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Abstract 

Background:  The successful identification of breast cancer (BRCA) prognostic biomarkers is essential for the strategic 
interference of BRCA patients. Recently, various methods have been proposed for exploring a small prognostic gene 
set that can distinguish the high-risk group from the low-risk group.

Methods:  Regularized Cox proportional hazards (RCPH) models were proposed to discover prognostic biomarkers 
of BRCA from gene expression data. Firstly, the maximum connected network with 1142 genes by mapping 956 differ‑
entially expressed genes (DEGs) and 677 previously BRCA-related genes into the gene regulatory network (GRN) was 
constructed. Then, the 72 union genes of the four feature gene sets identified by Lasso-RCPH, Enet-RCPH, L0-RCPH 
and SCAD-RCPH models were recognized as the robust prognostic biomarkers. These biomarkers were validated 
by literature checks, BRCA-specific GRN and functional enrichment analysis. Finally, an index of prognostic risk score 
(PRS) for BRCA was established based on univariate and multivariate Cox regression analysis. Survival analysis was 
performed to investigate the PRS on 1080 BRCA patients from the internal validation. Particularly, the nomogram was 
constructed to express the relationship between PRS and other clinical information on the discovery dataset. The PRS 
was also verified on 1848 BRCA patients of ten external validation datasets or collected cohorts.

Results:  The nomogram highlighted that the importance of PRS in guiding significance for the prognosis of BRCA 
patients. In addition, the PRS of 301 normal samples and 306 tumor samples from five independent datasets showed 
that it is significantly higher in tumors than in normal tissues ( P < 0.05 ). The protein expression profiles of the three 
genes, i.e., ADRB1, SAV1 and TSPAN14, involved in the PRS model demonstrated that the latter two genes are more 
strongly stained in tumor specimens. More importantly, external validation illustrated that the high-risk group has 
worse survival than the low-risk group ( P < 0.05 ) in both internal and external validations.

Conclusions:  The proposed pipelines of detecting and validating prognostic biomarker genes for BRCA are effective 
and efficient. Moreover, the proposed PRS is very promising as an important indicator for judging the prognosis of 
BRCA patients.
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score
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Background
Breast cancer (BRCA) is the second leading cause of can-
cer mortality in women [1], and its incidence increases 
with age [2]. At present, the incidence of BRCA remains 
high and lesions may occur if treatment is not timely or 
improperly treated [3]. To date, relatively few reliable 
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prognostic biomarkers of BRCA have been identified. It 
is of great significance to study biologically interpretable 
BRCA prognostic biomarkers. With the development of 
high-throughput technology, gene expression profiling 
can measure the expression levels of thousands of genes 
in a parallel manner and has been widely used to discover 
new biomarkers [4]. It has become increasingly obvious 
that more and more attention needs to pay to the rela-
tionship between gene expression profiles and survival 
phenotypes, such as the time of cancer recurrence or 
death [5]. In addition, identifying the prognostic genes 
related to BRCA survival can provide new information 
for clinical decision-making, diagnosis, prognosis, and 
treatment options of BRCA patients [6].

Numerous studies have identified some prognostic 
biomarkers for BRCA using high-throughput screening 
methods, which indicates the prognosis biomarkers for 
predicting patients are very promising. For instance, Kim 
et  al. [7] applied a network-regularized Cox regression 
model to perform feature selection on mRNA expression 
and clinical data, and developed a new BRCA prognos-
tic score system. Yan et al. [8] employed the Cox regres-
sion to mine DNA methylation data and identified seven 
BRCA-related DNA methylation signatures. Zhang et al. 
[9] combined multivariate Cox analysis and artificial-
intelligence-based algorithms to select 17 immune genes 
as potential prognostic biomarkers for BRCA. Sarkar 
et al. [10] implemented an ensemble of feature selection 
methods to identify 27 miRNAs as biomarkers that are 
highly correlated with multiple BRCA subtypes. Li et al. 
[11] proposed the scPrognosis method using single-cell 
RNA sequencing (scRNA-seq) data to improve the prog-
nosis of BRCA and successfully identified ten BRCA 
biomarkers. However, most of these studies only select 
differentially expressed genes (DEGs), and only perform 
co-expression analysis by using univariate Cox analysis to 
reduce the dimensionality of variables. They are also very 
limited in the exploration of possible biomarkers and 
their prognostic value.

So far, it might not be enough to screen prognosis bio-
markers of BRCA purely using a single dataset or one kind 
of information [8]. The complexity of genomic data and 
prior knowledge promote us to integrate the aforemen-
tioned BRCA-related data and information for accurate 
biomarker discovery. Namely, MammaPrint successfully 
selects BRCA signatures that are differentially expressed 
in two different sets of BRCA tumors [12]. The online 
consensus  survival analysis web server for breast cancers 
(OSbrca) collected the prognostic ability of 128 previously 
published BRCA biomarkers [13]. Moreover, gene ontol-
ogy (GO) describes the dysfunctions of genes that provide 
more candidates related to the prognosis of BRCA [14]. 
KEGG is an integrated database that covers a variety of 

knowledge including BRCA-related genes in the form of a 
pathway [15]. All of them will benefit us discover impor-
tant genes related to cancer dysfunctions and select more 
reliable and biologically interpretable biomarkers [4].

In survival analysis, the response variable is the time at 
which the event of interest such as ‘death’ occurred. The 
main goal is to identify covariates that increase the risk 
of the event of interest [16]. The semi-parametric Cox 
proportional hazard (CPH) model originally proposed 
by Cox [17] uses the partial likelihood structure under 
the proportional hazard assumption to estimate the 
regression coefficients, avoiding the selection of specific 
parameter distribution for survival time [18]. Recently, 
more and more studies have been focusing on analyzing 
the data that contains high-dimensional variables. In fact, 
only some of them are generically related to the response 
variable. How to select significant variables effectively 
contributing to the result is an important but not always 
easy task [16]. In addition to the high dimensionality, the 
expression profiles of some genes are often highly cor-
related, which creates the problem of high collinearity 
[19]. To meet these two problems, the most commonly 
used method is to use penalized partial likelihood, i.e., 
regularization [5]. The regularized regression model with 
penalty provides an attractive method to build predictive 
model from high-dimensional data, which is an embed-
ded machine learning procedure that can simultaneously 
select the features and fit the model [20].

