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Abstract 

Background:  Fecal microbiota transplantation (FMT) is considered an effective treatment for slow transit constipa-
tion (STC); nevertheless, the mechanism remains unclear.

Methods:  In this study, eight patients with STC were selected according to the inclusion and exclusion criteria; they 
then received three treatments of FMT. The feces and serum of STC patients were collected after each treatment and 
analyzed by integrating 16 s rRNA microbiome and metabolomic analyses.

Results:  The results showed that the percentage of clinical improvement reached 62.5% and the rates of patients’ 
clinical remission achieved 75% after the third treatment. At the same time, FMT improved the Wexner constipation 
scale (WCS), the Gastrointestinal Quality-of-Life Index (GIQLI) and Hamilton Depression Scale (HAMD). Fecal microbi-
ome alpha diversity and beta diversity altered significantly after FMT. Analysis of the 16 s rRNA microbiome showed 
that the numbers of Bacteroidetes (Prevotell/Bacteroides) and Firmicute (Roseburia/Blautia) decreased, whereas 
Actinobacteria (Bifidobacterium), Proteobacteria (Escherichia), and Firmicute (Lactobacillus) increased after FMT. The 
metabolomics analyses showed that the stool of FMT-treated patients were characterized by relatively high levels of 
N-Acetyl-L-glutamate, gamma-L-glutamyl-L-glutamic acid, Glycerophosphocholine, et al., after FMT. Compared with 
baseline, the serum of treated patients was characterized by relatively high levels of L-Arginine, L-Threonine, Ser-Arg, 
Indoleacrylic acid, Phe-Tyr, 5-L-Glutamyl-L-alanine, and lower levels of Erucamide after the treatment. The correlation 
analysis between the metabolites and gut microbiota showed a significant correlation. For example, L-Arginine was 
positively correlated with lactobacillus, et al. L-Threonine was positively correlated with Anaerovibrio, Sediminibacte-
rium but negatively correlated with Phascolarctobacterium. Erucamide had significant negative correlations with Sed-
iminibacterium and Sharpea, while being positively correlated with Phascolarctobacterium. Enriched KEGG pathways 
analysis demonstrated that the protein digestion and absorption pathways gradually upregulated with the increase 
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Introduction
Chronic constipation is a prevalent gastrointestinal 
disorder, with pooled prevalence of 14% across the 
world [1]. With changes of lifestyle, the incidence of 
chronic constipation continues to increase year by 
year. Chronic constipation can be divided into slow 
transit constipation (STC), defecatory disorder, nor-
mal transit constipation (NTC) and mixed constipa-
tion according to the pathophysiological mechanism 
[2]. STC is a common type of chronic constipation 
characterized by the delayed emptying of the ascend-
ing and transverse colon and extended gut transit time 
as measured by radiopaque markers [3]. It is usually 
encountered in middle-aged women, seriously affect-
ing their quality of life and posing a considerable eco-
nomic burden. Research shows that the Psychological 
General WellBeing Index (PGWBI) and the patient 
assessment of constipation QOL (PAC-QOL) scores 
were worse in patients suffering constipation compared 
with individuals with no constipation, on the basis of 
the Rome criteria [4]. The STC patients also usually 
experienced mood disorders, such as depression, anxi-
ety and somatoform-type behaviors [5–7]. At the same 
time, patients also suffered associated gastrointesti-
nal tract and abdominal symptoms, such as dyspepsia, 
Irritable Bowel Syndrome (IBS) and bloating [8]. How-
ever, the pathogenesis of STC remains unclear. Lifestyle 
modifications, pharmacological therapy and surgical 
intervention are important management strategies for 
the treatment of STC, such as increasing dietary fiber, 
physical activity, osmotic laxatives, lubiprostone, sero-
tonergic agonists, anorectal biofeedback therapy, et al. 
Unfortunately, current treatments are not satisfactory 
in half the constipated individuals because of the lack 
of efficacy and having many adverse effects [9]. There 
is little support concerning the effectiveness of lifestyle 
modification and osmotic laxatives [10, 11]. Moreo-
ver, many common adverse effects of pharmacological 
therapy such as diarrhea, nausea, abdominal pain and 
headache have been reported [12]. Therefore, it is nec-
essary to find new treatments to address these issues 
and improve patients’ quality of life.

Gut microbiota are emerging as important players in 
the human body such as the metabolic, neurological, and 
gut immune system. An increasing number of studies 
show that gastrointestinal microbiota are closely related 
to gut motility and constipation. A recent meta-analysis 
proved that microbiota decreased colonic transit time 
by 12.4 h, increased the frequency of bowel movements, 
and improved constipation-related symptoms [13]. Fecal 
microbiota transplantation (FMT) is proposed as a “stool 
transplant” from a healthy individual into the recipient. 
The goal of FMT is to normalize the composition of gut 
microbiota and treat the disease, such as clostridium dif-
ficile infection, metabolic syndrome, irritable bowel syn-
drome, et al. [14–16]. At present, FMT appears to be an 
effective and safe therapeutic modality, with few adverse 
effects and has been successfully applied to STC [17].

