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Abstract 

Background: To develop and validate a survival model with clinico-biological features and 18F- FDG PET/CT radiomic 
features via machine learning, and for predicting the prognosis from the primary tumor of colorectal cancer.

Methods: A total of 196 pathologically confirmed patients with colorectal cancer (stage I to stage IV) were included. 
Preoperative clinical factors, serum tumor markers, and PET/CT radiomic features were included for the recurrence-
free survival analysis. For the modeling and validation, patients were randomly divided into the training (n = 137) and 
validation (n = 59) set, while the 78 stage III patients [training (n = 55), and validation (n = 23)] was divided for the 
further experiment. After selecting features by the log-rank test and variable-hunting methods, random survival forest 
(RSF) models were built on the training set to analyze the prognostic value of selected features. The performance of 
models was measured by C-index and was tested on the validation set with bootstrapping. Feature importance and 
the Pearson correlation were also analyzed.

Results: Radiomics signature (containing four PET/CT features and four clinical factors) achieved the best result for 
prognostic prediction of 196 patients (C-index 0.780, 95% CI 0.634–0.877). Moreover, four features (including two clini-
cal features and two radiomics features) were selected for prognostic prediction of the 78 stage III patients (C-index 
was 0.820, 95% CI 0.676–0.900). K–M curves of both models significantly stratified low-risk and high-risk groups 
(P < 0.0001). Pearson correlation analysis demonstrated that selected radiomics features were correlated with tumor 
metabolic factors, such as SUVmean, SUVmax.

Conclusion: This study presents integrated clinico-biological-radiological models that can accurately predict the 
prognosis in colorectal cancer using the preoperative 18F-FDG PET/CT radiomics in colorectal cancer. It is of potential 
value in assisting the management and decision making for precision treatment in colorectal cancer.

Trial registration The retrospectively registered study was approved by the Ethics Committee of Fudan University 
Shanghai Cancer Center (No. 1909207-14-1910) and the data were analyzed anonymously.
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Introduction
Colorectal cancer (CRC) is one of the most commonly 
diagnosed cancers all over the world, though its epidemi-
ology is different in various regions [1]. It is also one of 
the leading causes of cancer-related mortality despite the 
advancement in treatment strategies [2, 3]. The prognosis 
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of CRC is one of the essential factors in patient manage-
ment and selection of treatment strategies [4]. Tumor 
Node Metastasis (TNM) staging classification system 
plays an important role in colorectal cancer prognostica-
tion [4–6]. But TNM staging system cannot accurately 
differentiate the prognosis of colon cancer with stage 
II and III. A series of disease characteristics known to 
affect the survival of colorectal cancer were not directly 
included in the TNM staging system, such as age, gen-
der, location of primary disease, tumor grade, lym-
phatic vessel and peripheral nerve infiltration, intestinal 
obstruction or perforation and BRAF and KRAS Muta-
tions [7–10]. Blood and stool protein markers have also 
been investigated to identify patients with favorable and 
poor prognosis [11, 12]. Several studies were dedicated 
to other prognostic factors in patients with MSI status 
and chromosome 18q loss of heterozygosity in the cod-
ing place [13, 14]. Several studies have attempted to pro-
vide clinical assistance in the management strategies of 
colorectal cancer by utilizing important imaging prog-
nostic features, such as depth of tumor spread, presence 
of malignant lymph nodes, tumor deposits, extramural 
vascular invasion, and differentiation of mucinous from 
nonmucinous tumors [15].