Tibshirani [21] first extended Lasso to generalized 
linear regression models and time-to-event endpoints. 
The CPH model with Lasso penalty shows good feature 
selection effects. Later, Li and Luan [22] proposed the 
CPH model with ridge penalty and clarified the limita-
tion of using all genes for prediction, but it does not pro-
vide a method for selecting feature genes for prediction. 
In addition to the well-known L1 norm (Lasso) and L2 
norm (Ridge), convex penalty functions such as the linear 
combination of L1 and L2 norm (i.e., Elastic net, abbrevi-
ated as Enet) have also been proposed for feature selec-
tion as well as model prediction [23]. Next, various other 
non-convex penalty functions, e.g., L1/2 (the regularized 
representative of Lq(0 < q < 1) ) [5], L0 [24], SCAD [25] 
and MCP [26], have good performance in sparse optimi-
zation. Some of the penalties have been proven to have 
fantastic properties, such as unbiasedness and oracle 
property in variable selection [5, 27]. Obviously, dis-
covering diagnostic or prognostic biomarkers is equiva-
lent to select features from high-dimensional variables. 
In biomedicine, a central topic of cancer genomics is to 
identify interpretable biomarkers for better disease prog-
nosis [28].

In this paper, we aim to develop a computational 
method for prognostic biomarker discovery in BRCA 
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by the regularized Cox proportional hazard (RCPH) 
models from gene expression profiling data. Firstly, we 
identify DEGs across breast tumors and control sam-
ples from the publicly available RNA sequencing (RNA-
seq) data. Combining DEGs with BRCA-related genes 
from the documented databases of prior knowledge and 
mapping them into an integrative GRN to extract the 
maximum connected component, we feed these genes 
included in connected network into the RCPH model 
with the seven penalized Lq functions for selecting fea-
tures and recognize that four gene subsets obtained by 
the Lasso, Enet, L0 and SCAD penalties relatively achieve 
larger C-index and smaller P-value on the internal vali-
dation data. Secondly, we take the union of 72 genes 
from the four optimal feature subsets as prognostic bio-
markers of BRCA and validate the identified signatures 
from various aspects. By extracting the network compo-
nent from a comprehensive GRN [29], we construct the 
BRCA-specific network structure in these prognostic 
biomarker genes. Subsequently, the enriched function 
terms imply 72 biomarkers are significantly related to 
BRCA (P=1.6e−11). The results from literature valida-
tions indicate 51 of the biomarkers have been confirmed 
to be related to BRCA. Thirdly, we establish a prognos-
tic risk score (PRS) system by univariate and multivari-
ate Cox regression analysis. We perform the survival 
analysis to investigate the PRS values in the 1080 patients 
on the internal validation dataset. In particular, we also 
construct a nomogram to explore the influence of PRS 
and other clinical factors on the survival probability of 
BRCA patients on the biomarker discovery data. Finally, 
we evaluate the PRS values of a total of 1848 patients 
from ten external verification datasets. We also calculate 
the PRS of 301 controls and 306 tumor samples from five 
independent datasets to show their distinctiveness. The 
protein expression profiles are further used to validate 
the difference of the three prognostic genes involved in 
the PRS system between breast tumors and normal tis-
sues. The source code and data used in this paper can be 
found at https://​github.​com/​zpliu​lab/​CoxReg.

Methods
Data
The gene expression profiling data for BRCA patients and 
their corresponding clinical details are downloaded from 
The Cancer Genome Atlas (TCGA) database (https://​
cance​rgeno​me.​nih.​gov/) and Gene Expression Omnibus 
(GEO) database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). 
Table 1 summarizes the basic sample information in the 
biomarker discovery dataset (TCGA, 1080 patients) and 
the external validation datasets (GSEGSE1456, GSE2034, 
GSE7390, GSE17705, GSE21653 and GSE35629, totally 
1848 patients) respectively.

From TCGA, we collect 1093 samples with 20501 
genes individually. The counts of gene expression x are 
transformed to normalized value by log(x + 1) . After 
data preprocessing, 20220 genes have remained for 
subsequent research. We get the survival information 
for each sample and discard individuals with survival 
time less or equal to 0. As a result, 1080 samples are 
left. For the microarray data from GEO, we download 
their series matrix files. Some important clinical char-
acteristics including age, tumor size, pathologic stage 
(I, II, III, IV, V and NA), pathology stage (T, N, M) 
and survival status are available. The datasets listed in 
Table 1 are used to discover and verify prognostic bio-
markers of BRCA.

Moreover, we also use the RNA-seq data of TCGA 
and the microarray data of GEO (GSE5764, GSE7904, 
GSE10780 and GSE42568), a total of 607 patients (301 
normals and 306 tumors), as the external validation 
datasets to verify the stability and robustness of the 
PRS index for prediction in BRCA. The details are listed 
in Table 2.

Differential gene identification and prior information 
integration
We select DEGs simultaneously identified by two 
approaches. Firstly, we select the samples with both 
tumor tissues and its adjacent normal tissues from 
TCGA. Then we identify the DEGs across the 224 sam-
ples (112 normals and 112 tumors) by DEseq2 [30], 
which results in 489 genes with adjusted P-value (P.adj) 
< 0.01 and | log(FC)| > 3.322 . Secondly, the gene expres-
sion data of 1080 samples (928 alive and 152 dead) are 
also screened by DEseq2 and finally 501 genes with P.adj 
< 0.01 are also regarded as DEGs. Thus we totally iden-
tify 956 union DEGs which are listed in Additional file 1: 
Table S1.

