.7%) 1105 (46.1%) 0.008

Paralysis, n (%) 125 (3.9%) 45 (5.8%) 80 (3.3%) 0.002

Chronic pulmonary, n (%) 766 (24.1%) 163 (20.9%) 603 (25.2%) 0.016

Diabetes, n (%) 865 (27.2%) 187 (24.0%) 678 (28.3%) 0.020

Liver disease, n (%) 626 (19.7%) 110 (14.1%) 516 (21.5%)  < 0.001

Coagulopathy, n (%) 830 (26.1%) 173 (22.2%) 657 (27.4%) 0.004

Mechanical ventilation, n (%) 1840 (57.9%) 262 (33.6%) 1578 (65.8%)  < 0.001

Vasopressor, n (%) 1990 (62.7%) 352 (45.2%) 1638 (68.3%)  < 0.001

Anion gap_min (mmol/l) 12 (11–14) 12 (10–14) 13 (11–14)  < 0.001

Anion gap_max (mmol/l) 16 (14–19) 15 (13–18) 16 (14–19)  < 0.001

Albumin_min (g/dl) 2.7 (2.3–3.1) 2.8 (2.4–3.1) 2.6 (2.2–3.1)  < 0.001

Albumin_max (g/dl) 2.8 (2.4–3.2) 2.8 (2.5–3.3) 2.8 (2.3–3.2) 0.002

Bilirubin_min (mg/dl) 0.7 (0.4–1.7) 0.6 (0.4–1.3) 0.7 (0.4–1.7)  < 0.001

Bilirubin_max (mg/dl) 0.8 (0.5–2.1) 0.7 (0.4–1.5) 0.9 (0.5–2.3)  < 0.001

Creatinine_min (mg/dl) 0.9 (0.7–1.4) 0.9 (0.7–1.2) 1 (0.7–1.4)  < 0.001

Creatinine_max (mg/dl) 1.2 (0.8–1.8) 1.1 (0.8–1.55) 1.2 (0.8–1.8)  < 0.001

Chloride_min (mEq/l) 103 (98–108) 103 (99–108) 103 (98–107) 0.003

Chloride_max (mEq/l) 109 (104–113) 109 (105–113) 108 (104–113) 0.004

Glucose_min (mg/dl) 104 (87–125) 104 (88–121.5) 104 (87–127) 0.76

Glucose_max (mg/dl) 156 (124–205) 146 (118.5–194) 158 (126–209)  < 0.001

Lactate_min (mmol/l) 1.5 (1.1–2.1) 1.4 (1–1.8) 1.5 (1.1–2.1)  < 0.001

Lactate_max (mmol/l) 2.4 (1.6–4.2) 2.1 (1.5–3.5) 2.5 (1.6–4.4)  < 0.001

Platelet_min (K/UL) 183 (109–278) 188 (120–283) 182 (106–276) 0.103

Platelet_max (K/UL) 229.5 (148.3–339) 229 (149–339) 230 (148–340) 0.673

Potassium_min (mEq/l) 3.6 (3.3–4) 3.6 (3.3–3.9) 3.6 (3.3–4) 0.005

Potassium_max (mEq/l) 4.4 (4–4.9) 4.2 (3.9–4.7) 4.4 (4–4.9)  < 0.001

PTT_min (seconds) 31.1 (27.1–36.8) 30.2 (26.8–35.3) 31.3 (27.2–37.3)  < 0.001

PTT_max (seconds) 35.7 (29.7–46.9) 34 (28.85–41.85) 36.3 (30–48.6)  < 0.001

INR_min 1.3 (1.2–1.6) 1.3 (1.1–1.5) 1.3 (1.2–1.6)  < 0.001

INR_max 1.4 (1.2–1.9) 1.4 (1.2–1.7) 1.5 (1.3–2)  < 0.001

PT_min (seconds) 14.7 (13.4–17) 14.3 (13.2–16.2) 14.8 (13.4–17.3)  < 0.001

PT_max (seconds) 15.8 (14–19.4) 15.2 (13.8–17.8) 16 (14.1–19.9)  < 0.001

Sodium_min (mEq/l) 136 (133–140) 137 (133–140) 136 (133–140) 0.028

Sodium_max (mEq/l) 140 (137–143) 140 (137–143) 140 (137–143) 0.216

BUN_min (mg/dl) 21 (14–35) 18 (12–30) 23 (14–37)  < 0.001

BUN_max (mg/dl) 26 (17–42) 23 (15–38) 27 (18–44)  < 0.001

WBC_min (K/UL) 10.6 (6.6–15.7) 10.9 (6.6–15.7) 10.6 (6.6–15.7) 0.647

WBC_max (K/UL) 15 (9.7–21.5) 14.9 (9.5–21.25) 15 (9.8–21.6) 0.403

HeartRate_min (beats/minute) 78 (67–90) 77 (65–89) 78 (67–90) 0.02

HeartRate_max (beats/minute) 114 (99–128) 110 (97–125.5) 115 (100–129)  < 0.001



Page 6 of 12Yue et al. Journal of Translational Medicine          (2022) 20:215 

AKI acute kidney injury, BMI body mass Index,  PT prothrombin time, PTT partial thromboplastin time, INR International Normalized Ratio, BUN blood urea nitrogen, 
WBC white blood cell, SpO2 oxygen saturation, SysBP systolic blood pressure, DiasBP diastolic blood pressure, eGFR estimated glomerular filtration rate

