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Gene clusters based on OLIG2 and CD276 
could distinguish molecular profiling 
in glioblastoma
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Abstract 

Background:  The molecular profiling of glioblastoma (GBM) based on transcriptomic analysis could provide precise 
treatment and prognosis. However, current subtyping (classic, mesenchymal, neural, proneural) is time-consuming 
and cost-intensive hindering its clinical application. A simple and efficient method for classification was imperative.

Methods:  In this study, to simplify GBM subtyping more efficiently, we applied a random forest algorithm to conduct 
26 genes as a cluster featured with hub genes, OLIG2 and CD276. Functional enrichment analysis and Protein–protein 
interaction were performed using the genes in this gene cluster. The classification efficiency of the gene cluster was 
validated by WGCNA and LASSO algorithms, and tested in GSE84010 and Gravandeel’s GBM datasets.

Results:  The gene cluster (n = 26) could distinguish mesenchymal and proneural excellently (AUC = 0.92), which 
could be validated by multiple algorithms (WGCNA, LASSO) and datasets (GSE84010 and Gravandeel’s GBM dataset). 
The gene cluster could be functionally enriched in DNA elements and T cell associated pathways. Additionally, five 
genes in the signature could predict the prognosis well (p = 0.0051 for training cohort, p = 0.065 for test cohort).

Conclusions:  Our study proved the accuracy and efficiency of random forest classifier for GBM subtyping, which 
could provide a convenient and efficient method for subtyping Proneural and Mesenchymal GBM.
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Introduction
Glioblastoma (GBM) is the most common malignant 
primary brain tumor. The past decades have witnessed 
considerable advances in neurosurgery and radio-chem-
otherapy but limited survival benefits [1]. Many efforts 
were made to set several classification schemes and 
capture this variability by using gene expression data to 
identify more homogeneous sub-categories for prognosis 
and drug sensitivity. Molecular signatures such as 1p/19q 

co-deletion, MGMT methylation, IDH mutation, TERT 
promoter mutation and H3F3A mutation have advanced 
the integrative subtype profiling of gliomas [2]. The most 
used classification scheme was proposed by Verhaak 
et  al., which divides GBMs into Proneural, Classical, 
Neural, and Mesenchymal types based on gene expres-
sion measured with mRNA microarrays from TCGA 
[3]. Generally, the proneural GBM patients are young 
and characterized with a good prognosis, while the 
mesenchymal subtype has the worst prognosis. CGGA 
group also profiled Chinese glioma patients into G1, G2, 
G3 groups based on gene expression, which matched 
the TCGA subtyping well [4]. However, the applica-
tion of transcriptome subtype is still limited in clinical 
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application because RNA sequencing and bioinformatic 
analysis are time-consuming and expensive.

Many genomic and epigenetic biomarkers for gliomas 
have been found in situ or blood [5–7]. Specific biomark-
ers also favor their expression in particular subtypes. 
For example, OLIG2, one of the four critical transcrip-
tional factors of glioma stem cells, has a high expression 
in proneural GBM, which associates with relatively poor 
prognosis and drug resistance [8, 9]. Besides, CD276, also 
known as B7H3, has been proven to be associated with 
progression and poor prognosis [10, 11]. Interestingly, 
in our previous report, CD276 was found co-expressed 
with stem genes in GSCs and favored its expression in 
midline gliomas [12]. Our previous in-silico analysis 
also revealed that it could influence survival and medi-
ate the G1/S transition in myc-driven neuroblastoma 
[13]. Similar efforts were made in medulloblastoma [14], 
and four distinct molecular subgroups of WNT, sonic 
hedgehog, group 3, and group 4 could guide therapeutic 
strategies [15]. Many other vital oncogenes like EGFR, 
CDK4, MDM2, GLI, PDGFRA, MET and MYC, were 
also investigated [16], and gene panels were used in the 
molecular profiling of GBM [17]. However, efficacy and 
efficiency are far from satisfactory, so that new biomark-
ers and methods to distinguish subtypes more efficiently 
are imperative.