As known, prior knowledge about BRCA is very impor-
tant in identifying potential prognostic biomarkers. Here, 
we integrate the interesting genes from five kinds of prior 
knowledge, namely, the 147 genes in breast pathway from 
KEGG [15], the 519 genes related to BRCA from the top-
ranked GO terms sorted in gene ontology annotations 
(GOA) [14], the known MammaPrint BRCA signatures 
with 70 genes [12], the OSbrca webserver about BRCA 
diagnosis with 128 genes [13] and the 10 BRCA prognosis 
signatures selected by scPrognosis from scRNA-seq data 
[11]. Furthermore, we map the total of 1633 genes into an 
integrated human gene regulatory network documented 
in RegNetwork [29] to extract the maximum connected 
component. Consequently, 1142 genes linked as a net-
work are retained for screening prognostic biomarkers 
using the proposed RCPH models.

https://github.com/zpliulab/CoxReg
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
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Table 1  The basic information and clinical characteristics of patients with BRCA patients

*IQR: Interquartile range (1, 3). OS overall survival, DMFS distant metastasis-free survival, TDM time to distant metastasis, DFS disease-free survival, RFS relapse free 
survival. For OS: 1 = dead from BRCA, 0 = alive or censored. For DMFS: 1 = relapse, 0 = no relapse or censored. For TDM, DFS and RFS: 1 = event, 0 = censoring

Characteristics Datasets

Discovery External validation (totally 1848 patients)

Cohort TCGA​ GSE1456 GSE2034 GSE7390 GSE17705 GSE21653 GSE35629

Platform DCC GPL96 GPL96 GPL96 GPL570 GPL570 GPL1390

Survival OS OS, DMFS DMFS OS, DFS, TDM RFS DFS OS, RFS

# of samples 1080 159, 159 286 198, 198, 198 298 248 53, 51

# of genes 20220 13701 13701 13701 13701 21835 7800

Age ≤ 60 587 195 157

> 60 479 3 91

NA 14 0 0

Average 58 46 55

IQR (49, 67) (42, 51) (45, 66)

Tumor size (mm) 21.81

Stage I 181 28 30 43

II 611 58 83 84

III 246 61 83 121

IV 20 0 0

V 14 0 0

NA 8 12 2 4

T stage T1 279 57

T2 626 121

T3 134 63

T4 38 0

NX 3 7

N stage N0 505

N1 359

N2 120

N3 76

NX 20

M stage M0 896

M1 22

MX 162

Status 0 928 130, 119 276 142, 107, 147 227 169 29, 30

1 152 29, 40 10 56, 91, 51 71 79 24, 21

References [61] [62] [63] [64] [65] [66] [67]

Table 2  The details of the datasets for prognostic prediction of PRS

*IDC Invasive ductal carcinomas. Histopathological BRCA subtypes: invasive ductal (IDC), invasive lobular (ILC), mixed ductal/lobular (Mixed), and other-type (Other) 
carcinoma [72]

Datasets Platforms # of samples # of genes References

TCGA​ DCC 224 (112 Normal / 112 Tumor) 20222 [61]

GSE5764 GPL570 15 (10 Normal / 5 Tumor) 21835 [68]

GSE7904 GPL570 62 (19 Normal / 43 Tumor) 16452 [69]

GSE10780 GPL570 185 (143 Normal / 52 IDC) 21835 [70]

GSE42568 GPL570 121 (17 Normal / 104 IDC) 21835 [71]
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Framework
Figure 1 illustrates the framework of detecting and veri-
fying biomarkers and PRS index for the prognosis predic-
tion of BRCA from high-throughput transcriptomics data 
by the RCPH models. As shown in Fig. 1, we firstly down-
load the RNA-seq data from TCGA and pick out DEGs. 
Secondly, we combine the DEGs with the candidate 
genes selected from KEGG, GO, MammaPrint, OSbrca, 
and scPrognosis. In order to enhance the connection 
strengths between genes and make the biomarkers more 
biologically meaningful, we link the genes in the candi-
date set with the regulations documented in RegNetwork 
[29]. We thus obtain 1142 genes connected in the form of 
a network. Thirdly, we apply the RCPH models to select 
genes with non-zero regression coefficients to obtain 
seven feature subsets on the training dataset ( 70% ). We 
also evaluate the survival analysis performances of the 

seven RCPH methods on the testing dataset ( 30% ) via 
the assessment of C-index and P-value. Fourthly, to select 
more robust biomarkers, the 72 union feature genes 
selected by four RCPH models with Lasso, Enet, L0 and 
SCAD penalty (C-index ≥ 0.700 and P-value ≤ 0.050 ) are 
identified as the prognostic biomarkers of BRCA. Fifthly, 
we construct a PRS system based on univariate and mul-
tivariate Cox regression and then perform survival anal-
ysis to investigate its prognostic performance on 1080 
patients in the internal validation and 1848 patients in 
the external validation. Sixthly, we compare the PRS val-
ues for checking their differences in normal and tumor 
tissues in the independent external validation datasets.

Regularized Cox proportional hazards (RCPH) models
For convenience, we introduce some notations here. 
Assuming that T represents the potential survival time 

Fig. 1  The framework of detecting and verifying prognostic biomarkers of BRCA from gene expression data by the RCPH methods. a Download the 
publically available RNA-seq data and then select DEGs. b Add the prior knowledge from KEGG, GO, MammaPrint, OSbrca, and scPrognosis to DEGs 
and integrate all of them with RegNetwork to obtain a connected network component, and extract the gene expression values accordingly. c Apply 
the RCPH models on the network-structured data to select the feature genes of BRCA. d Choose the optimal feature subsets via the assessment of 
C-index and P-value. e Identify the genes with non-zero regression coefficients as the potential BRCA biomarkers. f Establish the PRS model based 
on statistically significant genes from the Cox model in order to make response predictions for prognosis and treatment of BRCA. g Perform survival 
analysis using the PRS index to investigate its prognostic performance. h Explore the significance and differences of PRS index in normal and tumor 
tissues
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for each patient, we observe the quantity Y = min(T ,C) , 
where C is the censoring time [19]. In order to explore the 
relationship between a patient’s survival time and the cor-
responding gene expression levels X1,X2, · · · ,Xn , we sup-
pose the dataset D has n samples with the form

where X i = (xi1, xi2, · · · , xip)
T ∈ R

p represents the 
p-dimension covariates with i = 1, 2, · · · , n , and

is a binary censoring indicator variable representing 
whether yi is dead time or censoring time.

To study the hazard of disease recurrence or death at 
time t, the following CPH model is prosed by [17]

where h(t,X i) is the hazard for the i-th sample at time t, 
h0(t) is the baseline hazard, i.e., the hazard of each sample 
at X i = 0 , and θ = (θ1, θ2, · · · , θp)

T ∈ R
p is the unknown 

p-dimensional regression coefficients of the i-th sample 
to be solved [31].

By a simple calculation for Eq.(2), its partial likelihood 
function is

where ti is the survival time (observed or censored) of the 
i-th sample [32], Hi = {j | tj > ti, j = 1, 2, · · · , n} is the 
risk set of alive samples at time ti [22, 33].