Table 1  (continued)

Characteristics Total (n = 3176) Non-AKI (n = 779) AKI (n = 2397) P value

SysBP_min (mmHg) 83 (75–92) 86 (78–95) 82 (73–91)  < 0.001

SysBP_max (mmHg) 140 (126–154) 138 (126–153) 140 (127–155) 0.06

DiasBP_min (mmHg) 41 (34–48) 42 (35–49) 40 (34–47)  < 0.001

DiasBP_max (mmHg) 80 (70.3–91) 81 (72–90) 80 (70–91) 0.706

Temperature_min (℃) 36.1 (35.6–36.7) 36.2 (35.8–36.7) 36.1 (35.6–36.6)  < 0.001

Temperature_max (℃) 37.7 (37.1–38.4) 37.7 (37.1–38.6) 37.6 (37.1–38.3) 0.006

SpO2_Min (%) 92 (89–95) 93 (90–95) 92 (89–95) 0.002

SpO2_Max (%) 100 (100–100) 100 (100–100) 100 (100–100) 0.003

Urine output (ml) 790 (422.3–1380) 1005 (512.5–1627.5) 745 (410–1280)  < 0.001

eGFR (ml/min/1.73m2) 75.2 (47.4–107.8) 87.4 (58.0–118.2) 70.4 (43.7–105.4)  < 0.001

Fig. 2  Feature selection based on the Boruta algorithm. The horizontal axis is the name of each variable, and the vertical axis is the Z-value of each 
variable. The box plot shows the Z-value of each variable during model calculation. The green boxes represent the first 35 important variables, the 
yellow represents tentative attributes, and the red represents unimportant variables. BMI: body mass Index; eGFR: estimated glomerular filtration 
rate; PT: prothrombin time; PTT: partial thromboplastin time; INR: International Normalized Ratio; BUN: blood urea nitrogen; SysBP: systolic blood 
pressure; DiasBP: diastolic blood pressure



Page 7 of 12Yue et al. Journal of Translational Medicine          (2022) 20:215 	

Feature importance in XGBoost models
The ranks of feature importance in the XGBoost model 
are shown in Fig. 5. Urine output, mechanical ventilation, 

BMI, eGFR, minimum creatinine, maximum PPT, and 
minimum BUN were the most important features that 
contributed to AKI in critically ill patients with sepsis.

Fig. 3  Receiver operating characteristic curve of the seven models. LR: logistic regression; KNN, k-nearest neighbors; SVM: support vector machine; 
XGBoost: Extreme Gradient Boosting; ANN: artificial neural network; SOFA: sequential organ failure assessment; SAPS II: the customized simplified 
acute physiology score; AUC: area under the curve

Table 2  Model performance metrics

AUC​ area under curve, LR logistic regression KNN: k-nearest neighbors, SVM support vector machine, XGBoost extreme gradient boosting, ANN artificial neural network, 
SOFA Sequential Organ Failure Assessment, SAPS II the Simplified Acute Physiology Score II

Models AUC​ Recall Accuracy F1 score Sensitivity Specificity

LR 0.737 0.796 0.765 0.858 0.834 0.878

KNN 0.664 0.798 0.742 0.840 0.886 0.857

SVM 0.735 0.797 0.788 0.874 0.833 0.926

Decision tree 0.749 0.834 0.793 0.870 0.910 0.882

Random forest 0.779 0.809 0.794 0.876 0.935 0.923

XGBoost 0.817 0.852 0.832 0.895 0.943 0.913

ANN 0.755 0.778 0.783 0.875 0.824 0.899

SOFA 0.646 0.755 0.723 0.781 0.633 0.712

SAPS II 0.702 0.774 0.762 0.814 0.811 0.845
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Discussion
Compared with some previous reports on AKI prediction 
in critically ill patients using the MIMIC- III dataset 
[18–20], our research has several novel contributions. 
For the first time, our study included seven commonly 
used ML algorithms for comprehensive analyses and 
compared their predictive performance with that of 
traditional scoring systems, including SOFA and SAPS II 
scoring systems. The ML models showed good predictive 
accuracy in term of discrimination and calibration, but 
it was not the same as usefulness in clinical practice. 
When the threshold probabilities of the net benefit are 
impractical, a model with good performance may also 
have limited applicability [27]. Therefore, we applied the 
DCA curves to validate the clinical applicability of the 
ML models. Finally, Boruta algorithm can help us fully 
understand the importance of independent variables, so 
as to carry out feature selection more effectively.