For staging primary colon cancer, contrast-enhanced 
computed tomography (CT) scans achieved accuracies 
ranging from 60 to 80% [16–19]. MRI features are use-
ful in diagnosing locally advanced rectal tumors and 
also are helpful to assess regional nodal involvement and 
treatment response [20, 21]. However, the above ana-
tomical imaging is based on morphology, cannot pro-
vide the metabolic characteristics of the tumor lesion. 
18F-fluoro-2-deoxy-d-glucose Positron emission tomog-
raphy/computed tomography (18F-FDG PET/CT) can 
sensitively provide the molecular and functional infor-
mation of not only the primary tumor, but also distant 
metastasis lesion and the recurrent disease by one-time 
imaging [22]. 18F-FDG, like glucose, is transported into 
cells by glucose transporters, where it is transformed into 
18F-FDG-6-phosphate (18F-FDG-6-P). Because 18F-FDG-
6-P cannot be metabolized further, it becomes trapped 
inside cells. Compared with normal tissue, tumor cells 
are highly proliferative and have a high glucose meta-
bolic rate. Therefore, tumor cells accumulate more 
18F-FDG-6-P than normal cells [23]. The degree of meta-
bolic activities or tissue uptake of FDG was expressed as 
a standardized uptake value (SUV). In colorectal cancer, 
cells showed increased glycolysis metabolism. PET can 
be quantitatively evaluated and compared in studies (e.g., 
pre- and post-treatment)[24] using SUV, thus assisting 
to obtain insights into tumor biology. The correlation 
between FDG metabolism in PET and tumor prolifera-
tion rates that may in turn help determine the prognosis 

of CRC. It is known that the scan highly depends on the 
patient’s physical condition due to a 6-h fast.

Radiomics is a promising translational research field 
that can provide quantified tumor heterogeneity infor-
mation from medical images in a non-invasive manner. 
Studies have shown that radiomic features based on CT 
or MRI were related to the prognosis of colorectal can-
cers [25–27]. PET/CT radiomics has achieved success 
in wide range of cancers [28–31]. For example, PET/CT 
radiomics has successfully predicted the prognosis of 
various malignancies including gastric cancer [32], naso-
pharyngeal carcinoma [33]. lung cancer, breast cancer 
and other tumors [34–36]. There have been several stud-
ies of PET/CT radiomics in rectal cancer, however, not in 
colon cancer [37–40]. Other PET/CT radiomics studies 
focused on colorectal cancer patients with metastasis [41, 
42]. In addition, studies used texture analysis instead of 
complete radiomics to study the prognosis of colorectal 
cancer with a relatively small number of cases[37, 43]. 
Some studies reported the metabolic phenotype could 
predict genetic alterations of colorectal cancer by 18F-
FDG PET/CT radiomics [44]. Therefore, we conclude 
that the prognostic value of PET/CT radiomics based on 
primary colorectal cancer has not been deeply explored, 
especially in stage III patients who accounts for a high 
proportion of colorectal cancer patients. In this study, we 
investigated the prognostic value of 18F-FDG PET/CT-
based radiomics features using machine learning for CRC 
patients of all stages and then applied the same method 
on CRC patients with stage III to analyze the differences.

Materials and methods
Patients collection
The study was approved by Ethics Committee of Fudan 
University Shanghai Cancer Centre and Institutional 
Review Board for clinical investigation. In our study, 
196 patients diagnosed with colorectal cancer between 
January 2010 and July 2018 were retrospectively col-
lected from an electronic database in Fudan University 
Shanghai Cancer Centre. Patients were followed up until 
July 2020. All patients who met the following criteria 
were enrolled: (1) Patients received surgery at the pri-
mary colorectal lesion and the final pathology was colo-
rectal adenocarcinoma or mucinous adenocarcinoma; 
(2) Immunohistochemical results also was received; (3) 
Patients received no preoperative treatment and under-
went preoperative 18F-FDG PET/CT. Thus, the difference 
in tumor metabolism after adjuvant therapy was avoided; 
(4) Patients did not receive any chemotherapy, radiation 
therapy, or molecular targeted therapy before 18F-FDG 
PET/CT scans yet; (5) Patients were not lost to follow-up. 
We reviewed 243 patients diagnosed with colorectal can-
cer in total and finally enrolled 196 patients for this study.
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18F‑FDG PET/CT protocol and imaging interpretation
18F-FDG PET/CT scans were performed using a PET/
CT scanner (Siemens Medical Systems, Biograph 16 
HR). All patients fasted for at least 6  h before 18F-FDG 
administration and glucose levels in the peripheral blood 
were confirmed to be 10 mmol/L or less before the 18F-
FDG injection (7.4 MBq/kg (0.2 mCi/kg) of body weight) 
in this study. The scanning included the area from 
the upper thigh to the skull. Data acquisition started 
approximately 1  h after the injection. The low-dose CT 
scans were obtained with the following parameters: 
40–60  mA, 120  kV, 0.6-s tube rotation, and 3.75-mm 
section thickness. The spatial resolution of PET images 
was 168 × 168 × 172 with voxel size 4.06 × 4.06 × 5 mm