To estimate the regression coefficients θ from Eq.(3), we 
need to maximize its log partial likelihood function

However, in practice, the Eq.(4) cannot be directly used 
to estimate the coefficients θ , and it is expected that not 
all these p genes are contributed to predict the survival 
outcomes. Especially in the case of high-dimensional 
small sample data (e.g., microarray data and RNA-seq 
data) where the dimensionality p is usually much larger 
than the sample size n, i.e., p >> n [5]. That is to say, 

(1)D = {(X1, y1, δ1), (X2, y2, δ2), · · · , (Xn, yn, δn)},

δi =

{

1, right censoring time,
0, no censoring,

(2)

h(t,X i) = h0(t) · exp(θ1xi1 + θ2xi2 + · · · + θpxip)

= h0(t) · exp(X
T
i θ),

(3)L (θ |D ) =

n
∏

i|δi=1

exp{XT
i θ}

∑

j∈Hi
exp{XT

j θ}
,

(4)

L (θ |D ) = logL (θ |D )

=

n
�

{i|δi=1}

log

�

exp{XT
i θ}

�n
j∈Hi

exp{XT
j θ}

�

=

n
�

i=1

δi







X
T
i θ − log





�

j∈Hi

exp{XT
j θ}











.

some components θk (k = 1, 2, · · · , p) of coefficient vec-
tor θ are zeros under the real circumstances. Therefore, 
the regularization methods, such as Lq penalty functions 
P (θ; �) shown in Table  3, are proposed to solve Eq.(4) 
[34]. Additionally, the properties (e.g., unbiased, sparse, 
continuous, convex and oracle property) of P (θ; �) have 
been discussed in [27].

Adding the regularization term P (θ; �) to the negative 
of Eq.(4) and minimizing the sum of them, then the regu-
larized Cox proportional hazards model (RCPH) can be 
obtained

where � is a positive tuning parameter used to balance the 
loss function −L (θ |D ) and penalty function P (θ; �) . 
The RCPH model (5) selects important features and esti-
mates the error of model simultaneously by shrinking 
some components of regression coefficient θ to zeros.

Turning parameters optimization
For the RCPH model, the tuning parameter � is deter-
mined by K-fold cross-validation (CV) [35]. The discov-
ery dataset is split into K folds, where K − 1 folds of data 
are used to train the model and the left-out fold data is 
used for validation. The procedure is performed K times 

(5)θ = arg min
{

−L (θ |D )+P (θ; �)
}

,

Table 3  Lq penalty functions of regularization term used in RCPH 
models

Methods Formulas References

Ridge
P (θ; �) = �

p
∑

j=1

θ2j
[73]

Lasso
P (θ; �) = �

p
∑

j=1

|θj |
[74]

Enet
P (θ; �) = �

[

α
p
∑

j=1

|θj | + (1− α)
p
∑

j=1

θ2j

] [75]

L0
P (θ; �) = �

p
∑

j=1

1
[

θj �= 0
] [76]

L1/2
P (θ; �) = �

p
∑

j=1

|θj |
1

2
[77]

SCAD
P (θ; �) =

p
∑

j=1

Pa

(

|θj |; �
)

,

[78]

where 
Pa(|θ |; �) =











�|θ |, |θ | ≤ �,

−
�

θ2−2a�|θ |+�
2
�

2(a−1)
, � < |θ | ≤ a�,

(a+1)�2

2
, |θ | > a�.

MCP
P (θ; �) =

p
∑

j=1

Pa

(

θj; �
)

,

[79]

where 
Pa(θ; �) =

{

�|θ | − θ2

2a
, |θ | ≤ �a,

�
2a
2
, |θ | > �a.
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for each parameter � . Then, the test data itself will choose 
the parameter with the best goodness of fit for the train-
ing data and with the best performance to the new data.

The optimal value � is estimated by minimizing the 
cross-validation log partial likelihood (CV-LPL) [32], i.e., 
the sum of the contributions of each sample to the log 
partial likelihood, which has been demonstrated to per-
form well in the context of the RCPH models [36]. The 
CV-LPL is defined as

where θ̂
(−k)

(·) represents the estimating value of θ , it is 
obtained when the k-th fold of the data is left out with a 
given � for the model, L (·) is the log partial likelihood 
using all n samples, while L (−k)(·) is the log partial like-
lihood excluding the k-th fold samples [4]. Note that 
the choice of K is often depend on the size of the data-
set. When K is given, we can compute the coefficients 
θ̂
(−k)

(�) accordingly [19].

Performance evaluation
Prognostic risk score (PRS) construction
To establish a PRS system for prognosis and treatment 
response prediction of BRCA, we propose the following 
model

where m is the total number of independent prognostic 
genes, xi represents the expression value of i-th gene, θ̂i 
represents the regression coefficient of gene i derived 
from the multivariate Cox regression model. The optimal 
cut-off value is automatically generated by X-Tile [37]. 
Subsequently, all patients could be divided into a high-
risk group and a low-risk group based on the optimal cut-
off value of PRS.

Concordance index (C‑index)
Here we employ concordance index (C-index) [11] to 
measure the discrimination of predict value and true 
value to validate the prediction ability of the RCPH mod-
els in BRCA prognosis. For the right censoring data, 
C-index can be defined as

where I (⋆) is an indication function, if ⋆ is true, then 
I (⋆) = 1 , otherwise I (⋆) = 0 . f (·) is the survival func-
tion, when fi > fj and δj = 1 it holds ti > tj . In particu-
lar, Eq.(8) is a fraction, ranges from 0.5 to 1, of all pairs 

(6)

CV-LPL(�) = −

K
∑

k=1

{

L

(

θ̂
(−k)

(�)

)

−L
(−k)

(

θ̂
(−k)

(�)

)}

,

(7)PRS = θ̂1x1 + θ̂2x2 + · · · + ˆθmxm,

(8)C-index =

∑

i

∑

j I
(

fi < fj ∧ δi = 1
)

∑

i

∑

j I
(

ti < tj ∧ δi = 1
) ,

of samples which predicted survival times are correctly 
ordered among all samples that can actually be ordered. 
The bigger the C-index is, the more accurate of a model 
will be [11]. C-index = 0.5 indicates that the model has 
no predictive effect, while C-index = 1 indicates that the 
prediction results are completely consistent with reality.