To this end, we employed random forest, a machine-
learning algorithm developed by Breiman [18]. Random-
forest algorithm was widely used in classification [19, 20]. 
The algorithm has the following characteristics which 
distinguish it from other machine learning algorithms: 
(1) its ability to extract features, (2) the robust perfor-
mance on noisy data with highly correlated variables, and 
(3) its ability to reduce the effect of the curse of dimen-
sionality, i.e., high dimensional data with small sample 
size [21]. These characteristics make the random forest 
classifier an appropriate choice for gene expression data-
sets [22]. Furthermore, with the development of the next-
generation sequencing (NGS), random forest has already 
been used extensively in the biomedical field, such as 
neurology [23], cancer classification and even protein–
protein interaction sites prediction [24].

The current study aims to establish a gene cluster that 
could distinguish different molecular subtypes suitable 
for clinical application. Gene cluster featured with hub 
genes of OLIG2 and CD276 from our analysis will be 
conducted to distinguish molecular profiles.

Methods
Data collection and processing
Clinical information and array expression data of TCGA-
GBM and Gravendeel were downloaded from Gliovis 
(http://​gliov​is.​bioin​fo.​cnio.​es/). Clinical information and 

RNA-seq data of GSE84010 were downloaded from Gene 
Expression Omnibus (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/​query/​acc.​cgi?​acc=​GSE84​010). All data were nor-
malized for following analysis. Samples whose molecular 
classification are not available were excluded.

The expression data of TCGA were assigned into two 
cohorts randomly for training and validation. Moreover, 
Gravandeel’s and GSE84010 datasets were used for the 
random forest model test. The flowchart of this study is 
shown in Fig. 1, and the baseline of the two cohorts was 
tabulated in Table  1. For further machine learning, all 
expression data was normalized.

Data analysis was conducted using R 3.6.3 (R Core 
Team, 2020). A random number table generated by R 
3.6.3 randomly assigned 70% of the patients to the train-
ing cohort (n = 342) and 30% to the validation cohort 
(n = 147).

Immune infiltration analysis
The immune infiltration analysis was conducted by 
ImmuCellAI, a website tool (http://​bioin​fo.​life.​hust.​edu.​
cn/​ImmuC​ellAI#​!/). ImmuCellAI can predict the abun-
dance of 24 immune cell types in samples through a gene 
set signature-based method. The difference of immune 
cell infiltration in diverse groups was analyzed with the 
Immune cell abundance in groups [25, 26].

Random forest training
Random forest was trained with R packages “random-
Forest”. The expression profiles were set as input, and 
the expression subtypes were set as labels. The num-
ber of decision trees (ntree) was set as 3000, and the 
max features (mtry) were set as 3. After every training, 
the input genes were ordered according to their impor-
tance, reflected by mean decreased accuracy and Gini. 
Genes whose mean decreased accuracy and Gini lower 
than OLIG2 and CD276 are excluded from the candi-
date genes until all genes were not lower than OLIG2 and 
CD276 in the form of mean decreased accuracy and Gini.

Principal component analysis
Principal component analysis (PCA) based on the tran-
scription matrix was performed using the R package 
“ggbiplot” (https://​github.​com/​vqv/​ggbip​lot), and every 
gene is displayed in the coordinates with arrows from the 
origin.

WGCNA construction and key module identification
The TCGA expression data profile was used for net-
work generation by the R package WGCNA [26]. Ini-
tially, correlation of gene adjacency was conducted 
using a power function. Afterward, the modules 
were generated by the hierarchical average linkage 

http://gliovis.bioinfo.cnio.es/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84010
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84010
http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/
https://github.com/vqv/ggbiplot
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clustering approach. The modules were assigned to 
different colors for visualization.