3 , 
while the resolution of CT images was 512 × 512 × 172 
with voxel size 1.37 × 1.37 × 5 mm

3 . For quantitative 
analysis, 18F-FDG accumulation on a workstation was 
assessed by two experienced nuclear medicine physicians 
through calculating the standardized uptake value (SUV), 
metabolic tumor volume (MTV) and total lesion glyco-
lysis (TLG) in the regions of interest placed over the sus-
pected lesions and the normal liver. SUV was calculated 
in a pixel as (radioactivity) / (injected dose/body weight). 
TLG was calculated as (mean SUV) × (MTV), in which 
MTV was measured with setting a margin threshold as 
SUV of 2.5. All values of SUVmax, MTV, and mean SUV 
were automatically measured by analysis software for 
each lesion. For evaluating metastatic CRC, the highest 
SUV in a metastatic tumor was taken as SUVmax and the 
mean SUV was taken as SUVmean.

Medical image delineation
The Volume of Interest (VOIs) in the tumor was seg-
mented slice by slice by two attending nuclear medicine 
physicians respectively. The open-source software ITK-
Snap [45] was used for segmentation. If the two opinions 
were different, they discussed and made the final deci-
sion together. The physicians segmented tumors only 
on the basis of imaging findings and did not consider 
pathological findings. Since the PET/CT images were co-
registered, only the VOIs of PET images were manually 
segmented, and then resampled to CT images through 
coordinate transformation and interpolation. The result-
ing VOIs for CT images were validated by a radiologist.

Radiomics feature extraction
Radiomics Workflow was illustrated in Fig.  1 including 
three main modules: Feature Engineering, Random Sur-
vival Forest (RSF) Models, Statistical analysis.

In feature extraction, we applied different settings for 
PET and CT images to adapt to different image character-
istics of these two modalities, as illustrated in Additional 

file  1: Fig. S1. For PET images, we firstly applied SUV 
normalization based on patients’ body weight and injec-
tion doze. Then, we used a fixed bin-size of 0.25 SUV in 
intensity discretization to reduce the effect of the image 
noise [46]. The common parameter for bin size [47, 48] 
was used to ensure the reproducibility of our model. On 
the other hand, for CT images, we firstly shifted + 1000 
HU on image values to prevent the pixel value from being 
negative when squared, as the minimum value of HU was 
-1000. For CT image discretization, we used a fixed bin 
size of 25 HU, as suggested in previous reports [49–51].

1246 radiomic features were extracted from ROIs delin-
eated by clinicians on PET and CT images respectively, 
resulting in 2492 radiomic features per patient. Radiomic 
features include three major types: first-order features, 
shape features and texture features. First-order features 
describe the intensity distribution of voxels. Shape fea-
tures describe the tumor shape characteristics such as 
volumes and surface areas. Texture features describe the 
second-order intensity distribution of voxels via Gray 
Level Co-occurrence Matrix (GLCM), Gray Level Size 
Zone Matrix (GLSZM), Gray Level Run Length Matrix 
(GLRLM), and Gray Level Dependence Matrix (GLDM). 
Wavelet features and Laplacian of Gaussian (LoG) fea-
tures are texture features extracted from filtered images 
using wavelet filters and LoG filters. The radiomic feature 
extraction was implemented with open-source PyRadi-
omics library [52] (https:// github. com/ Radio mics/ pyrad 
iomics), which is in compliant with Imaging Biomarker 
Standardization Initiative [53].