Kaplan‑Meier curve
Survival curves are estimated by the Kaplan-Meier (KM) 
estimator [38] combining with the two-sided Log-rank 
test to identify whether the high-risk and low-risk groups 
exist a statistically significant difference in survival pat-
terns. The KM method is a non-parametric method of 
estimating survival probability from observed survival 
time. For a good prediction model, the KM curves should 
not overlap with different groups. If P ≤ 0.05 in the Log-
rank test, it implies that the difference of survival curves 
is statistically significant.

Nomogram building
To express the relationship between variables in the pre-
dictive model, the six clinical indexes, namely PRS, years 
to birth (i.e., age), the pathologic stage (i.e., tumor grade), 
pathology T stage, pathology N stage, and pathology M 
stage, are incorporated to construct a nomogram for the 
survival probability prediction of the OS at 1-, 3- and 
5-years for BRCA patients [8]. Simultaneously, the cali-
bration curves for predicting 1-, 3- and 5-years are plot-
ted to predict the effectiveness of the nomogram. The 
higher the coincidence degree of the fitting line (red line) 
and the diagonal line (blue dot), the better performance 
the nomogram exhibits.

Functional enrichment analysis
To illustrate the enriched functions underlying these 
identified prognostic biomarkers, we firstly employ the 
GO [14] functional enrichment analysis via clusterpro-
filer [39] and the pathway enrichment analysis on Metas-
cape [40] (http://​metas​cape.​org/). Furthermore, we build 
up a semantic similarity measure (SS-measure) to access 
the enriched functions with the known cancer hallmarks 
[41]. The GO terms of cancer hallmarks are available 
from Carbon et  al. [14], and we confirm the quality of 
GO semantic similarity between these enriched terms 
with the hallmark terms by the following method.

Suppose there are two GO term sets: 
G1 = {go11, go12, · · · , go1k} and G2 = {go21, go22, · · · , go2l} , 
let the similarity of each node go1i (i = 1, 2, · · · , k) belong-
ing to set G1 and set G2 be the maximum value of the similar-
ity of each GO term in set G1 and set G2 , then it holds that

http://metascape.org/
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Correspondingly, the similarity between each term 
GO2j (j = 1, 2, · · · , l) in set G2 and set G1 is

Therefore, the SS-measure of two sets of GO terms is 
defined as the arithmetic average of the above two simi-
larity indicators [42], i.e.,

 where SG is defined by Eq.(3) in Wang et al. [43].

Results
Selected feature genes as biomarkers
We start from the 1142 genes contained in RegNetwork 
[29] in the discovery dataset (TCGA). Without loss of 
generality, we randomly divide the discovery dataset into 
a training dataset and a testing dataset by 7:3 of all sam-
ples. We implement the RCPH models according to the 
RNA-seq data and clinical information of samples on the 
training dataset. For each RCPH model, we randomly 
divide the above training and testing datasets 20 times of 
experiment. It is extremely necessary to take into account 
the robustness of feature selection during the training 
process instead of directly using the once result. Conse-
quently, the union genes corresponding to non-zero coef-
ficients in the 20 experiments are regarded as the selected 
feature subset.

As shown in Table  4, the average values of C-index 
and P-value obtained in 20 experiments on the testing 
dataset are used as the final C-index and P-value. In 
each experiment, we use 10-fold CV-LPL on the same 

(9)Sim(GO1i,G2) = max
1≤j≤l

{

SG2
(Go1i,GO2j)

}

.

(10)Sim(GO2j ,G1) = max
1≤i≤k

{

SG1
(GO2j ,GO1i)

}

.

(11)
SS-measure(G1,G2) =

max
1≤i≤k

Sim(GO1i,G2)+ max
1≤j≤l

Sim(GO2j ,G1)

k + l
,

training dataset to get the optimal tuning parameters 
for each RCPH model and validate on the testing data-
set respectively.

The performance of these RCPH models in feature 
selection is important to determine the final results of 
biomarker discovery. Here the RCPH method with L1/2 
penalty (denote as L1/2-RCPH) selects the least num-
ber of genes, while the Ridge-RCPH method selects 
the largest one because it causes no zero coefficients 
[22]. Specifically, the Ridge-RCPH method achieves the 

highest C-index, the Enet-RCPH method is the run-up, 
and the MCP-RCPH method obtains the lowest one. 
What’s more, the P-value of the L0-RCPH method is 
the smallest and that of the MCP-RCPH method is the 
highest. Based on the above two indexes, Enet-RCPH 
achieves the superior performance with the C-index 
approximately equal to 0.800 and P-value lower than 
0.050, followed by L0 -, SCAD- and Lasso-RCPH 
respectively. And they reach the better performances 
when compared with the other three methods.

Figure  2 illustrates the overlapping summary statis-
tics of these feature genes selected by the six RCPH 
models. We find the Enet-RCPH method selects out 
the most feature genes, and it has a large number of 
intersections with those of SCAD- and Lasso-RCPH. In 
order to identify robust biomarkers, we select four opti-
mal feature subsets (i.e., the four gene sets identified 
by Lasso-, Enet-, L0 - and SCAD-RCPH) based on the 
principle of large C-index and small P-value (C-index 
≥ 0.700 & P-value ≤ 0.050 ). We take the union 72 genes 
as the detected biomarker genes.

Table 4  The results of feature selection on the discovery dataset performed by seven different RCPH models

*Std. Dev Standard deviation

Methods Training dataset ( 70%) Testing dataset ( 30%)

# of features C-index ± Std. Dev P-value ± Std. Dev

Ridge-RCPH 1142 1.000± 0.000 0.013± 0.001

Lasso-RCPH 47 0.726± 0.022 0.005± 0.007

Enet-RCPH 66 0.798± 0.044 0.003± 0.002

L1/2-RCPH 4 0.629± 0.000 0.041± 0.000

L0-RCPH 17 0.794± 0.000 0.000± 0.000

SCAD-RCPH 42 0.731± 0.046 0.032± 0.018

MCP-RCPH 22 0.639± 0.019 0.062± 0.044
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Literature validation
We validate these detected prognosis biomarkers of 
BRCA against the literature report of signature genes. 
Interestingly, numerous researches have investigated the 
relationship between these genes and BRCA. Among the 
72 genes we identified, 51 genes have been confirmed in 
the literature that they are indeed related to the occur-
rence and prognosis of BRCA. The detailed list can be 
found in Additional file 2: Table S2.