However, the mechanism of gut microbiota for treating 
STC is unclear and remains to be explored. In this study, 
feces and serum were collected from STC patients before 
and after receiving FMT, and analyzed by integrating 16 s 
rRNA microbiome and metabolomic analyses. The aim of 
this research was to investigate the potential mechanism 
which may participate in the treatment of FMT.

Materials and methods
Patients criteria
Inclusion criteria
The diagnostic criteria of STC was based on the Rome 
IV criteria and colonic transit test. Rome IV criteria of 
constipation include: (1) The presence, in the preceding 6 
months, of at least two of the following: (i) straining dur-
ing more than one-fourth (25%) of defecations, (ii) lumpy 
or hard stools in more than one-fourth (25%) of defeca-
tions, (iii) sensation of incomplete evacuation in more 
than one-fourth (25%) of defecations, (iv)  sensation of 
anorectal obstruction/blockage in more than one-fourth 
(25%) of defecations, (v)  manual maneuvers to facilitate 
in more than one fourth (25%) of defecations (e.g., digi-
tal evacuation, support of the pelvic floor), (vi) fewer than 
three spontaneous bowel movements per week. (2) No 
loose stool without the use of laxative. (3) Inadequate evi-
dence for the diagnosis of irritable bowel syndrome.

of FMT frequency. The L-Arginine and L-Threonine were also involved in the pathway. A large amount of Na + was 
absorbed in the pathway, so that it might increase mucus secretion and electrical excitability of GI smooth muscle.

Conclusions:  Therefore, we speculated that FMT changed the patients’ gut microbiota and metabolites involved 
in the protein digestion and absorption pathways, thereby improving the symptoms of STC. Study on the effective-
ness and safety of FMT in the treatment of STC. The study was reviewed and approved by Ethics Committee of Tianjin 
People’s Hospital (ChiCTR2000033227) in 2020.

Keywords:  Fecal microbiota transplantation (FMT), Slow transit constipation (STC), The protein digestion and 
absorption pathway
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All patients underwent colonoscopy to exclude any 
luminal pathology or secondary causes of constipation. 
Patients were dissatisfied with traditional treatment 
(including dietary modification, laxatives, biofeedback, 
et  al.) for more than six months. STC patients were 
diagnosed by colonic transit test and colonic transit 
time > 48  h. Other criteria included age ≥ 18  years and 
body mass index (BMI): 18.5–25 kg/m2.

Exclusion criteria
Exclusion criteria included:

(1) Congenital megacolon; (2) constipation caused by 
secondary intervention (e.g., drugs, metabolic disorder, 
endocrine disorders or neurological disorders); (3) pre-
vious abdominal surgery (except for cholecystectomy, 
appendectomy, cesarean and tubal ligation) and perianal 
surgery; (4) history of or current gastrointestinal disease 
(e.g., malignancy, IBD); (5) infected with enteric patho-
gens; (6) used prebiotics, probiotics or proton pump 
inhibitors during the past month; (7) pregnant or breast-
feeding women; (8) long-term smoking and/or alcohol 
addiction; (9) confirmed to have hepatic, renal, cardio-
vascular, respiratory or psychiatric disease; (10) suffered 
from other disease which could affect intestinal transit 
and gut microbiota.

Donor screening
(1) Volunteers were healthy adults, without any other 
disease especially digestive system diseases, and except-
ing pregnant woman (BMI: 18.5–25  kg/m2). (2) Eligible 
donors had not received antibiotics, probiotics, proton 
pump inhibitors and other drugs that affect intestinal 
microecology, for at least six months before FMT dona-
tion. (3) The results of blood screening tests were nega-
tive for hepatitis A, B and C, HIV, syphilis, Treponema 
Pallidum, et al. (4) Stool screening tests were negative for 
Clostridium Difficile, Shigella, Yersinia, Campylobacter, 
parasites and other common enteric pathogens.

Preparation of fecal suspension
Approximately 100  g of fresh stool was immediately 
homogenized in a blender with 500  mL of 0.9% ster-
ile saline for several seconds. Afterwards, it was passed 
through a decreasing number of stainless steel sieves (2.0 
to 1.0 to 0.5 to 0.25  mm), several times, to remove the 
small particles [18]. Then, sterile glycerol was amended in 
the filtered suspension with a final concentration of 10%. 
The supernatant was stored at -80℃ or administered to 
the patients immediately.

FMT procedures
Eligible patients were given the antibiotics orally (van-
comycin 500  mg two times per day) for 3 consecutive 

days. Then, a nasojejunal tube was placed in the patient’s 
proximal jejunum under endoscopy. The patients stopped 
other conventional treatments on constipation for three 
days and did not eat anything for eight hours before 
FMT. Sodium phosphate (90  mL) was given to empty 
the bowel after the antibiotic treatment. After 12  h of 
rest, 50  mL fecal suspension was infused slowly into 
patients through the nasojejunal tube within 5 min. Then 
15  mL saline solution was used to flush the nasojejunal 
tube. The procedure was performed for six consecutive 
days, once every half month and repeated three times. 
The patient’s stool and serum samples were collected 
the day before FMT (Baseline-B1) and after per-FMT 
(PostFMT-B2, B3, B4). The patients were reminded to 
record symptom severity, stool consistency and maintain 
healthy habits during the treatment of FMT. Antibiotics 
were not allowed during the period. If the patients did 
not have a bowel movement for three or more than three 
days, they were permitted to use 20 g of Macrogol 4000 
powder (Forlax®, Ipsen, France). If ineffective, patients 
were allowed to use enema. Use of rescue medication was 
recorded.