Feature selection
Before implementing feature selection, 24 clinico-bio-
logical features and 2492 radiomic features were fused 
to form a feature pool. The feature selection strategy was 
designed to be outcome-driven, aiming to mine features 
that capture the prognostic patterns. As illustrated in 
Fig. 2A, we applied a sequential combination of univari-
ate and multivariate selection on the PET, CT radiomic 
features and clinico-biological features extracted from 
training data.

In univariate selection, the log-rank test was used to 
select statistically significant features with high prog-
nostic values (p < 0.05). Based on the selected features, 
multivariate selection was deployed to select the final 
discriminative feature set using RSF-based variable 
hunting algorithm [54]. To prevent the risk of overfit-
ting, we applied 50 times of five-fold cross-validation in 
multivariate feature selection to boost the generalizabil-
ity of selected feature subsets. As the selected features 
were based on the performance of rotating training sets 
instead of a single fixed training set, the selected feature 

https://github.com/Radiomics/pyradiomics
https://github.com/Radiomics/pyradiomics
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subset was more generalizable, thus properly avoiding 
the risk of overfitting.

Modeling and validation
The patients were split into training and validation sets 
(7:3 ratio) using the stratified method. A random survival 
forest (RSF) model, which captures non-linear effects, 
was fitted to predict the recurrence-free survival (RFS) 
on the training set. To select the best performing RSF 
model with optimized hyperparameters, we used the 
grid search strategy based on the average C-index on the 
training set with 1000 times of bootstrap. The model per-
formance was evaluated by C-index on the validation set 
with 1000 times bootstrap to reduce model overfitting. 
Furthermore, the predicted risks of the validation set 
yielded by the fitted RSF model were dichotomized into 
low-risk and high-risk groups. Then two groups were 
compared using the log-rank test to examine whether the 
model could stratify patients with different RFS.

Statistical analysis
Statistical analysis was implemented using R package ver-
sion 3.6.3 (R Foundation for Statistical Computing) and 

Fig. 1 Radiomics workflow. Input PET/CT was collected from patients with colorectal cancer (Stage I–IV). Feature engineering was used to extract 
radiomics features from region of interests in PET/CT images and to select important features via log-rank test and variable hunting. Two random 
survival forest (RSF) models M1 and M2 were constructed followed by statistical analysis including survival prediction, correlation analysis and 
individualized interpretation

Fig. 2 Methodology and results of feature selection. A Methodology 
of feature selection: univariate log-rank test was applied to select 
features with p < 0.05 to form feature set a. Multivariate variable 
hunting was used to select discriminative feature combination 
(final feature set b) via five-fold cross validation. B Results of feature 
selection: the number of selected features in feature selection 
pipeline
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p-value < 0.05 was considered statistically significant. The 
optimal cutoff point for the log-rank test was performed 
by ‘surv_cutpoint’ function in the ‘survminer’ R package. 
The random survival forest and variable-hunting algo-
rithm were implemented using the “randomForestSRC” 
R package.

Results
Demographics of patients
There were 196 patients with colorectal cancer involved 
in the dataset. Table  1 summarized the detailed demo-
graphics of patients. Of a total of 196 patients with colo-
rectal cancer, stage I, II, III, and IV were 32 (16.3%), 44 
(22.4%), 78 (39.8%), and 42 (21.4%), respectively. In the 
original experiment, 196 patients (ranging from stage I to 
stage IV) were randomly split into 138 training samples 
and 58 validation samples with a ratio of 7:3. The data-
set used in the primary experiment is denoted as D-1 ~ 4. 
There were 29.6% of patients from D-1 ~ 4 who experi-
enced recurrence. In the further experiment, we con-
ducted the prognostic analysis on patients with stage III 
only, which was split into training and testing sets with a 
ratio of 7:3. The dataset containing only stage III patients 
is denoted as D-3. There were 33.3% of patients from D-3 
who experienced recurrence. Compared with other stud-
ies, the patient characteristics in Table 1 listed four clini-
cal factors including CEA, CA199, and Lymph nodes, 
which are automatically screened as prognostic factors by 
the machine program (feature selection). Our radiomics 