Functional enrichment analysis
The functional enrichment analysis is performed with 
the R package “Clusterprofiler” [27]. We conducted 
the enrichment of genes in 3 modules we conducted 
from the PCA analysis, respectively and altogether. 
The results of the enriched terms of the Gene Ontol-
ogy (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG), and Disease Oncology (DO) pathways and 
were generated after running ClusterProfiler. The 
adjusted P-value < 0.05 was chosen as the threshold for 
identifying significant GO terms and pathways.

Protein–protein interaction
The protein–protein interaction (PPI) data were down-
loaded from String (protein–protein interaction). Fur-
thermore, the web plot was performed by the R package 
“igraph” (https://​github.​com/​igraph).

Prognostic prediction model construction
In order to find the predictive value of the individual 
genes, the proportional hazards (Cox) model was con-
ducted. The results were summarized in forest plots and 
2-dimension plots to show the risk factor for both PFS 
and OS. Calculations and graphing were conducted with 
the “survminer” and “ggforest” packages in R (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​survm​iner/, https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​ggfor​est/).

Fig. 1  The flowchart of study design

https://github.com/igraph
https://cran.r-project.org/web/packages/survminer/
https://cran.r-project.org/web/packages/survminer/
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To explore the prognosis predictive significance of 
the gene cluster, we conducted the most minor absolute 
shrinkage and selection operator (LASSO) with the “glm-
net” package in R (https://​cran.r-​proje​ct.​org/​web/​packa​
ges/​glmnet/). LASSO calculated the risk score based on 
the gene expression level and regression coefficients.

Results
OLIG2 and CD276 share a mutually exclusive expression 
in gliomas
The bioinformatic analysis showed that OLIG2 and 
CD276 were negatively correlated (Pearson R = −  0.38, 
Spearman R = −  0.36, Fig.  2A) in TCGA GBM dataset 

(n = 489). The expression of OLIG2 and CD276 varied in 
different subtypes (Fig.  2B), and the mutually exclusive 
expression was subtype-depended (Fig.  2C), as CD276 
favored in mesenchymal and OLIG2 in proneural sub-
types (Fig. 2D). The regression analysis showed that the 
expression panel of CD276 and OLIG2 are in the oppo-
site tendency (Radj2 = 0.19, P < 0.0001, Fig.  2C). Given 
G-CIMP status, OLIG2 is highly expressed in GBM with 
G-CIMP, while CD276 is high in GBM without G-CIMP 
(Fig. 2E). This contrary of CD276 and OLIG2 could also 
be observed in GBM with different IDH mutation sta-
tus and MGMT methylation (Fig.  2F, G). All these data 
showed that OLIG2 and CD276 could share an exclusive 
expression pattern in GBM.

Since CD276 is an immune costimulatory molecule, we 
considered the association between the immune infiltra-
tion status and OLIG2/CD276 expression. We extracted 
OLIG2hi/CD276lo and OLIG2lo/CD276hi groups from 
the dataset according to the expression of OLIG2 and 
CD276 (the cutoff is mean expression). In comparing 
OLIG2hi/CD276lo and OLIG2lo/CD276hi, immune infil-
tration score differs, especially in CD4 naïve cells, cyto-
toxic cells, Th1 cells, central memory cells, macrophage 
cells, neutrophil cells, Gamma delta cells, and infiltration 
score (Additional file 1: Fig. S1A). Moreover, gender, and 
MGMT status were not related to OLIG2/CD276 expres-
sion while IDH mutant and G-CIMP positive mainly 
belonged to OLIG2hi/CD276lo group of GBM (Fig. 2H).