Outcome measures
Primary outcome measure
(1) Clinical remission rate: the proportion of patients 
who had, on average, three or more spontaneous com-
plete bowel movements (SCBMs) per week. (2) Clinical 
improvement rate: the proportion of patients whose clin-
ical symptoms had not completely disappeared, but sig-
nificantly improved when compared with the baseline or 
patients with an average increase of one or more SCBMs/
week. (3) Safety assessments: adverse events which con-
tained any gastrointestinal symptoms such as abdominal 
pain, nausea, flatulence, et al., were recorded immediately 
during the FMT treatment and follow-up period.

Secondary outcome measure
(1) WCS, an internationally adopted questionnaire, 
which is used to quantify the severity of constipation 
[19]. This consists of a 30-point and 8-point question-
naire to examine the various clinical symptoms of con-
stipation, with scores ranging from 0 (best) to 30 (worst). 
According to the scale, the score of healthy people is < 8 
points; anything over is considered to be constipation 
[20]. (2) The GIQLI is a well-validated questionnaire to 
evaluate patients’ gastrointestinal symptoms and spe-
cific quality of life, such as psychological. It comprises 36 
questions using a five-point Likert-type scale (0, worst; 
4, best). The mean scores in healthy subjects were 125.8. 
(3) HAMD is an evaluation index to assess depression 
symptoms. Patients were considered to be suffering from 
depression with scores of > 7.
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Statistical analysis
All data were analyzed using SPSS Version 20.0 software. 
Continuous data were presented as mean ± SD (M ± SD), 
whereas categorical data were presented as n (%). Student 
t-test was performed to analyze normally distributed 
continuous variables, and χ2 test was used for categorical 
variables as appropriate. R value was used to evaluate the 
degree of correlation. P < 0.05 was considered to be statis-
tically significant.

16 s rRNA microbiome and metabolomic analyses
Extraction of genome DNA
Total genome DNA from samples was extracted using the 
CTAB/SDS method. DNA concentration and purity was 
monitored on 1% agarose gels. According to the concen-
tration, DNA was diluted to 1 ng/μL using sterile water.

16S rRNA gene PCR and amplicon sequencing
Primer: 16S V4: 515F-806R. 16S rRNA genes were ampli-
fied used the specific primer with the barcode. All PCR 
reactions were carried out in 30 μL reactions with 15 μL 
of Phusion® High-Fidelity PCR Master Mix (New Eng-
land Biolabs); 0.2  μM of forward and reverse primers, 
and about 10  ng template DNA. Thermal cycling con-
sisted of initial denaturation at 98 ℃ for 1 min, followed 
by 30 cycles of denaturation at 98 ℃ for 10 s, annealing at 
50 ℃ for 30 s, and elongation at 72 ℃ for 30 s. Finally, 72 
℃ for 5 min. The same volume of 1X loading buffer (con-
tained SYB green) with PCR products was mixed and 
electrophoresis operated on 2% agarose gel for detection. 
Samples with a bright main strip between 400 and 450 bp 
were chosen for further experiments. PCR products were 
mixed in equidensity ratios. Then, the mixture of PCR 
products was purified with a GeneJET Gel Extraction Kit 
(Thermo Scientific). Sequencing libraries were generated 
using the TruSeq® DNA PCR-Free Sample Preparation 
Kit following the manufacturer’s recommendations and 
index codes were added. The library quality was assessed 
on the Qubit@ 2.0 Fluorometer (Thermo Scientific) and 
Agilent Bioanalyzer 2100 system. Finally, the library was 
sequenced on an Illumina HiSeq 2500 and 250 bp paired-
end reads were generated.

Metabolite extraction and UPLC‑Q‑TOF–MS detection
LC–MS/MS analysis (HILIC/MS) was performed using 
a UHPLC (1290 Infinity LC, Agilent Technologies) cou-
pled to a quadrupole time-of-flight (AB Sciex TripleTOF 
6600). For HILIC separation, samples were analyzed 
using a 2.1 mm × 100 mm ACQUIY UPLC BEH 1.7 µm 
column (Waters, Ireland). In both ESI positive and nega-
tive modes, the mobile phase contained A = 25  mM 
ammonium acetate and 25  mM ammonium hydroxide 