modelling combined the power of these clinical factors 
with imaging-based features, thus may be more valuable 
than clinical studies using merely clinical factors in pre-
dicting prognosis.

Result of feature selection
As illustrated in Fig.  2B, feature selection was applied 
on 2492 radiomics features extracted from PET and CT 
images and 24 clinico-biological features. For patients 
with stage I-IV, 12 CT and 48 PET radiomics features and 
nine clinico-biological features, were selected during uni-
variate selection, while the final feature set composed of 
two CT, two PET and four clinical features was selected 
in multivariate selection for model building. For patients 
with stage III, 27 CT and 22 PET radiomics features and 
five clinico-biological features were selected during uni-
variate selection, while one CT, one PET and two clinical 
features were selected in multivariate selection.

Performance of radiomics signature
The performance of selected radiomic signatures was 
illustrated in Fig.  3A and B for primary experiment 
D-1 ~ 4 and secondary experiment D3, respectively. Fig-
ure  3A and B showed RSF models built with clinical, 
CT and PET features outperforms models with solely 
clinical, PET or CT features, peaking at C-index 0.780 
[95% CI 0.634–0.877] and 0.820 [95% CI 0.676–0.900] 
respectively. The detailed performance of signatures was 
attached in the Additional file  1: Table  S2. K–M curves 
of radiomics signatures for D-1 ~ 4 and D3 were dem-
onstrated in Fig.  3C and D respectively (P < 0.0001). To 
evaluate the risk of overfitting, we summarized training 
and testing C-index during the independent validation 
in Additional file 1: Table S1. The table showed the dif-
ferences between training and testing C-index were less 
than 0.03 in both experiments, which suggested the risk 
of overfitting was properly alleviated.

Feature analysis and interpretation
There were eight features identified by the feature 
selection process from D-1 ~ 4 including four clinical 
features (CA199, lymph nodes, stage, and Carcinoem-
bryonic antigen (CEA)), two PET features (PET-wave-
let-LLH-gldm-DV and PET-wavelet-LLL-glcm-imc2) 
and two CT features (CT-Log-sigma-5.0-3D-glszm-
SAE, CT-Log-sigma-4.0-3D-glszm-SALGLE). The RSF 
model built on these eight features is denoted as M1. 
There were four features identified for the secondary 
experiment D-3 including two clinical features (CA199 
and lymph nodes) and one PET feature (PET-Wavelet-
LLH-glszm-ZV) and one CT feature (CT-Log-sigma-
5.0-3D-glszm-SAE). The RSF model built on these four 
features for the secondary experiment is denoted as 

Table 1 Patients characteristics of the training and validation 
sets

Continuous data except follow-up time (which was shown with median) were 
demonstrated with means ± standard deviations while categorical data were 
demonstrated with the number of each category and percentage. *p-value 
was calculated by using χ2 test for categorical variable and Wilcoxon test for 
continuous variable

Characteristics Training set 
(n = 138)

Validation set 
(n = 58)

P value*

CEA 18.022 ± 41.604 25.928 ± 51.872 0.090

CA199 0.535

 High 36 12

 Normal 102 46

 Lymph nodes 2.326 ± 3.560 2.172 ± 3.320 0.804

Stage 0.486

 I 13 3

 II 42 23

 III 55 23

 IV 28 9

SUVmax 14.865 ± 6.100 13.430 ± 4.772 0.229

SUVmean 8.866 ± 3.539 8.091 ± 2.831 0.270

TLG 180.122 ± 163.749 168.098 ± 153.9764 0.887
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M2. Detailed feature explanation was attached in the 
Additional file 1: Table S3.