The incidence rate of sepsis is increasing in critically 
ill patients worldwide, which is associated with high 
mortality and economic burden [28]. Sepsis is a well-
known risk factor of AKI, as the kidney is very sensitive 
to hypoperfusion and some interventions, such as 
mechanical ventilation and excessive fluid resuscitation. 
At present, the treatment of AKI in sepsis remains 

reactive and nonspecific, and no preventive treatment 
is available. The presence of AKI has a significant 
impact on increased mortality in septic patients, which 
range from 38.2 to 70.2% [29, 30]. Hernando et  al. [31] 
found that AKI occurs in 40–50% of septic patients 
with a 6–eightfold increase in mortality. Furthermore, 
a prospective cohort study including 401 critically ill 
patients revealed that the incidence of AKI was 50.1% 
in patients with severe sepsis, which is 7.79 times higher 
than that in patients without sepsis [32]. However, active 
treatment at the early stage of AKI can improve the 
survival rate [33]. Some studies have found that early 
renal recovery in sepsis-related AKI can not only improve 
the survival rate, but also contribute to the later recovery 
of patients after discharge [34–36]. Unfortunately, it is 
difficult for clinicians to identify patients at high risk of 
AKI in the ICU. Therefore, developing and promoting 
reliable prediction models is particularly urgent for 
identifying these patients and providing them with timely 
and effective interventions to improve their prognosis.

In this study, the traditional severity scoring systems, 
such as SOFA and SAPS II scores, showed an unfavorable 
performance compared with the ML model, suggesting 
that they might not be effective tools for AKI prediction 
in critically ill patients with sepsis. Although SOFA and 

Fig. 4  Decision curve analyses of the seven models. The horizontal line indicates no patients develop AKI, and the gray oblique line indicates 
patients develop AKI. LR logistic regression, KNN k-nearest neighbors, SVM support vector machine, XGBoost Extreme Gradient Boosting, ANN 
artificial neural network, AKI acute kidney injury
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SAPS II scoring systems can be used to assess the risk of 
adverse outcomes in critically ill patients, these scores 
largely depended on the experience of the practitioners 
[37]. Moreover, these scoring systems preclude the 
analysis of a large number of valuable variables, 
resulting in a worse predictive performance than that of 
multivariate models [38]. Previous studies have revealed 
that SOFA and SAPS II scoring systems have some 
disadvantages, such as poor prediction performance, low 

sensitivity and specificity, wide fluctuation range, and 
cumbersome process, compared with ML models [16].

Our results showed that the XGBoost model had a 
better capability than the LR model for predicting AKI 
in septic patients. On the one hand, the LR algorithm 
requires researchers to manually select independent 
variables, cannot detect the complex nonlinear 
relationship and interaction between independent 
variable X and response value Y, and is sensitive to the 
multicollinearity of independent variables, which may 

Fig. 5  Feature importance derived from the XGBoost model. BMI body mass Index, PTT partial thromboplastin time, BUN blood urea nitrogen, eGFR 
estimated glomerular filtration rate, Max Maximum, Min Minimum, AKI acute kidney injury
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result in an underfit and inaccurate model. On the other 
hand, the XGBoost model could efficiently and flexibly deal 
with missing data and combine weak prediction models to 
establish accurate prediction models. Due to its excellent 
precision and performance, the XGBoost algorithm is 
increasingly emphasized as a competitive alternative to LR 
analysis in predicting clinical adverse outcomes.

Among all ML models, the XGBoost model performs 
best in AKI prediction, which were consistent with 
some previous studies. Liu et  al. [39] demonstrated 
that the predictive performance of the XGBoost model 
superior to three other ML models, including LR, SVM, 
and random forest, for predicting mortality in patients 
with AKI. Zhu et al. [40] found that the XGBoost model 
outperformed the KNN, LR, decision tree, random forest, 
and ANN models in prediction of hospital mortality 
for mechanically ventilated patients. Moreover, a meta-
analysis revealed that XGBoost was more effective than 
LR and other ML algorisms, including ANN, SVM, and 
Bayesian network, in the prediction of AKI [41].