Particularly, the rest 21 biomarker genes that have not 
been reported in the literature so far and they are valu-
able to be confirmed by further experiments. Though 
their clinical significance is not clear, they can be poten-
tially novel signatures for human BRCA. They are novel 
prognostic biomarkers and beneficial to the target devel-
opment for precision therapy.

Breast cancer‑specific gene regulatory network 
(BRCA‑specific GRN)
In the 1142 candidates, we firstly build up an underly-
ing specific GRN of BRCA according to the prior back-
ground network documented in RegNetwork [29] and 
high gene co-expression by Pearson’s correlation coeffi-
cient and mutual information [44]. The specific network 
is with 6402 edges as shown in Additional file 3: Table S3. 
Intuitively, Fig. 3 visualizes the extracted network struc-
ture underlying 72 identified biomarker genes.

As shown, we can see that most of the identified bio-
markers (51 out of 72) are significantly differentially 
expressed ( P < 0.05 ) , which confirms that DEGs are 
likely to be the signatures that play important roles in the 
occurrence and development of BRCA. Note that the 15 
genes represented by gray nodes are not included in the 
72 biomarkers. However, they are of great significance 

because all of them have regulatory interactions with 72 
biomarkers. Especially, TP53, E2F1, SP1, MYC and JUN 
have been revealed to be genes related to BRCA [15]. 
Although the identified biomarkers do not contain these 
15 genes, many biomarker genes are regulated by them. 
The network structure indicates the biomarkers selected 
by RCPH methods are related to BRCA.

Functional implications
To explore the potential pathological implications of 
these biomarker genes for BRCA, we also perform GO 
functional enrichment analysis. Firstly, we perform the 
GO enrichment analysis on the 72 genes and obtain 23 
significantly enriched GO biological processes. We find 
the knowledge-based BRCA dysfunctions are enriched in 
these identified biomarkers. This verifies the functional 
implications of biomarker genes. In turn, they prove the 
effectiveness of our proposed RCPH models (5) in bio-
marker discovery.

Second, we calculation the SS-measure value [42] 
between these enriched GO terms and some unique GO 
terms in BRCA obtained by hallmarks of cancer [41]. The 
detailed results are shown in Additional file 4: Table S4. 
Specifically, we randomly pick out 23 terms from all 
cancer-related GO terms and calculate the SS-measure 
between them and the former enriched GO terms. With-
out loss of generality, we repeat this process dozens of 
times and take the average value as the final similarity 
value, which greatly improves the generalization perfor-
mance of this kind of measure.

Consequently, a significantly higher value of SS-
measure is observed in enriched GO terms than in ran-
dom GO terms (P = 1.6e−11, Wilcoxon test) as shown 
in Fig.  4a. The results indicate the functions enriched 
in the 72 identified biomarkers are indeed related to 
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Fig. 3  The network structure of 72 biomarkers, where the color shows the significance of gene expression difference between normal and disease, 
and the node size refers to its degree
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BRCA. Figure 4b shows the top 6 enriched GO biologi-
cal process (BP) terms with higher SS-measure ( ≥ 0.75 ) 
and their related genes in the form of a network. These 
enriched functions have been involved in BRCA progres-
sion, which provides evidence for further implications of 
the molecular mechanisms of our discovered biomarkers 
[45].

To further study the biological functions underlying the 
72 biomarkers, we also performed pathway enrichment 
analysis. Figure 5a gives a heatmap of the top 20 enriched 

clusters, which is colored according to P-value. It can 
be seen that the most significant pathway is ‘WP4262: 
Breast cancer pathway ( P ≈ 1.0e-10)’. Figure  5b shows 
the functional enrichment map of these pathways, where 
each node represents an enriched term, the node size 
represents the number of genes in the pathway. It shows 
that the pathways enriched are almost BRCA-related 
pathways, e.g., tissue morphogenesis and skeletal system 
development [46, 47].
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PRS system construction and internal validation
To build a risk scoring system based on the identified sig-
natures of BRCA, the 72 feature genes of 1080 patients 
with clinical information from TCGA are reserved for 
further analysis. As shown in Additional file 5: Table S5, 
univariate and multivariate Cox regression analysis of 
each for OS is conducted to select several key prognostic 
genes so as to construct the PRS model.

Firstly, univariate Cox regression survival analysis is 
performed to discover candidate signatures, and the 13 
genes with P < 0.05 are considered as significantly corre-
lated (4 genes positively correlated and 9 genes inversely 
correlated) with survival. Subsequently, multivariate Cox 
regression is conducted to select independent prognostic 
genes with P < 0.05 associated with survival. Eventually, 
three genes (ADRB1, SAV1 and TSPAN14) are proved to 
be (inversely) highly correlated with OS. Thus, we pro-
pose the PRS index, which can be regarded as a three-
gene signature model

where x represents the expression value of its corre-
sponding gene. The optimal cut-off value is automatically 

(12)
PRS = −0.068 ∗ xADRB1 − 0.090 ∗ xSAV 1 − 0.105 ∗ xTSPAN14,

generated by X-Tile [48, 49]. Subsequently, all patients 
can be categorized into a high-risk group and a low-risk 
group via the optimal cut-off value of PRS.

To justify the PRS system associated with BRCA, we 
validate our findings in the discovery dataset, i.e., inter-
nal validation. The expression profiles of the three genes 
in Eq.(12) are extracted from TCGA. After submitting 
them into Eq.(12), the PRS index is obtained. Using 
the median of PRS to divide the BRCA patients into a 
high-risk group and low-risk group, the KM-curve can 
be derived as shown in Fig. 6a. It is clear that there are 
significant differences between the two patient groups 
on the survival probability ( P = 0.0014 , Log-rank test).

Moreover, we calculate the PRS for each sample indi-
vidually on the entire dataset to draw the PRS distribu-
tion, as shown in Fig. 6b. Compared with low PRS, the 
samples with high PRS have poorer prognoses. It can be 
seen that in different samples, the different expression 
of the three biomarker genes increases the PRS index. 
Therefore, the high expression value of these genes can 
be identified as the potential risk factor for BRCA prog-
nosis. The built-up PRS system obtains a better survival 
analysis in the internal validation dataset. It proves the 
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effectiveness of the PRS index in the prognosis predic-
tion of BRCA.