We further revealed the contribution of each feature 
for model M1 and M2 in Fig. 4A and B. Bar graphs in 
Fig.  4A and B showed the normalized importance of 
each feature, in which CA199 contributed most in M1 
and PET-Wavelet-LLH-glszm-ZV contributed most 
in M2. Pie graphs in Fig. 4A and B illustrated the per-
centage of contribution of PET, CT and clinical fea-
tures. PET and CT features contributed 13.3% in M1 
while contributed 83.5% in M2. In addition to feature 
contribution, we compared the features in M1 and 
M2 then found two common clinical features (CA199 
and lymph nodes) and one common CT feature 
(CT-Log-sigma-5.0-3D-glszm-SAE).

Figure  4C summarized Pearson correlation between 
selected radiomic features and clinical features. It shows 
that radiomic features were significantly correlated to 
metabolic tumor activity features such as SUVmean, 
SUVmax, TLG, and 40%MTV.

Case study
We chose two stage IIIA samples from the validation 
set of the Data-3 to showcase the predictive perfor-
mance of M2 model built on the radiomics signature. 
Our prognostic endpoint was recurrence-free survival 
(RFS), which focuses on the length of time before the dis-
ease recurs. As shown in Fig.  5A, our radiomics model 
predicted an overall lower curve in patient 1 compared 
patient 2. It indicated the higher chance that the dis-
ease recurred in patient 1 in a shorter time. This predic-
tion was in accordance with the fact that real recurrence 
time for patient 1 (8 months) was shorter compared with 
patient 2 (13  months). After 15  months, both patients 
had low recurrence-free probability (< 50%), while patient 
1 showed a trend of lower recurrence-free probability. 
This was also in accordance with the fact that the disease 
of both patients recurred, while the recurrence in patient 
1 was earlier.

Values of radiomic features for these two patients 
were shown in Fig.  5B. The Zone variance (ZV) of 

Fig. 3 The performance of prognostic models. Figure A and B showed the comparison of the prognostic performance of different modalities on 
D-1 ~ 4 and D-3 respectively. Figure C and D were K–M Curves for different modalities on D-1 ~ 4 and D-3 respectively. Log-rank test was used for 
statistical tests used in K–M curve. P-value < 0.05 indicated survival distributions of high-risk and low-risk groups were significantly different. P-value 
was marked in each sub-figure of Figure C and D 
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PET-Wavelet-LLH image measures the variance in gray 
level zone size. The larger ZV, the greater heterogeneity. 
The SAE (Small Area Emphasis) of CT-Log-5.0-3D image 
measures the distribution of small size gray level zones 
and the larger value indicated finer textures. Detailed 
clinical information of two patients was included in the 
Additional file 1: Table S4. The visualization of radiomic 
features was demonstrated in Fig. 5C.

In clinic routine, patients with high CA199 tend to 
have worse prognosis than patients with normal CA199. 
In our case study, we intentionally chose two unconven-
tional cases where patient 2 (with high CA199) had better 
prognosis than patient 1 (with normal CA199). For these 
two special cases, our PET/CT radiomics model M2, 
which was specifically designed to predict RFS of stage 
III colorectal cancer, achieved correct prediction. This 
is mainly because M2 combined the predictive power of 

both clinical and PET/CT imaging features. More spe-
cifically, as shown in Fig.  4A, among these compound 
features, a majority of the contribution (83.5%) from the 
collective PET/CT radiomics features was towards the 
correct prognostic decision (shorter recurrence time), 
while the importance of CA199 in the prediction only 
accounted for 14%, and thereby, the machine learning 
model M2 made the correct prognostic prediction.

