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Multi‑omics network characterization reveals 
novel microRNA biomarkers and mechanisms 
for diagnosis and subtyping of kidney 
transplant rejection
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Abstract 

Background:  Kidney transplantation is an optimal method for treatment of end-stage kidney failure. However, 
kidney transplant rejection (KTR) is commonly observed to have negative effects on allograft function. MicroRNAs 
(miRNAs) are small non-coding RNAs with regulatory role in KTR genesis, the identification of miRNA biomarkers for 
accurate diagnosis and subtyping of KTR is therefore of clinical significance for active intervention and personalized 
therapy.

Methods:  In this study, an integrative bioinformatics model was developed based on multi-omics network char-
acterization for miRNA biomarker discovery in KTR. Compared with existed methods, the topological importance of 
miRNA targets was prioritized based on cross-level miRNA-mRNA and protein–protein interaction network analyses. 
The biomarker potential of identified miRNAs was computationally validated and explored by receiver-operating 
characteristic (ROC) evaluation and integrated “miRNA-gene-pathway” pathogenic survey.

Results:  Three miRNAs, i.e., miR-145-5p, miR-155-5p, and miR-23b-3p, were screened as putative biomarkers for KTR 
monitoring. Among them, miR-155-5p was a previously reported signature in KTR, whereas the remaining two were 
novel candidates both for KTR diagnosis and subtyping. The ROC analysis convinced the power of identified miR-
NAs as single and combined biomarkers for KTR prediction in kidney tissue and blood samples. Functional analyses, 
including the latent crosstalk among HLA-related genes, immune signaling pathways and identified miRNAs, provided 
new insights of these miRNAs in KTR pathogenesis.

Conclusions:  A network-based bioinformatics approach was proposed and applied to identify candidate miRNA 
biomarkers for KTR study. Biological and clinical validations are further needed for translational applications of the 
findings.
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Background
Kidney transplantation is the most effective procedure 
for clinical treatment of patients with end-stage kidney 
failure. Based on the stable work of transplanted kid-
ney, electrolyte and acid–base balance could be main-
tained and patients no longer need the support of dialysis 
to eliminate the metabolic waste. However, due to the 
immune response of human body, kidney transplant 
rejection (KTR), including antibody-medicated rejection 
(AMR) and T cell-mediated rejection (CMR), is observed 
to have irreversible effects or even results in the loss of 
renal allograft function [1]. Although a series of clinical 
symptoms, e.g., increased serum creatinine, decreased 
urine output, distending pain in the transplantation area, 
and fever, are measured for indicating KTR occurrence, 
the specificity is still limited since the infection and drug 
response could cause similar phenotypes. Thus, screen-
ing sensitive biomarkers to predict and monitor the 
development of rejection after allogeneic kidney trans-
plantation is of great significance.

MicroRNAs (miRNAs) are small single-stranded non-
coding RNAs with the potential as biomarkers for a vari-
ety of pathologies. Recent studies found that miRNAs 
are functional regulators and indicators in the immune 
processes related to kidney transplantation. For example, 
Liu et  al. reported that downregulated miR-10b could 
mediate rejection of renal allografts through inhibit-
ing BCL2L11 expression [2]. Jin et  al. decoded a novel 
mechanism between miR-650 and BCL11B for prevent-
ing rejection after kidney transplantation [3]. Based on 
the meta-analysis and F344-Lewis rat kidney transplan-
tation model, Liang et  al. explored the diagnostic role 
and dynamic change of miR-155 in acute rejection [4]. 
Although the experimental evidences are accumulated, 
few of these studies focused on the multi-regulatory pat-
terns between miRNAs and mRNAs, and miRNA-mRNA 
associations are identified without thoroughly weight-
ing miRNA interactions as structural knowledge for bio-
marker prioritization [5].

It is widely acknowledged that the interplay between 
miRNAs and mRNAs forms large-scale miRNA-mRNA 
regulatory networks and dynamic changes in such net-
work systems provide functional insights in disease pre-
diction [6]. In the era of big biomedical data and artificial 
intelligence, computer-aided biomarker discovery has 
become a new frontier to model and decipher complex 
miRNA-mRNA regulations [7, 8]. Many network topol-
ogy-based theories are proposed and characterized to 

extract key miRNA signatures from the noisy background 
for translational researches. For example, miRNAs with 
more targets in the network are often found to be impor-
tant in regulation, and the Hub property is commonly 
selected for biomarker identification [9]. Compared with 
this approach, in our previous work miRNAs with signifi-
cantly strong single-line regulatory power were measured 
for their possibility as biomarkers [10]. These findings 
increase the understanding in miRNA biology, however, 
most of them focus solely on cancer applications, and the 
framework needs to be expanded by integrating feature 
parameters from multi-omics network systems such as 
the downstream protein–protein interaction (PPI) net-
work (PPIN) for cross-level functional survey.