Nomogram construction and internal validation
We first construct the grouping variables (where I and II 
are 0, III, IV and V are 1) and then plot nomogram on the 
discovery dataset as shown in Fig.  7a, where the length 
of the line segment reflects the contribution of this factor 
to the final event, and lower total points indicate a worse 
outcome. Clearly, PRS has the greatest impact on the out-
come, and age has the second greatest impact, which is 
consistent with the fact found in literature [50]. Often, 
the risk for BRCA increases with age, and most BRCA 
patients are diagnosed after age 50. The length of the line 
segment induced by the PRS index is a little longer than 
the age index, which indicates that the estimation of the 
survival probability by PRS is quite important. The third 

most affected factor is the pathologic stage, and the con-
trast is more obvious than the rest three clinical factors.

Figure  7b–d shows the calibration figures in terms of 
the agreement between the prediction of BRCA patients 
for 1-, 3- and 5-years. For the calibration curve, the x-axis 
represents the nomogram survival prediction probability, 
the y-axis represents the actual survival probability, and 
the diagonal line of the blue dot represents the best pre-
diction. The higher the coincidence degree between the 
red fit line and the blue diagonal line, the better perfor-
mance of the nomogram exhibits [8]. Compared with the 
ideal model, the nomogram has a better prediction effect, 
especially for the 3-year and 5-year OS estimations. In 
general, Fig. 7 highlights the PRS indicator has important 
guiding significance for the prognosis of BRCA patients.
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Prognosis and prediction of PRS
To further explore the performance of PRS in prognosis 
and prediction, the values of PRS in normal and tumor 
tissues of BRCA are evaluated in the internal TCGA 
dataset and four external GEO datasets. As shown in 
Fig.  8, the PRS in tumor tissues are significantly higher 
than those in normal tissues. It shows that the PRS index 
we proposed has a very important indicator for the prog-
nosis and prediction of BRCA.

Consistently, we further explore the protein expres-
sion profiles of the three PRS genes in Eq.(12) from 
the Human Protein Atlas (https://​www.​prote​inatl​
as.​org/) database. For the results of certain protein 

immunohistochemistry, they are divided into four cat-
egories: Not detected, Low expression, Medium expres-
sion, and High expression. The images in Fig.  9 show 
the detailed immunohistochemical staining in normal 
breast tissue and tumor tissue, respectively. As shown, 
SAV1 and TSPAN14 are more strongly stained in the 
tumor specimens, and there are kinds of literature 
showing that their expression profiles are confirmed 
to be related to BRCA [51, 52]. There is no significant 
difference in the expression values of ADRB1 between 
normal and tumor specimens of BRCA. However, 
we found that it has just been defined as a potential 

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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biomarker for BRCA by the co-analysis of tumor muta-
tional burden and immune infiltration [53].

External validation
In order to show the effectiveness of the proposed PRS 
system, we verify it on some external datasets from GEO. 
Similar to the process of internal validation, we firstly 
extract the three genes in Eq.(12) from the 10 independ-
ent datasets listed in Table 1. Then we apply the expres-
sion profiles of three genes from each sample to compute 
the PRS index. Next, we use the optimal cut-off value of 
PRS to categorize the patients into a high-risk group and 
low-risk group and apply the Log-rank test to compute 

P-value on each independent external validation dataset 
respectively. In total, 1848 patient samples are obtained 
for external validation. The detailed results (KM-curve, 
hazard ratio (HR), 95% confidence interval ( 95% CI) and 
P-value) are shown in Fig.  10. From the figures, we can 
easily find that the survival curve based on the PRS index 
is significantly different on each independent dataset.

Note that Fig. 10 contains more than one kind of infor-
mation about survival. This is because BRCA patients 
often have more than one important tumor clinical 
trial endpoint from diagnosis to remission or death. For 
example, OS in Fig.  10a–c refers to the time from the 
beginning to death from any cause, DFS in Fig.  10d–e 
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refers to the time from random start to disease recur-
rence or patient death due to disease progression. A 
detailed explanation of other survival times (e.g., RFS in 
Fig. 10f–g, DMFS in Fig. 10h–i and TDM in Fig. 10j) can 
be found in the original dataset, respectively. Thus, from 
the perspective of survival time, we actually perform sur-
vival analysis on 1848 BRCA patients from 10 independ-
ent external validation datasets. So far, they are one of the 
largest BRCA cohorts based on gene expression data. The 
results indicate the PRS system we established is signifi-
cantly effective for the prognosis of BRCA.

Discussion
Prognostic biomarkers of BRCA will not only affect the 
incidence but also influence its recurrence and survival to 
a large extent [54]. In this paper, we discovered biomark-
ers (risk genes) related to the prognosis of BRCA by using 
RCPH models from gene expression data. We also veri-
fied these identified biomarkers in a total of 3535 BRCA 
samples (including the  discovery dataset and external 
verification datasets). We found these prognostic bio-
marker genes form a BRCA-specific GRN with dysfunc-
tional indicators. Based on identified biomarkers, we also 
developed a scoring system (PRS model) that assesses the 
prognosis and survival status of BRCA patients. This is of 
great significance for estimating potential risks, enriching 
prognostic biomarkers, and developing a detection sys-
tem of BRCA.

Different from the available methods of discovering 
biomarkers, our work is proposed to find prognostic 
biomarkers based on the combination of prior knowl-
edge and large-scale gene expression data. Moreover, 
we established an effective PRS model based on the 
interpretable ensemble feature selection strategy. First, 
unlike the method of Tao et al. [55], we not only use dif-
ferential gene expression analysis to screen out feature 
genes from all genes (i.e., dimension reduction). Con-
sidering the important disease-causing genes are not 
always differentially expressed, we also integrated prior 
information of multiple cancer pathways, which laid the 

foundation for more accurate biomarker discovery. Sec-
ond, in contrast with the weighted gene co-expression 
network analysis (WGCNA) method of Yan et al. [8], we 
did not use GRN to select important hub genes with the 
largest module size as potential prognostic genes. Based 
on the linkages between genes and guided by regulari-
zation models, we employed ensemble feature selection 
methods with RCPH methods to identify possible BRCA 
prognostic genes in the form of GRN. It not only selects 
the risk genes explainably, but also describes the inte-
grative dysfunctional pathway underlying these selected 
genes. Finally, different from the work of Chen et al. [45] 
and Zhou et al. [56], instead of applying Cox regression 
to each DEG for prognostic analysis, we developed a 
PRS model based on a set of feature genes. Based on the 
fact that a single gene often leads to an unstable progno-
sis, the discovered risk genes are insufficient in reveal-
ing complex molecular mechanisms [57]. In contrast, 
the feature selection is performed via an interpretable 
dimensionality reduction process of removing redundant 
factors from thousands of gene candidates. The selected 
genes are meaningful to serve the subsequent establish-
ment of the PRS index. We applied RCPH models on this 
basis that greatly reduced the computational cost and 
improved the accuracy of prediction.