Discussion
Radiomics is a high-throughput mining of quantitative 
image features from standard medical imaging that can 
extract data and apply it to clinical decision support sys-
tems to improve the accuracy of diagnosis, prognosis 
and prediction. Radiomics is increasingly important in 
cancer research. Radiomics analysis leverages sophis-
ticated image analysis tools and the rapid development 

Fig. 4 Feature importance and Pearson correlation of M1 and M2. Figure A was the univariate importance of features in models M1 and M2. 
Clinical, PET, and CT features were represented by using blue, gray, and red bar, respectively. Figure B showed the overlapping between features 
selected for models M1 and M2. In Figure C, Pearson test was used for correlational statistical analysis. P-value < 0.05 indicated significant correlation 
identified between two variables (indicated with colored cells)
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and validation of medical imaging data that use image-
based signatures for accurate diagnosis and treatment, 
providing a powerful tool for modern medicine [28–31]. 
Previous studies have shown that 18F-FDG PET/CT 
radiomics performed well in predicting the prognosis 
of various malignancies. The newly developed PET/CT 
radiomic signature was a powerful predictor of gastric 
cancer survival [32]. Radiomics features of baseline PET/
CT images provide complementary prognostic informa-
tion for nasopharyngeal carcinoma compared with the 
use of clinical parameters alone [33]. This method was 

also advantageous to predict the prognosis of lung can-
cer, breast cancer and other tumors [34–36]. As for colo-
rectal cancer, a few studies demonstrated that FDG PET 
radiomic held potential towards the improved predic-
tion of clinical outcome in stage IV patients of colorectal 
cancer and locally-advanced rectal cancer [42, 55]. The 
explosive researches on the prognostic value of PET/CT-
based radiomics methods for the total colorectal cancer 
were rare, especially for stage III. A study on the National 
Cancer Data Base (NCDB) showed that CRC patients 
with stage III accounted for approximately one-third of 

Fig. 5 Case study for individualized result interpretation. Figure A showed the predicted survival curves of individual patients yielded by the model 
M2. Figure B showed the values of radiomic features of patients in the case study. Figure C visualized the tumor region in 3D body imaging, in PET/
CT imaging and PET/CT radiomics features
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all stages [56]. Moreover, the 5-year survival rate of this 
largest proportion of patients was subjected to a large dif-
ference in the survival outcomes [57, 58]. Therefore, it is 
necessary to evaluate the prognosis of stage III colorec-
tal cancer separately, and to intervene as early as possible 
according to different individual patients to reduce the 
risk of recurrence and metastasis. In this study, we devel-
oped an original model to predict the prognosis of CRC 
patients and further experimented on stage III patients 
by 18F-FDG PET/CT radiomics.

We unprecedentedly investigated prognosis models for 
patients ranging from stage I to IV in the primary experi-
ment. The model M1 trained by a combination of features 
of all three modalities outperformed other models with a 
C-index of 0.780 [95% CI 0.634–0.877]. The K–M curves 
indicated that our model effectively separated high-risk 
and low-risk patient groups (P < 0.0001). For model M1, 
CA199 was the most important feature. It means that this 
cancer antigen marker CA199 contributed most to the 
outcome of the prognostic prediction in model M1. The 
result is consistent with previous studies [43] that CA199 
is a key prognostic biomarker. Notably, the contribution 
of imaging features was irreplaceable, although they only 
accounted for 13.3% of the contribution. Both PET and 
CT features were important and irreplicable in radiom-
ics analysis because they both had positive importance 
scores, which suggests these features positively contrib-
uted to the model accuracy. Experimental results in Man-
uscript Fig. 3A verified that the model constructed with 
multimodalities (C-index 0.780) outperformed the mod-
els built with PET (C-index 0.592) or CT (C-index 0.755) 
alone on D-1 ~ 4. Similar trend can be identified on D-3 
with Fig. 3B.