PCA and WGCNA algorithm‑generated gene clusters based 
on OLIG2 and CD276
Twenty-six genes were obtained by mean decreased accu-
racy and Gini with random forest algorithm under super-
vision according to the expression subtypes (Fig. 3A, B). 
PCA analysis was further performed to have visual sight 
of the expression of the genes in four subtypes. The 26 
genes could distinguish the Verhaak’s subtypes well and 
be labeled with three modules (Module-Classic, Module-
Mesenchymal, Module-Proneural) according to similar 
gene expression patterns. In detail, genes mainly posi-
tively reflected by principal component 1 (PC2 >|PC1|) 
were labeled Module-Classic. Moreover, genes whose 
PC1 >|PC2| and PC1 < −  |PC2| were labeled as Mod-
ule-Proneural and Module-Mesenchymal respectively 
(Fig.  3C). Genes in Module-Classic, Module-Mesenchy-
mal, and Module-Proneural have higher expression levels 

Table 1  The baseline of training cohort and test cohort

There is no significant difference of the population baseline between the 
training cohort and test cohort

Characteristic Training cohort Test cohort

Age, year

   Median 59.2 60.1

   Range 10.9–89.3 25.2–86.6

Age, no. (%)

    < 60 year 52.9 49

    ≥ 60 year 46.2 49

    NA 0 2

Sex, no. (%)

    Male 59.9 61.2

    Female 38.9 35.4

    NA 1.2 3.4

Primary or secondary, no. (%)

    Primary 94.4 93.2

    Secondary 3.5 2.0

    Recurrent 1.2 2.7

    NA 0.8 2.0

IDH status, no. (%)

    Wild type 68.7 70.7

    Mutant 6.1 4.1

    NA 25.1 25.2

Subtype, no. (%)

    Classical 27.2 25.9

    Mesenchymal 28.9 32.7

    Neural 16.4 19

    Proneural 27.5 32.7

(See figure on next page.)
Fig. 2  The exclusive expression correlation of OLIG2 and CD276 in different GBM subtypes. The expression of OLIG2 and CD276 is negatively 
correlated in TCGA GBM dataset (A). OLIG2 expression is high in proneural subtypes, while CD276 in mesenchymal (B–D). In GBM with G-CIMP 
status, IDH mutation status and MGMT methylation status, OLIG2 is highly expressed and CD276 shared exclusive expression pattern (E–G). The full 
view of the correlation of OLIG2/CD276 expression and other phenotypes is shown (G)

https://cran.r-project.org/web/packages/glmnet/
https://cran.r-project.org/web/packages/glmnet/
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Fig. 2  (See legend on previous page.)
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in these modules than those in other modules (Fig. 3D), 
respectively. In detail, OLIG2 belonged to Module-
Proneural and CD276 belonged to Module-Mesenchy-
mal, consistent with the previous results. A column plot 
was displayed to show the expression of gene modules in 
4 subtypes (Fig. 3E).

Furthermore, ROC was displayed to evaluate the 
efficiency of the random forest algorithm for sub-
type classification. Moreover, the AUC of all classes 
except mesenchymal versus neural is relatively high 
(AUC = 0.855, Fig. 3F). Specifically, the ability of the gene 
cluster to distinguish mesenchymal and proneural was 
excellent with an AUC value of 0.92. It is noteworthy that 

the proneural and mesenchymal subtype of GBM can be 
distinguished well by the gene cluster.

The WCGNA algorithm was performed to match the 
co-expression network with the three principal compo-
nent modules to validate the random forest algorithm. 
A soft threshold was set as 8, considering of the model’s 
accuracy and the computational expense (Fig.  4A). The 
gene clusters were grouped into six modules altogether 
(Fig. 4B). Further, the Sankey diagram was made to match 
the PCA analysis and WCGNA, and there existed corre-
spondence between the two kinds of modules. Genes in 
MEblue and MEbrown belonged to the Proneural mod-
ule, in high expression in proneural GBM indeed and in 