In this study, we proposed a novel bioinformatics 
approach by characterizing and integrating topological 
features from both miRNA-mRNA and PPI networks to 
screen miRNA biomarkers and mechanisms for predict-
ing rejection after allogeneic kidney transplantation. As 
shown in Fig. 1, in the method a KTR-specific miRNA-
mRNA network was first developed to evaluate the binary 
regulatory modes between miRNAs and mRNAs. Then 
KTR-specific mRNAs were extracted to investigate their 
interactions based on PPI data, and a cross-level miRNA-
mRNA-PPI network (miR-PPIN) was finally constructed 
to identify miRNAs and infer key miRNA-mRNA regu-
lations in KTR. Compared with traditional approaches 
equally treating the contribution of different miRNA tar-
gets in the network for model training [11], in this pipe-
line the structural importance of target genes was mainly 
prioritized based on their topological activities in PPIN, 
and the targets in the centre of PPIN, i.e., high degree, 
closeness, and betweenness, were classified as CORE fac-
tors for miRNA regulatory power measurement.

Materials and methods
Data collection and processing
The miRNA and mRNA datasets were collected and 
downloaded from Gene Expression Omnibus (GEO) 
[12]. As illustrated in Table 1, GSE30282 contains a total 
of 65 post-transplant biopsy samples profiled on Affym-
etrix Multi-species miRNA-1 Array. In this study AMR, 
CMR and the normal control samples were selected [13]. 
In GSE129166, peripheral blood samples and kidney allo-
graft biopsies were chosen for genome-wide gene expres-
sion analysis using Affymetrix Human Genome U133 
Plus 2.0 Array [14]. To ensure the consistency of sam-
ple sources for model training, kidney allograft biopsy 
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samples with clear pathologic characteristics, i.e., AMR 
or CMR (borderline samples were removed), were ana-
lyzed. In addition, GSE115816 with 6 AMR, 4 CMR and 6 
stable graft function samples screened by Illumina HiSeq 
2500 was used as an independent validation dataset to 
evaluate and compare the biomarker power of identi-
fied miRNAs for KTR prediction and subtyping in blood 
samples.

The differentially expression analysis were per-
formed on the normalized data to extract differentially 
expressed (DE) miRNAs and mRNAs between KTR 
and normal groups. According to the comparison of 
methods for microarray-based DE-gene identification 
[15], the empirical bayes (eBayes) method was rec-
ommended for raw p-value calculation [16] and the 
Benjamini–Hochberg false discovery rate (FDR) was 

Fig. 1  The schematic workflow of this study

Table 1  Datasets used in this study

Category Type GEO accession Sample source Platform Sample number

Prediction miRNA GSE30282 kidney allograft biopsy GPL8786 AMR: 11; CMR: 30; Normal: 10

Prediction mRNA GSE129166 kidney allograft biopsy GPL570 KTR: 24; Normal: 60

Validation miRNA GSE115816 Whole blood GPL16791 AMR: 6; CMR: 4; Normal: 6
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calculated for multiple testing and p-value adjustment. 
For the gene related to multiple probes, the probe with 
the most significant variation was assigned. The cutoff 
for DE-miRNA and DE-mRNA extraction was set as 
the adjusted p-value (adj.p-value) < 0.05.

The miRNA-mRNA regulatory data were retrieved 
from our previous work, where a human global miRNA-
mRNA network was constructed based on the integra-
tion of miRNA-mRNA pairs from both experimentally 
validated and computationally predicted databases 
[10]. For human PPI data, the online tool STRING 
(v11.0) was applied and PPIs with the score ≥ 0.7 (high 
confidence) and active interaction sources except text-
mining were chosen for network modeling and analysis 
[17].

Multi‑omics network characterization and miRNA 
biomarker identification
As described in Fig.  1, an integrated KTR-specific net-
work was constructed by merging interactive data at two 
omics levels to quantify the power of miRNAs for gene 
regulation:

First, the DE-miRNAs and DE-mRNAs were mapped 
onto the human global miRNA-mRNA network, and a 
KTR-specific miRNA-mRNA network was extracted to 
measure miRNA regulation at the post-transcriptional 
level.