in water and B = acetonitrile. The gradient was 85% B 
for 1  min and was linearly reduced to 65% in 11  min, 
and then reduced to 40% in 0.1 min and kept for 4 min, 
and then increased to 85% in 0.1  min, with a 5  min re-
equilibration period employed. The ESI source condi-
tions were set as follows: Ion Source Gas1 (Gas1) as 60, 
Ion Source Gas2 (Gas2) as 60, curtain gas (CUR) as 30, 
source temperature: 600℃, IonSpray Voltage Floating 
(ISVF) ± 5500  V. In MS-only acquisition, the instru-
ment was set to acquire over the m/z range 60–1000 Da, 
and the accumulation time for TOF MS scan was set at 
0.20  s/spectra. In auto MS/MS acquisition, the instru-
ment was set to acquire over the m/z range 25–1000 Da, 
and the accumulation time for product ion scan was set 
at 0.05 s/spectra. The product ion scan is acquired using 
information dependent acquisition (IDA) with high sen-
sitivity mode selected. The collision energy (CE) was 
fixed at 35  V with ± 15  eV. Declustering potential (DP) 
was set as ± 60  V. LC–MS/MS analysis (RPLC/MS) was 
performed using a UHPLC (1290 Infinity LC, Agilent 
Technologies) coupled to a quadrupole time-of-flight 
(AB Sciex TripleTOF 6600). For RPLC separation, a 
2.1 mm × 100 mm ACQUIY UPLC HSS T3 1.8 µm col-
umn (Waters, Ireland) was used. In ESI positive mode, 
the mobile phase contained A = water with 0.1% for-
mic acid and B = acetonitrile with 0.1% formic acid; 
and in ESI negative mode, the mobile phase contained 
A = 0.5  mM ammonium fluoride in water and B = ace-
tonitrile. The gradient was 1% B for 1.5 min and was lin-
early increased to 99% in 11.5 min and kept for 3.5 min. 
Then, it was reduced to 1% in 0.1  min and 3.4  min re-
equilibration period was employed. The gradients were at 
a flow rate of 0.3 mL/min, and the column temperatures 
were kept constant at 25℃. A 2 µL aliquot of each sam-
ple was injected. The ESI source conditions were set as 
follows: Ion Source Gas1 (Gas1) as 40, Ion Source Gas2 
(Gas2) as 80, curtain gas (CUR) as 30, source tempera-
ture: 650℃, IonSpray Voltage Floating (ISVF) 5000 V in 
positive mode, and − 4000 V in negative mode. In MS-
only acquisition, the instrument was set to acquire over 
the m/z range 60–1000  Da, and the accumulation time 
for TOF MS scan was set at 0.20 s/spectra. In auto MS/
MS acquisition, the instrument was set to acquire over 
the m/z range 25–1000  Da, and the accumulation time 
for product ion scan was set at 0.05 s/spectra. The prod-
uct ion scan was acquired using information dependent 
acquisition (IDA) with high sensitivity mode selected. 
The collision energy (CE) was fixed at 35 V with ± 15 eV. 
Declustering potential (DP) was set as ± 60 V.

Data analysis
Paired-end reads from the original DNA fragments 
were merged using FLASH [21]. Paired-end reads were 
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assigned to each sample according to the unique bar-
codes. Sequences were analyzed using the QIIME [22] 
software package (Quantitative Insights into Microbial 
Ecology), and in-house Perl scripts were used to ana-
lyze alpha- (within samples) and beta- (among samples) 
diversity. First, reads were filtered by QIIME quality fil-
ters. Then, operational taxonomic units (OTUs) were 
picked by making an OTU table. Sequences with ≥ 97% 
similarity were assigned to the same OTUs. A represent-
ative sequence for each OTU was selected and annotated 
with taxonomic information by the RDP classifier [23]. In 
order to compute Alpha Divesity, the OTU table was rari-
fied and calculated by Shannon index. Rarefaction curves 
were generated based on these three metrics. QIIME cal-
culates both weighted and unweighted unifrac, which are 
phylogenetic measures of beta diversity. Unweighted uni-
frac for Principal Coordinate Analysis (PCoA) was used 
to obtain principal coordinates and visualize them from 
complex, multidimensional data.

The raw MS data (wiff.scan files) were converted to 
MzXML files using ProteoWizard MSConvert and pro-
cessed using XCMS for feature detection, retention time 
correction and alignment. The metabolites were iden-
tified by accuracy mass (< 25  ppm) and MS/MS data 
which were matched with our standards database. In the 
extracted ion features, only the variables having more 
than 50% of the nonzero measurement values in at least 
one group were kept. For the multivariate statistical anal-
ysis, the MetaboAnalyst (www.​metab​oanal​yst.​ca) web-
based system was used. After Pareto scaling, principal 
component analysis (PCA) and partial least-squares-dis-
criminant analysis (PLS-DA) were performed. The leave 
one out cross-validation and response permutation test-
ing was used to evaluate the robustness of the model. The 
significant different metabolites were determined based 
on the combination of a statistically significant threshold 
of variable influence on projection (VIP) values obtained 
from PLS-DA model and two-tailed Student’s t test (p 

value) on the raw data, and the metabolites with VIP val-
ues larger than 1.0 and p values less than 0.1 were consid-
ered as significant.