Fig. 3  Gene clusters based on OLIG2 and CD276 generated by PCA analysis. 26 genes are obtained by random forest algorithm according to the 
expression subtypes (A). The full view of the locations of genes on chromatin is shown (B). PCA analysis revealed GBM subtypes can be identified 
clearly (C). Gene expression of three modules (module-classic, module-mesenchymal, and module-proneural) generated by PCA are shown in 
heatmap (D). Three gene modules expressed differently in four subtypes (E). ROC curve of the random forest algorithm for subtype classification is 
shown and the AUC reaches 0.855 (F)
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low expression in mesenchymal GBM. On the opposite, 
the vast majority of MEturquoise and the whole MEy-
ellow belonged to the Mesenchymal module, highly 
expressed in mesenchymal GBM and lowly expressed in 
proneural GBM (Fig.  4C). The protein–protein interac-
tion network was analyzed based on the modules to show 
the interaction among the gene clusters. As a result, only 
six genes in clusters (RAB34, RAB33A, OLIG2, VDR, 
TCF, and DNMT1) were found interactions by biochem-
istry experiments. RAB33A and RAB34 were Ras-related 
genes, the former was in MEblue, and the latter was in 
MEyellow. The two proteins were exclusively expressed 
in mesenchymal and proneural GBM (Fig. 4D). The net-
work plot was displayed according to the correlation of 
the gene cluster, which matched the WGCNA results and 
PPI network very well (Fig. 4E).

Gene clusters based on OLIG2 and CD276 could be 
validated in independent datasets
GSE84010 and Gravandeel’s GBM datasets were used 
to test classifying efficacy. 7 of 26 genes are included in 
the GSE84010 dataset and 21 of 26 genes in Gravandeel’s 
dataset (Fig. 5A, D). ROC analysis showed the validation 
results on GSE84010 and Gravandeel’s datasets (Fig. 5C, 
F). The AUC of the random forest algorithm is still ideal 
(0.816 in the GSE84010 dataset, 0.820 in Gravandeel’s 
dataset). In detail, AUCs for mesenchymal-proneural 
classification in these two datasets exceeded 0.9, indicat-
ing the excellent efficacy of the gene cluster to distinguish 
mesenchymal and proneural subtypes. This feature was 
also displayed in the PCA plot, in which orange circle 
(referring to proneural subtypes) and red circle (refer-
ring to mesenchymal subtypes) were well distinguished 
(Fig. 5B, E). In general, the gene cluster showed good effi-
cacy of the four expression subtypes generally.

Gene clusters could be functionally enriched in DNA 
elements and T cell associated pathways
To further explore the function of the 26-gene clusters, 
the GO, KEGG and DO database functional enrichment 
was performed for genes in different modules [28–30]. 
GO pathway enrichment revealed that both classic and 
mesenchymal modules are enriched in the promoter-spe-
cific chromatin binding pathway (Fig. 6A). Most enriched 
pathways from GO pathway analysis correlated with the 
DNA elements that regulate genes’ expression, such as 

promoter-specific chromatin binding, methyl-CpG bind-
ing, E-box binding, and catalytic activity, acting on DNA. 
Notably, GO biological process terms of lymphocyte dif-
ferentiation and T cell activation was associated with four 
genes in the cluster, indicating the immune activity occu-
pied an essential position in GBM as shown in the chord 
plot (Fig. 6B). KEGG database enriched pathways as sign-
aling regulating pluripotency of stem cells and microR-
NAs in cancer indicating that genes in cluster associate 
with functions of pluripotency regulation (Fig. 6C). In the 
DO database, genes in the cluster were found to closely 
connect with cancers in other systems like non-small cell 
lung carcinoma, bladder carcinoma, and integumentary 
system disease (Fig.  6D). Furthermore, we found that 
genes in classic modules are also related to other com-
mon epithelial diseases like skin disease and dermatitis, 
and module-mesenchymal genes are associated with 
tumors originating from mesenchymal tissues, such as 
non-small cell lung carcinoma.