Second, it should be acknowledged that genes in the 
network could influence the downstream biological pro-
cesses and eventually cause disease phenotypes via inter-
acting with each other. To better prioritize the interactive 
activity of genes regulated by miRNAs, a KTR-specific 
PPI network was further developed by integrating KTR-
specific mRNAs with human PPI data using STRING 
online [17]. Here three topological features, i.e., degree 
centrality (DC), closeness centrality (CC), and between-
ness centrality (BC), were calculated to indicate the 
structural significance of genes in PPIN [18]:

where k is the number of edges that are linked to a given 
node i. Nodes with high DC are critical in the network.

where N is the total number of nodes in the network, and 
d(i, j) represents the distance between i and j. This index 
represents how close the given node is to all the other 
nodes in the network. In general, the node with high CC 
holds the optimum position for evaluating the informa-
tion flow.

DC(i) = k

CC(i) =
N

∑N
j = 1 d

(

i, j
)

where nxy is the number of the shortest paths connecting 
node x and y, and mi

xy is the number of the shortest paths 
connecting node x and y that contain the given node i. 
Since the interaction of two non-adjacent nodes can be 
influenced by nodes that lie between them, this index 
indicates the significance of a given node based on the 
number of penetrated shortest paths.

In this study, genes whose DC, CC and BC are greater 
than their average values are defined as CORE set in the 
network (see Additional file  1), and the KTR-specific 
miRNA-mRNA network were upgraded by merging 
PPIN to a cross-level miRNA-mRNA-PPI network (miR-
PPIN). In this novel framework, the structural impor-
tance of target genes is prioritized according to their 
contributions in the network, and miRNAs with more 
CORE targets have the theoretical priority for biomarker 
discovery.

Based on the above definitions, two feature parameters, 
i.e., Number of ALL Targeted Genes (NTGA) and Num-
ber of Targeted CORE Genes (NTGC), were respectively 
defined, where the former is numerically equal to the 
number of genes regulated by miRNAs and the latter is 
the number of CORE genes targeted by a given miRNA. 
As hub genes are reported to be functionally important 
in the network system [19], miRNAs with high NTGA 
values have strong power in regulation. Moreover, NTGC 
index strengthens such regulatory pattern by reasonably 
weighting the contribution of target genes across multi-
omics networks. Hence candidate miRNA biomarkers 
were computationally identified with the following two 
steps:

Step 1: miRNAs with significantly high NTGA val-
ues (p-value < 0.05, Wilcoxon signed-rank test) were 
extracted from the KTR-specific network.

Step 2: miRNAs with significantly high NTGC values 
(p-value < 0.05, Wilcoxon signed-rank test) were selected 
from those screened in Step 1 as candidate biomarkers 
for expression and functional validation.

ROC analysis and performance validation
The receiver-operating characteristic (ROC) analysis was 
performed and compared using the statistical tool Med-
Calc (v20.009) at two levels, i.e., the identified miRNAs as 
single predictors and a combined signature that incorpo-
rated all identified miRNAs. Here the Logistic regression 
was applied to predict the value of combined signa-
ture based on the expression data of each miRNA vari-
ables. The area under ROC curve (AUC) was calculated 

BC(i) =
∑

x �=i �=y

mi
xy

nxy
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to quantify the predictive power of biomarkers for KTR 
diagnosis (KTR vs. nKTR) and subtyping (AMR vs. 
CMR).

The potential of miRNAs as biomarkers was further 
validated by literature-based pathogenic survey, and key-
words including “kidney/renal transplantation”, “rejec-
tion”, “immune response”, etc. were used to investigate 
the associations of identified miRNAs with KTR through 
text-mining in PubMed and Web of Science.

Knowledge‑guided key regulatory module extraction 
and functional exploration
The pathogenesis of identified miRNAs was explored 
based on a three dimensional “miRNA-gene-pathway” 
paradigm. First, functional targets of biomarker miRNAs 
were retrieved from KTR-specific miR-PPIN network 
for Gene Ontology (GO) enrichment at the biological 
process (BP) level using the Database for  Annotation, 
Visualization and Integrated Discovery (DAVID, v6.8) 
online  [20]. The criterion for significant term selection 
was set as p-value < 0.05. Then PPIs in KTR-specific miR-
PPIN were clustered by the plug-in Molecular Complex 
Detection (MCODE) of Cytoscape for molecular com-
plex analysis with default thresholds [21]. Finally, signifi-
cant clusters were identified and key regulatory modules 
were extracted by integrating BP knowledge and miRNA 
regulations for translational “genotype-phenotype” etio-
logic understanding.

Results
Global features of KTR‑specific miR‑PPIN
In this study, a KTR-specific miR-PPIN network was 
constructed from the integration of DE-miRNA/mRNA, 
miRNA-mRNA and PPI data for systems-level charac-
terization of miRNA-mediated interactions in KTR (see 
Additional file 2). As shown in Fig. 2a, the network con-
tains a total of 949 miRNA-mRNA pairs and 1,447 PPIs 
among 31 miRNAs and 642 genes that were abnormally 
expressed in KTR. Based on STRING analysis [17] as 
described in Fig. 2b, the genes in the network were sig-
nificantly enriched in T cell-related BP terms such as NK 
T cell proliferation, T cell antigen processing and presen-
tation, positive regulation of memory T cell activation, 
et  al., which indicated the specificity of identified net-
work in KTR development [22, 23].