Results
Patients’ characteristics
The baseline demographic features and clinical char-
acteristics of the patients with STC who received FMT 
are summarized in Table  1. According to the inclu-
sion and exclusion criteria, eight patients (two males 
and six females) were included in this study. The age of 
patients was 43.75 ± 16.95 (y), weight was 54.12 ± 7.35 
(kg), BMI was 20.10 ± 2.28 (kg/m2), disease duration 
was 9.50 ± 8.99 (y) and CSBMs was 1.5 ± 0.53 per week. 
All patients received three FMT treatments during the 
study. Stool and serum samples were collected before 
FMT(marked as B1) and after each treatment(marked 
as B2, B3, B4). Not all stool and serum samples were col-
lected after each FMT. So, ultimately, four patients had 
B1, B2, B3, B4; one patient had B1, B2, B3; two patients 
had B1, B2; one patient had B1, B4.

Effects on primary and secondary endpoints
The results show that symptoms of patients with STC 
were significantly improved after FMT compared with 
the baseline (Table 2). After treatment with FMT, the per-
centage of clinical improvement over the intervals of B2, 
B3 and B4 respectively reached to 62.5%, 50% and 62.5%. 
The rates of patients’ clinical remission were achieved in 
87.5%, 62.5% and 75% over the intervals B2, B3 and B4, 
respectively. The WCS demonstrated a significant reduc-
tion from B1 to B4: B1 (12.12 ± 4.05), B2 (7.62 ± 3.85), B3 
(6.87 ± 4.15) and B4 (7.12 ± 3.52), indicating the effec-
tiveness of FMT (P < 0.05). The GIQLI scores were sig-
nificantly increased compared with the baseline (P < 0.05) 
and represented the improvement in the patient’s quality 
of life. HAMD, which was used to assess the symptoms 

Table 1  Characteristics of included patients

F female, M male, BMI body mass index, CSBM complete spontaneous bowel movements

Patient no. Sex Age (y) Weight (kg) BMI (kg/m2) Disease duration (y) CSBMs, per week

1 M 61 67.5 23.08 5 2

2 F 35 50 19.29 10 1

3 F 27 50 19.53 2 1

4 F 60 46 17.3 4 2

5 F 35 47.5 17.66 22 2

6 F 34 57 22.83 25 2

7 F 25 54 19.83 3 1

8 M 73 61 20.62 5 1

Total (M ± SD) – 43.75 ± 16.95 54.12 ± 7.35 20.10 ± 2.28 9.50 ± 8.99 1.5 ± 0.53

http://www.metaboanalyst.ca
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of depression, showed a clear downward trend after FMT 
treatment.

There were five patients who had nausea and three 
patients had flatulence when the nasointestinal tube was 
inserted, but those discomforts disappeared when the 
tube was removed. One patients was observed with occa-
sional diarrhea and two patients reported borborygmi. 
These mild adverse events gradually reduced or disap-
peared. No serious adverse reactions occurred during 
the FMT period and the mild adverse events have been 
recorded.

FMT‑induced changes in fecal bacteria of patients
The fecal microbiomes of these patients were analyzed 
by 16  s rRNA gene sequencing. Veen diagrams, non-
metric multidimensional scaling (NMDS), Principal 
Co-ordinates Analysis (PCoA), the histogram of species 
relative abundance, and LDA Effect Size (LEfSe) analysis 
were used to assess the species enrichment and distribu-
tion in each group. The composition of gut microbiota 
was changed significantly in all participants. Fecal alpha 
diversity (within the sample diversity), measured as a 
Venn diagram displayed the common and unique OTUs 
between baseline and post-FMT (Fig.  1). After the first 
FMT, there were 896 common OTUs and 581 unique 

OTUs in the baseline and the post FMT patients; after 
the second FMT, 687 common OTUs and 682 unique 
OTUs between the B1 and B3; after the third treatment, 
764 common OTUs and 733 unique OTUs between the 
B1 and B4. We found that the number of unique OTUs 
gradually increased and the number of common OTUs 
generally showed a downward trend with continuous 
treatment. Microbiome beta diversity (between sample 
diversity), which was measured by NMDS and PCoA 
(Fig.  2) also altered significantly with FMT, suggesting 
that FMT transferred the microbial communities of the 
patients after treatment. The histogram of species rela-
tive abundance was used to show the top 10 species in 
the family-level and genus-level according to the OTU 
results. The composition of fecal microbiota in the post 
FMT patients significantly differed from baseline in 
the phylum-level and genus-level abundances (Fig.  3). 
The analysis showed that the number of Bacteroidetes 
(Prevotell/Bacteroides), Firmicute (Roseburia/Blau-
tia) decreased, and Actinobacteria (Bifidobacterium), 
Proteobacteria (Escherichia), Firmicute (Lactobacillus) 
increased in general. The dominant microbiomes in each 
group were displayed by LEfSe analysis with an LDA 
value of > 2 indicating statistical significance between two 
groups (Fig. 4). We found that the order Lactobacillales, 

Table 2  Clinical outcomes in patients undergoing FMT

Data are expressed as the M ± SD

B1, before the treatment; B2, after the first treatment; B3, after second treatment; B4, after third treatment
# p < 0.05 and the difference was statistically significant compared with B1 (before the treatment) values