Five genes in the gene clusters could construct a survival 
prediction model
Prognosis varied in different GBM subtypes (Additional 
file  2). In order to predict prognosis based on our gene 
panel, we conducted multivariate Cox regression analy-
sis and revealed that VDR (HR for OS, 1.71; 95% CI, 
1.15–2.54; p = 0.008; HR for PFS, 1.49; 95% CI, 1.04–2.13; 
p = 0.029), LMNB2 (HR for OS, 1.68; 95% CI, 1.16–2.43; 
p = 0.006; HR for PFS, 1.70; 95% CI, 1.23–2.36; p = 0.001), 
TCF3 (HR for OS, 0.60; 95% CI, 0.38–0.94; p = 0.027; HR 
for PFS, 0.47; 95% CI, 0.31–0.71; p < 0.001) and TNFAIP8 
(HR for OS, 0.61; 95% CI, 0.38–1.00; p = 0.050; HR for 
PFS, 0.54; 95% CI, 0.35–0.84; p = 0.006) as the independ-
ent factors for both of OS and PFS (Fig. 7A).

Furthermore, a two-dimension plot was used to visual-
ize the predictive value of genes in the cluster for OS and 
PFS. The closer the plot to the top right, the better prog-
nostic the genes indicated (Fig. 7B). Through the LASSO 
regression algorithm, a signature of five genes was finally 
obtained (Fig.  7C, D). Only TCF3 expression negatively 
correlated with risk score (Fig. 7E). As shown in Fig. 7F, 
patients in the low risk-score group (Blue) benefit from 
longer survival time than those in the high risk-score 
group (Red). The prognosis of the low risk-score group is 
better than that of the high risk-score group in the train-
ing cohort and test cohort (Fig. 7G).

(See figure on next page.)
Fig. 4  Gene clusters based on OLIG2 and CD276 generated by WCGNA algorithm. The soft threshold with corresponding scale free topology 
model fit and mean connection is set as 8 (A). TOM heatmap shows good cohesion of six modules generated by WCGNA algorithm (B). The Sankey 
diagram reveals existed correspondence between the two kinds of modules generated by PCA and WCGNA algorithm (C). RAB33A and RAB34 were 
exclusively expressed in mesenchymal and proneural GBM (D). Protein–protein network shows interaction among the gene clusters
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Fig. 4  (See legend on previous page.)
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Discussion
In addition to Verhaak’s classification, there are many 
attempts on gliomas classification. Karsy et  al. found 
the subtypes were linked with some biomarkers, such as 
PDGFRA with proneural, NF1 with mesenchymal, ATRX 
mutation with astrocytomas, and pTERT mutation with 
oligdendrocytomas [31]. Wang et al. classified GBM into 
two types based on lineage markers, like type 2 shared 
oligodendrocyte differentiation and better prognosis 

[32]. Using a Random forest algorithm, Crisman et  al. 
simplified Verhaak’s 840 total genes into 48 genes [33]. 
The accuracy of this approach ranged from 81.48% to 
93.86%. Wang et al. applied 50-gene signatures to classify 
IDH wildtype GBM into three subtypes (mesenchymal, 
proneural, and classical) [34]. There was an improvement 
in the concordance from 77 to 93%.

Compared to the previous studies, our study found 
that the random forest algorithm performs efficiently in 

Fig. 5  Validation of gene clusters in GSE84010 and Gravandeel’s GBM datasets. Heatmap shows good classifying ability of gene clusters in 
two independent datasets (A, D). PCA analysis reveals gene clusters could distinguish mesenchymal and proneural subtypes perfectly, but less 
distinguishable from classic and neural subtypes (B, E). ROC of random forest classification model reveals good efficacy (C, F) (AUC = 0.816 in the 
GSE84010 dataset, AUC = 0.820 in Gravandeel’s dataset)
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the subtype classification based on CD276 and OLIG2. 
The accuracy of our approach reaches 100% on the train-
ing set and 83.7% on the test set. The efficacy of the 

classification approach is high, given that our random-
forest derived panel consists of twenty-six genes, half of 
the previous two studies [30, 31].