Our results suggest that in the univariate and mul-
tivariate Cox regression analysis, ADRB1, SAV1 and 
TSPAN14 were significantly related to the prognosis 
of BRCA patients ( P <0.05). While ADRB1 is different 
from what we have observed in the protein expression 
profiles. Its expression value is not significantly different 
between normal breast specimens and tumor specimens. 
Interestingly, we found that the work of Wang et al. [53] 
has just identified it as a potential biomarker for BRCA, 
which reflects the potential value of our findings of bio-
marker genes for BRCA. In summary, we have identified 
72 prognostic biomarkers of BRCA by RCPH models and 
selected three of them (ADRB1, SAV1 and TSPAN14) to 
develop a PRS system. Survival analysis confirmed that 

Table 5  The relationship between six DEGs and chemoresistance

Gene symbol Description References

CEL Carboxyl Ester Lipase –

PGK1 Phosphoglycerate Kinase 1 [80–83]

PTGES3 Prostaglandin E Synthase 3 –

RAPGEFL1 Rap Guanine Nucleotide Exchange Factor Like 1 [84]

SERPINA1 Serpin Family A Member 1 [85, 86]

WWOX SWW Domain Containing Oxidoreductase [87–89]
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the PRS model exhibits significant predictive ability and 
prognostic value for BRCA patients with different stages.

For how the DEGs are related to chemoresistance. 
We know that BRCA, especially the aggressive subtype 
triple-negative breast cancer, frequently develops resist-
ance to chemoresistance. Particularly, as shown in Addi-
tional file 6: Figure S1, there are nine genes contained in 
the intersection of the four feature subsets identified by 
Lasso-RCPH, Enet-RCPH, L0-RCPH and SCAD-RCPH 
respectively. Here, we only focused on six DEGs among 
the nine overlapped genes and analyzed the relationship 
between those six DEGs and BRCA chemoresistance. 
The results are shown in Table  5. As shown, four genes 
have been confirmed in the literature to be significantly 
related to BRCA chemoresistance.

There are still some limitations in our current study. 
On the one hand, our proposed method only worked at 
the gene expression level. Multiple omics data, e.g., DNA 
methylation [52], copy number variation [58], protein 
complexes [57] and metabolite information [59] will pro-
vide integrative and comprehensive information for bio-
marker discovery. The integration of multi-omics data 
is an important approach for discovering more accurate 
BRCA biomarkers. On the other hand, for the selected 72 
biomarker genes, we only employed literature validations 
and computational methods for preliminary verification. 
They are expected to be justified via in vitro experiments 
and clinical trials for BRCA patients, which is critically 
important for translational research and clinical valida-
tion/application. These are the research directions in the 
future. Currently, this paper is majorly focusing on the 
RCPH models of identifying potential biomarker genes. 
Obviously, the proposed framework is rather general to 
be easily extended to discover prognostic biomarkers for 
other complex diseases.

Discovery, verification and qualification have become 
standard procedures commonly used to obtain high-
quality biomarkers. Our research is dedicated to the 
discovery and preliminary verification stages, the sub-
sequent clinical in vitro verification and further qualifi-
cation to re-identify the biomarkers are very important 
to determine the biomarkers that can finally be trans-
formed into clinics. In the new era, one of the core tasks 
of translational medicine is to establish a low-cost, high-
throughput, and highly reproducible technical system. 
Currently, the Stable Isotope Standards and Capture by 
Anti-Peptide Antibodies (SISCAPA) technology devel-
oped by Anderson et  al. [60] can effectively bridge the 
gap between the discovery and clinical application of 
biomarkers. It has important reference significance for 
the translational medicine of biomarker research. In the 
future, we plan to carry out medical practice based on 
the needs of patients, use SISCAPA technology to bring 

the identified biomarkers into clinics. We will strive to 
provide more accurate early-warning, diagnosis and 
treatment of BRCA by translating the screened biomark-
ers into clinics.

Conclusion
In this paper, we proposed a method of detecting prog-
nostic biomarkers of BRCA from gene expression data 
by RCPH models. Compared with the focus only on indi-
vidual genes, our method makes full use of data-driven 
by considering the expression profiles, known potential 
candidates, and the networking interconnection between 
genes. The RCPH models guarantee the ensemble feature 
selection of potential biomarkers by screening candidate 
genes, and the built-up PRS system seeks and verify gen-
uine prognosis biomarkers of BRCA.

For achieving fair comparisons, we compared these 
RCPH models with seven penalties (i.e., Ridge, Lasso, 
Elastic net, L0 , L1/2 , SCAD, and MCP) based on their 
performance metrics of C-index and P-value on the 
biomarker discovery dataset. By integrating the feature 
genes selected in the models with the top performances, 
we identified 72 robust prognostic biomarkers of BRCA. 
We validated the findings from various aspects. Firstly, 
most biomarkers genes have been confirmed in the rela-
tionship with BRCA in the literature validation. Then, we 
established a specific GRN of BRCA and visualized the 
network module of these 72 biomarkers. They are con-
sistent with known disease genes or neighbor genes. At 
last, the enriched functions underlying these selected 
biomarkers indicated their important implications in 
BRCA.

More importantly, we constructed a PRS system by 
employing univariate and multivariate Cox regression 
models based on these biomarker genes. Then we vali-
dated the effectiveness and efficiency of the PRS system 
in the 1080 BRCA samples from internal validation data 
and in the 1848 BRCA samples from external independ-
ent validation data. We also explored the difference 
between the PRS value and the protein expression pro-
files of the PRS genes involved in tumor samples and 
controls. The results indicated PRS is expected to be an 
important indicator for the prognosis of BRCA patients.
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