Project B1 B2 B3 B4

Clinical improvement rate (%) 0 62.5% (5/8) 50% (4/8) 62.5% (5/8)

Clinical remission rate (%) 0 87.5% (7/8) 62.5% (5/8) 75% (6/8)

WCS 12.12 ± 4.05 7.62 ± 3.85# 6.87 ± 4.15# 7.12 ± 3.52#

GIQLI 89.12 ± 16.54 115.37 ± 17.18# 123.25 ± 12.04# 131.12 ± 6.22#

HAMD 7.75 ± 6.73 4.12 ± 2.69# 2.87 ± 2.29# 2.37 ± 2.06#

Fig. 1  Venn diagram displayed the common and unique OTUs of gut microbiota between baseline and post-FMT. The size of the circle represents 
the number of OTUs. The larger the circle, the greater the number of OTUs. On the contrary, the less
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family Lactobacillaceae, genus Lactobacillus were higher 
in the gut microbiota of the post-FMT group compared 
with baseline. The number of Sharpea, Sediminibacte-
rium, Cellvibrio, Anaerofustis, et  al., increased; Phasco-
larctobacterium, et al., decreased at different stages.

Metabolomic profiles are changed significantly after FMT
The metabolites produced by intestinal flora could 
significantly influence host physiology. Metabolomic 
analysis was used to assess the differential levels of 
metabolites in stools and serum of patients follow-
ing FMT. We found that the metabolomic profiles of 
patients shifted after the FMT procedure. The orthogo-
nal projections to Least Squares Discrimination Analy-
sis (OPLS-DA) score plot, Volcano plot, Metabolites 
heatmap, Fold-change analysis of the different metabo-
lites expressed the separation of clusters between the 
patients of baseline and post FMT. The multivariate sta-
tistical analysis of OPLS-DA showed that the cluster of 
metabolites was significantly separated between base-
line and post-FMT, indicating that the metabolism both 
in feces and serum were changed after FMT (Fig.  5). 
The univariate statistical analysis such as Volcano plot 
and Metabolites heatmap also showed the metabo-
lite changes between baseline and post-FMT (Figs.  6, 
7). Fold-change analysis of the different metabolites 
explained that the stool of FMT treated patients were 

characterized by relatively high levels of N-Acetyl-L-
glutamate, gamma-L-Glutamyl-L-glutamic acid, Glyc-
erophosphocholine, et  al. (Fig.  8A). At the same time, 
the serum of treated patients was characterized by 
relatively high levels of L‐Arginine, L‐Threonine, Ser-
Arg, Indoleacrylic acid, Phe-Tyr, 5-L‐Glutamyl-L‐ala-
nine, and lower levels of Erucamide, et  al. (Fig.  8B). It 
was interesting that the N-Acetyl-L‐glutamate, which 
increased in feces, was involved in the L-Arginine bio-
synthesis according to the KEGG. Correlation analysis 
was conducted to evaluate the associations between the 
metabolites and gut microbiota. The correlation coef-
ficient matrix heat map, Network Diagram and Scat-
ter Plot provide the visualization of the relationship 
(Figs. 9, 10, 11). For example, L‐Arginine was positively 
correlated with lactobacillus (r = 0.561), Escherichia 
(r = 0.668), Sediminibacterium (r = 0.624), Cellxi-
brio (r = 0.617), and Anaerofustis (r = 0.559), while 
negatively correlated with Anaerostipes (r = −  0.578). 
L-Threonine was positively correlated with Anaerovi-
brio (r = 0.637), Sediminibacterium (r = 0.624) and 
negatively correlated with Phascolarctobacterium 
(r = −  0.747). Erucamide had significant negative cor-
relations with Sediminibacterium (r = −  0.624) and 
Sharpea (r = -0.656), while being significantly positively 
correlated with Phascolarctobacterium (r = 0.588).

Fig. 2  NMDS (A) and PCoA (B) of taxonomic abundances assessed by 16S rRNA gene sequencing confirm that post-FMT samples tend to cluster 
farther compared to the baseline samples
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L‐Arginine and L‑Threonine are involved in the protein 
digestion and absorption pathway
To further investigate the mechanism of intestinal flora 
and metabolites in the treatment of STC, we conducted 
the KEGG analysis (Fig. 12). Enriched KEGG pathways 
analysis demonstrated the significant pathways involv-
ing metabolites. We noticed that the protein digestion 
and absorption pathways gradually upregulated with 
the increase of FMT frequency. At the same time, the 
L‐Arginine and L-Threonine were involved in the path-
way. The protein digestion and absorption pathways 
were further shown to explore the function through the 
pathway mapper (Fig.  13). The exogenous protein and 
endogenous protein were digested into amino acids and 
oligopeptides by pepsin and pancreatic enzyme. Many 

carrier proteins transport amino acids and oligopep-
tides into small intestinal epithelial cells. The carrier 
protein can combine amino acids and Na + to transport 
amino acids into the cells, and Na + is removed from 
the cells with the help of sodium pumps, accompanied 
by the consumption of ATP. The protein that had not 
been digested and absorbed produced short-chain fatty 
acids under the putrefaction of the intestinal flora. We 
observed that a lot of Na + is absorbed from this path-
way. The research showed that electrolyte and colonic 
fluid handling were the important treatments for con-
stipation [1]. Transport of fluid and electrolytes in the 
intestine is critical for lubrication in order for the con-
tents of the intestine to be propelled along its length 
[24].