This study is the first to apply ML algorithms for predicting 
the development of AKI during hospitalization in patients 
with sepsis. Through the sophisticated XGBoost model, we 
identified that urine output, mechanical ventilation, BMI, 
eGFR, minimum creatinine, maximum PPT, and minimum 
BUN were mostly associated with the development of AKI 
in patients with sepsis. Among these features, urine output 
was considered to be the most important indicator of AKI, 
which is in accordance with the KDIGO recommendations. 
In addition to urine output, some measures of renal 
function, such as eGFR, BUN, and serum creatinine, also 
played an important role in the prediction of kidney disease. 
These results have been confirmed in many clinical studies. 
Mertoglu et al. [42] found that serum creatinine and BUN 
have greater diagnostic value compared with other novel 
markers including myo-inositol oxygenase and cystatin 
C. Laranja et al. [4] revealed that septic patients with AKI 
had lower urine output compared with patients with 
AKI from other cases or chronic kidney disease. Grams 
et  al. [43] demonstrated that low eGFR was a reliable risk 
factors for AKI through a meta-analysis including more 
than 1 million participants from eight countries. Notably, 
mechanical ventilation was also significantly associated 
with AKI in septic patients. Positive-pressure mechanical 
ventilation (PPV) is commonly used in critically ill patients 
to provide oxygenation, ventilation, and airway protection 
support. However, PPV has long been considered to have 
potentially harmful effects on the kidney [30]. This may be 
due to the following three reasons. First, PPV may increase 
intrathoracic pressure and thus reduce venous reflux, 
cardiac output, and renal perfusion. Second, mechanical 
ventilation may induce the release of some neurohormones, 
affect the renin-angiotensin system, and decrease renal 

blood flow and eGFR. Third, mechanical ventilation at any 
volume or pressure might create a cascade of inflammation, 
including multiple interleukins, tumor necrosis factor-α, 
and Fas ligand, that may contribute to AKI. Moreover, 
PTT is common indicators to judge coagulation function. 
Recently, a retrospective study [44] showed that more than 
half of patients with septic AKI had at least one abnormal 
coagulation index, and coagulation dysfunction may predict 
poor outcome of patients. BMI is a simple and useful index 
for obesity according to the height and weight of patients. 
BMI has been widely studied in patients with sepsis and 
AKI. Our findings showed that the AKI group had higher 
BMI compared with the non-AKI group. Obesity can lead to 
glomerular hyperperfusion and hyperfiltration, increase the 
hemodynamic and metabolic burden of a single glomerulus, 
and activate inflammation of adipocytes and oxidative stress 
[45], increasing the risk and progression of AKI. As these 
indexes can be evaluated easily at hospital admission, they 
can be used as convenient predictors for the development of 
AKI in critically ill patients with sepsis.

In this study, the in-hospital incidence of AKI in septic 
patients was 75.5%, which was similar to some previous 
studies. According to the report by Fan et  al. [15], the 
incidence rate of AKI was 61% in 15,508 patients with 
sepsis. Tejera et  al. [32] conducted a retrospective study 
in 401 critically ill patients and found that the incidence 
of AKI was as high as 75.3%. The pathogenesis of AKI 
in sepsis is complex and has not been clarified yet. 
Hemodynamic instability, impaired endothelial function, 
infiltration of inflammatory cells in the renal parenchyma, 
renal thrombosis, and renal tubular necrosis have been 
hypothesized to contribute to the development of AKI in 
septic patients [46]. The hyperactivation of immune response 
caused by sepsis is particularly important in the pathogenesis 
process, including the proinflammatory and anti-
inflammatory stages. In the proinflammatory stage, humoral 
and cellular immunity can cause a storm of inflammatory 
factors, leading to the excessive secretion of inflammatory 
factors (such as interleukin 1 and tumor necrosis factor-α), 
the activation of complement and coagulation system, the 
activation of hyaluronic acid and elastase, and eventually 
the reduction of renal blood flow and the occurrence of AKI 
and septic shock [6, 47]. Subsequently, patients will have 
a compensatory anti-inflammatory response, which is an 
immunosuppressive state, manifested by increased secretion 
of cytokines (such as interleukin 10), weakened endocytosis, 
reduced proliferation of lymphocytes, and increased 
apoptosis [29]. Thus, patients with sepsis are the high-risk 
group for AKI during hospitalization. Once AKI occurs, 
the prognosis is significantly worse, and even RRT cannot 
improve the prognosis.

We should acknowledge some limitations of this 
research. First, the retrospective and observational 
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nature of our study may lead to inevitable selection bias. 
Second, the data of MIMIC- III came from a single center 
in the United States, which may affect the extension of 
the prediction model to other populations. Therefore, 
further research with large samples and multiple centers 
is necessary to externally verify the application of 
models. Third, we used the filling method to estimate 
some missing data, which may lead to deviation from the 
true value. However, we still believe that the constructed 
model is helpful for clinicians to timely treat ICU patients 
with sepsis at high risk for developing AKI.

Conclusions
In conclusion, the ML models can be reliable tools for 
predicting AKI in septic patients. Among all of the pre-
dictive models, the XGBoost model is the most effective 
model, which may assist clinicians in tailoring precise 
management and implementing early interventions for 
septic patients at risk of AKI to reduce mortality.
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