Fig. 6  Functional enrichments of gene clusters. GO pathway enrichment revealed both classic and mesenchymal modules are enriched in DNA 
elements related pathway (A). GO biological process shows lymphocyte differentiation and T cell activation associated with four genes in the cluster 
(B). KEGG pathways reveals that signaling regulating pluripotency of stem cells is enriched (C). In DO database, genes in the cluster have a close 
connection with cancers (D)
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Fig. 7  Survival prediction model based on genes in clusters. Multivariate Cox regression analysis revealed the association of 26 genes with OS and 
PFS (A). The predictive value of genes in cluster for OS and PFS is shown in 2-dimension plot (B). A signature of five genes is obtained by LASSO 
regression algorithm (C, D). The coefficients of five genes in the signature is shown (E). The full view of the risk score and the survival status based 
on five genes signature (F). The survival prediction model is tested in training cohort and test cohort (G)
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We concentrated on two genes (OLIG2 and CD276), 
both of which favored expression in proneural and mes-
enchymal expression subtypes. Therefore, we suppose 
that the two biomarkers, OLIG2 and CD276, represent 
two tendencies or subtypes of GBM, resulting in different 
expression profiles and prognosis status. Thus, through 
the identification of the two biomarkers, we can predict 
prognosis. Since these genes are potential biomarkers for 
some unique subtypes, target drugs can be administrated 
accordingly.

In the process of WGCNA analysis, we found some 
contradiction with the results of PCA analysis. In detail, 
OLIG2 belonged to Proneural-module and MEtur-
quoise, which is in high expression in mesenchymal but 
in low expression in proneural. The bias of the model is 
not elusive to explain this mismatch. The mesenchymal-
proneural transition might result in this phenomenon, 
based on the evidence that increased OLIG2 expression 
is considered a biomarker of mesenchymal-to-proneural 
transition (PMT). We also hypothesize that OLIG2 repre-
sented the expression subtype and might be a driver gene 
of the biological transition process. Loss of OLIG2 func-
tion in GSCs resulted in mesenchymal transformation, 
which indicates OLIG2 plays a vital role in PMT [35]. It 
is known that the Proneural subtype correlates with IDH 
mutated GBM. So, OLIG2 driven gliomas might have a 
relatively better prognosis, which is also demonstrated 
in this study. In the meantime, CD276 could be down-
regulated in IDH mutated gliomas, mainly caused by 
autophagy induced by 2-HG accumulation [36]. CD276 
also seems to favor its expression in H3 mutated gliomas 
[37], which is exclusive to IDH mutation. The malignancy 
represented by CD276 seems correlated with the TGF-
beta pathway [38]. These findings indicate that different 
driving gene clusters might dominate in different subtype 
gliomas, resulting in different biological behaviors, clini-
cal features, and prognosis.

Also, there are some limitations in this study. The 
sample size of the training cohort is small. As a result, 
our random forest algorithm-generated fewer deci-
sion trees to avoid overfitting, which might miss some 
essential genes. Another drawback is that, we did not 
take inter-tumor and intra-tumor heterogeneity into 
consideration when applying the random forest algo-
rithm. Moreover, in order to obtain a simplified gene 
panel, a small number of genes were obtained. The 
weak association of a small number of genes leads to 
the low significance of the functional enrichment 
analysis, which might miss critical pathways. Further-
more, we found it is difficult to distinguish the neural 
subtype from the classical one, which is confirmed in 
other validation studies. The previous study based on a 
similar random forest method also found it challenging 

to distinguish neural subtypes [35]. The phenomenon 
could be attributed to the feature of the neural subtype. 
Wang et  al. argued that the neural subtype GBM is 
non-tumor-specific [35, 39]. Because our understand-
ing of GBM is still limited, further research was needed 
for more precise classification.

In conclusion, the random forest algorithm is proved 
efficient in the multi-classification of GBM expres-
sion subtypes, which would pave the way for precision 
medicine. With the development of sequencing, the 
combination of machine learning and next generation 
sequencing is likely to play an essential role in the diag-
nosing and predicting of GBM.
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