Fig. 3  The phylum-level (A) and genus-level (B) abundances of fecal microbiota in FMT patients at baseline and post-FMT
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Fig. 4  LEfSe analysis with an LDA value of > 2 displayed the dominant microbiomes in each group
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Discussion
A large number of studies have shown that disorders 
of the intestinal flora can cause STC, and that FMT 

has an effect on STC. In the present study, the clinical 
improvement rate was 62.5% (5/8), clinical remission 
rate was 75% (6/8), and the WCS significantly decreased 

Fig. 5  The OPLS-DA of feces (A) and serum (B) showed that the cluster of metabolites was significantly separated between baseline and post-FMT

Fig. 6  The univariate statistical analysis of Volcano plot showed the metabolite changes both in feces (A) and serum (B) between baseline and 
post-FMT
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Fig. 7  The univariate statistical analysis of Metabolites heatmap in showed the metabolite changes both in feces (A) and serum (B) between 
baseline and post-FMT

Fig. 8  Fold-change analysis of the different metabolites explained that the stool (A) and serum (B) of FMT treated patients were different from 
baseline
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in patients after the third FMT treatment. The treat-
ment also improved the patient’s quality and relieved 
the depressive symptoms of patients based on the 
GIQLI scores and HAMD. On the whole, FMT not only 
improves the symptoms of constipation, but also relieves 
depression. Patients who received FMT treatment had 
several adverse events, too.

Then, we collected the feces and serum from the 
patients of baseline and post FMT to characterize the 
differences of microbiota and metabolite based on 16S 
rRNA sequencing and metabolomics. Compared to pre-
vious studies, we found that the ecological diversity and 
richness in the fecal microbiome of constipated patients 
were different from post-FMT, indicating that consti-
pation was significantly associated with an altered gut 

microbiome. As a whole, our results showed that the 
fecal microbiome of constipated patients exhibited an 
increased level of Bacteroidetes and decreased level of 
Proteobacteria/Actinobacteria from the Phylum. Lacto-
bacillus, Bifidobacterium/Bacteroides, et  al., decreased 
on the level Genus. After treatment, the numbers of 
these flora reversed. Together, these results showed that 
positive alterations of microbial community richness 
and diversity were exerted by FMT, suggesting that this 
might be a potential therapeutic mechanism [25]. The 
gut microbiota in patients with constipation are different 
from the healthy controls, manifesting as the increasing 
abundance of Bacteroides and the decreasing abundance 
of Proteobacteria [26]. Khalif et al. found that Bifidobac-
teria and Lactobacillus significantly decreased in the 57 

Fig. 9  The correlation coefficient matrix heat map was used to show the associations between the metabolites and gut microbiota

Fig. 10  Network Diagram was used to show the associations between the metabolites and gut microbiota
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Fig. 11  Scatter Plot was used to show the associations between the metabolites and gut microbiota
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adult patients with functional constipation; this result 
is consistent with our study [27]. Moreover, it has been 
reported that Lactobacillus and Bifidobacterium can be 
used to prevent and relieve constipation [28–30]. Colo-
nization with the specific microbiota such as Lacidophi-
lus and Bifidobacterium bifidum in pathogen-free rats 
also normalizes small-bowel migrating motor complexes 
and gut transit time [31]. Fecal qRT-PCR showed a sig-
nificant low value in Bifidobacterium and Bacteroides 
species in fecal specimens from constipated patients 

when compared to healthy controls [32]. There are many 
pathological damages in the intestinal epithelial cells of 
constipated rats: the depth of colonic crypt in consti-
pated rats decreased, goblet cells were lost, et  al. [33]. 
However, Lactobacillus can enhance intestinal epithelial 
barrier function and promote intestinal growth. Lactoba-
cillus paracasei can increase short-chain fatty acid levels 
and promote intestinal peristalsis to relieve constipation 
[34, 35]. Meanwhile, Lactobacillus can promote intestinal 
electrolyte absorption by stimulating butyrate absorption 
and increasing Cl− /HCO3− and Na+ /H+ transport [36, 
37].

The metabolomic analysis showed the metabolite both 
in stool and serum changed significantly after FMT. The 
present study found that N-Acetyl-L-glutamate, gamma-
L-Glutamyl-L-glutamic acid, and Glycerophosphocho-
line were significantly increased in stool after treatment. 
L-Arginine, L-Threonine, Ser-Arg, Indoleacrylic acid, 
Phe-Tyr, 5-L-Glutamyl-L-alanine levels were significantly 
increased and the level of Erucamide decreased in serum 
compared to the baseline. Especially, we found that the 
N-Acetyl-L-glutamate detected in feces is involved in 
the synthesis of L-Arginine. The research has shown 
that L‐Arginine significantly inhibited the contraction 
in the distal colon to relieve symptoms of constipation 
and that L-Threonine is also associated with gastroin-
testinal diseases [38, 39]. It has been elaborated that 
nitric oxide(NO) plays an important role in relaxation of 
the smooth muscle in the gastrointestinal tract and the 
reduced production of NO may be an important contrib-
uting factor to gastrointestinal motility dysfunction [40]. 