We also focused on analyzing models for patients 
with stage III, because the 5-year survival rate was 
unsatisfactory, though radical surgery and adjuvant 
chemotherapy were routinely performed. The predic-
tion of prognosis is valuable for supporting individual-
ized treatment. The C-index of M2 was 0.820 [95% CI 
0.676–0.900], which means it holds a great potential 
value of prognostic prediction in colorectal cancer. Its 
performance was also superior to that of single-modal-
ity or double-modality models. K–M curves of M2 
illustrated that the model could significantly separate 
high-risk and low-risk patient group. For model M2, 
PET-Wavelet-LLH-glszm-ZV was the most impor-
tant feature in the predictive model, which means the 
texture information quantified by this PET feature 
successfully captured the heterogeneity of colorectal 
tumour towards accurate prognostic prediction. This 
was because PET images could provide information not 
only about the metabolism of the tumor, but also about 
the total load of the tumor. For further interpretation 

of this PET feature, we conducted correlation analysis, 
and found that this PET features positively correlated 
with 40% MTV and TLG (p < 0.05). CA199, which con-
tributed most in M1, only made up 14% of all feature 
contributions.

Moreover, CA199, lymph nodes and CT-Log-sigma-
5.0-3D-glszm-SAE were three features identified both 
in M1 and M2. The feature importance analysis showed 
that clinical features played the most vital roles in the 
prognosis of CRC patients of all stages, while radiomics 
features contributed more when predicting the prog-
nosis of CRC patients with stage III. The case study 
also demonstrated that features with greater contribu-
tion could help the model to overcome the negative 
impact caused by single features, and then rectify the 
prediction. Thereby, it is reasonable to believe that the 
combination of clinical characteristics and imaging 
characteristics of 18F-FDG metabolism is more predic-
tive than any single modality model.

We reduced the risk of overfitting through reducing 
the number of features and employed cross-validation 
in feature selection. Firstly, we reduced the risk of over-
fitting by strictly controlling the number of features, as 
the reduced number of features leaded to the decrease 
of the number of required parameters inside machine 
learning models, thus minimizing the risk of overfit-
ting [59]. According to the guideline for radiomics 
studies [60], we reduced the number of features to less 
than 1/10 of sample sizes. Secondly, 50 times five-fold 
cross-validation was deployed during the feature selec-
tion on the training dataset to reduce the risk of overfit-
ting [59]. By selecting features on the rotating training 
instead of a fixed training set, we effectively minimize 
the risk of overfitting on a fixed proportion of data. 
Thirdly, we evaluated the risk of overfitting by com-
paring the performance of the model on training and 
testing datasets in independent validation. Additional 
file  1: Table  S1 showed that the difference between 
training and testing C-index was less than 0.03 in both 
experiments, which suggests that the risk of overfitting 
was properly handled.

This study was partly limited by its retrospective design 
and relatively modest sample sizes. We will continue 
to collect more patients who meet the criteria, and will 
attempt to conduct prospective studies to further validate 
our models and investigate the prognosis of patients with 
sub-stages (e.g., IIIA, IIIB, IIIC). We look forward to con-
ducting further randomized controlled trials in the future 
on the significance and importance of 18F-FDG PET/CT 
imaging omics in the diagnosis and treatment of colorec-
tal cancer. We will investigate the effect of spatial reso-
lution of PET/CT images on the parameters of radiomic 
feature extraction.
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Conclusion
Radiomics-based decision supporting system is a pow-
erful tool in modern medicine to identify new imaging 
biomarkers for more effective, accurate, and efficient 
diagnosis and prognostic prediction. Our developed 
recurrence-free survival model demonstrates that 18F-
FDG PET/CT radiomics combined with clinical fea-
tures in the study may fuel the identification of new 
imaging biomarkers, and could be instructive in the 
predictive prognosis of colorectal cancer, especially in 
stage III. The power of combining 18F-FDG PET/CT 
radiomics and modeling could potentially optimize the 
individual treatment strategies by avoiding ineffective 
or excessive management.
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