Fig. 12  KEGG analysis was used to further investigate the mechanism of intestinal flora and metabolites in the treatment of STC. The protein 
digestion and absorption pathways gradually upregulated with the increase of FMT frequency

Fig. 13  The protein digestion and absorption pathways mapper
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L-Arginine and nitric oxide synthases (NOS) can syn-
thesize NO to relieve symptoms of constipation [41–43]. 
L-Threonine is involved in the metabolism of vitamin B6, 
which is involved in the formation of the neurotransmit-
ter serotonin (5-HT) [39]. The 5-HT regulates the cen-
tral nervous system and enteric nervous system (ENS), 
including gastrointestinal (GI) motility and mood. Mean-
while, a deficiency of 5-HT can cause brain and intestinal 
dysfunction. Administration of slow-release 5-HTP to 
mice model of depression reduced depressive-like behav-
iors and promoted the growth of intestinal epithelium 
to normalize GI transit [44]. Indoleacrylic acid is one of 
the metabolites of tryptophan, and tryptophan catabo-
lites are important contributors to intestinal homeosta-
siss [45]. In the antidepressant experiment, Erucamide 
induces the immobility time in the forced swimming 
test and tail suspension test which are used to evaluate 
depressive-like behavior. So Erucamide regulates the 
central nervous system to antagonize depression [46]. 
Erucamide also can improve memory deficit [47]. Our 
research showed that the patients’ depression symptoms 
were reduced, and this may be related to Erucamide. At 
the same time, changes of these metabolites are related 
to the intestinal flora. For example, L‐Arginine was posi-
tively correlated with lactobacillus. Erucamide had sig-
nificant negative correlations with Sediminibacterium 
and Sharpea, while being positively correlated with Phas-
colarctobacterium. The N-Acetyl-L-glutamate gradually 
had significant positive correlations with lactobacillus.

Further research shows that L‐Arginine and L-Thre-
onine are involved in the protein digestion and absorp-
tion pathways which gradually upregulated in the KEGG 
pathways analysis. Intestinal epithelial cells absorb large 
amounts of Na + from this pathway. The imbalance of ion 
secretory and ion absorptive process in intestinal electro-
lyte transport can result in constipation and all of this is 
dependent on the Na + /K + ATPase. The main mecha-
nism of mucus secretion in the intestine is the move-
ment of Cl− from the blood-side to the lumen through 
epithelial cells, the subsequent electrical gradient drives 
the passive movement of Na + , and the osmotic gradient 
causes the movement of water into the lumen [48]. The 
liquid extraction in preparation of stool depends on elec-
trogentic Na + absorption in the distal colon [49]. Suf-
ficient small intestinal fluid secreted into the colon can 
change the consistency of stool and accelerate colonic 
transit [50, 51]. Our research shows that the protein 
digestion and absorption pathway produces more Na + in 
the intestine and may stimulate the intestinal mucosal 
epithelium secreting more water to relieve constipation. 
The motility of the GI tract is inseparable from electri-
cal excitation and excitation–contraction coupling. Ion 
channels, which are the diverse group of pore-forming 

proteins, participate in the electrical signals of most tis-
sues and, thus, generate every movement and perception 
[52]. Ion channels, particularly Na + channels, are the 
essential players in electrical excitability of GI smooth 
muscle; consequently, drug developers considered that 
voltage-gated ion channels could be used as molecu-
lar targets in GI motility disorders [53]. The Na+ chan-
nel NaV1.5, which was encoded by the SCN5A mRNA, 
decreased in the STC samples. A novel miRNA regula-
tor of NaV1.5, let-7f, one of the overexpressed miRNA 
in STC, significantly decreased Na + current density 
and reduced motility of human smooth muscle. At the 
same time, overexpression of let-7f produced reduced GI 
smooth muscle contraction in animal experimentation 
[54].

A large amount of SCFA is produced in the process 
of protein digestion and absorption. SCFA is critical for 
colonic function, regulating colonic growth and differ-
entiation, motility, blood flow, barrier integrity, and is a 
major source of metabolic fuel in the colon [48]. Further-
more, in the colon, the microbial metabolism of undi-
gested carbohydrates produces SCFA which promotes 
fluid absorption by Na + and SCFA− transporters and by 
increasing colonic NHE3 and NHE8 activity and expres-
sion [48].

Therefore, FMT can improve the symptoms of STC and 
the possible mechanism is increasing the production of 
L-Arginine and other metabolites by intestinal probiot-
ics. These metabolites participate in the protein digestion 
and absorption pathways to produce Na + , thereby alle-
viating STC.
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