To characterize the global features of miRNAs and 
genes in the network, the degree distribution was ana-
lyzed at miRNA-mRNA and PPI level, respectively. As 
illustrated in Fig.  2c and d, miRNAs with more targets 
in miRNA-mRNA network were fewer, and most of the 
targets tended to locate at border sites in PPIN as the 
degree of nodes followed the power-law distribution with 
the slope of -1.34. Based on these findings, the structural 

importance of target genes was then prioritized accord-
ing to their degree, closeness and betweenness properties 
in PPIN, and the highly prioritized targets were classified 
as CORE gene set to strengthen miRNA regulation (see 
Materials and methods). Finally, features in these two 
network systems were collaboratively measured, and the 
number of CORE targets by miRNAs was calculated in 
miR-PPIN. As shown in Fig. 2e, there were very few miR-
NAs that regulated more CORE genes and it could be a 
potential clue for biomarker discovery.

Biomarker miRNAs for KTR diagnosis and subtyping
In this study, a total of three miRNAs, i.e., miR-145-5p, 
miR-155-5p, and miR-23b-3p, were identified as can-
didate biomarkers for KTR prediction based on multi-
omics network characterization with the newly defined 
topological parameters and screening criteria, i.e., sig-
nificantly high NTGA and NTGC. As illustrated in Table 2 
and Fig. 3 respectively, miR-145-5p and miR-23b-3p were 
downregulated in KTR group, whereas miR-155-5p was 
overexpressed in KTR especially in CMR.

The ROC analyses were performed both on the train-
ing and an independent validation dataset to evaluate the 
potential of identified miRNAs and the miRNA combina-
tion for KTR diagnosis and subtyping. At single miRNA 
level, as drawn in Fig. 4a, b and e, all the three miRNAs 
showed strong power (AUC > 0.8, average AUC = 0.898) 
in differentiating kidney allograft biopsy samples of 
KTR and non-KTR (nKTR, normal control), and they 
had comparable ability for KTR subtyping, i.e., AMR 
and CMR (AUC > 0.75, average AUC = 0.829). In the 
validation set, the miRNAs were measured using blood 
samples since blood can be obtained noninvasively com-
pared with kidney tissues. As shown in Fig. 4c, d and e, 
miR-155-5p and miR-23b-3p tended to outperform on 
KTR prediction (AUC > 0.75), and miR-145-5p reached 
the AUC of 0.917 for AMR and CMR subtyping. Com-
pared with single biomarkers, the combination of three 
miRNAs improved the overall performance in different 
groups, which indicated the potential of the three miR-
NAs as a combined signature for KTR management.

It should be noticed that the AUC values of identi-
fied miRNAs were highly heterogeneous between tissue 
and blood groups. In addition to the differences in sam-
ple source, the number and size of dataset is another 
important consideration. Therefore large-sample-based 
consistency analysis should be conducted for further 
functional validation.

Literature‑based functional validation and comparison
The literature-based survey was conducted to vali-
date the performance of the bioinformatics model and 
investigate the function of identified miRNAs. Among 
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them, miR-155-5p is a well-studied star related to dys-
functional allograft status in kidney transplantation. 
For example, Anglicheau et  al. demonstrated that the 
intragraft expression of miRNAs was strongly associ-
ated with mRNAs and the disorder in such regulation 
led to acute rejection and affected kidney allograft 
function. They found that miR-155-5p (namely miR-
155) was overexpressed in KTR biopsy samples, which 

could serve as a diagnostic biomarker for indication of 
kidney allograft status [24]. Similar to this result, the 
overexpression of miR-155-5p was detected in T-cell 
mediated rejection from a study by Soltaninejad et al., 
and the diagnostic role of this miRNA was suggested 
for CMR prediction [25]. To validate the dynamic 
change of miR-155-5p expression in KTR, Liang et  al. 
established a rat kidney transplantation model and the 
result showed that the increased level of miR-155-5p in 
plasma was highly consistent with the degree of rejec-
tion development, thus this miRNA could be a useful 
biomarker for monitoring the functional status of allo-
graft after kidney transplantation [4]. In addition to tis-
sue and blood samples, the upregulation of miR-155-5p 
was also captured in urine from patients who expe-
rienced rejection. Based on qRT-PCR validation, the 

Fig. 2  Structural characterization and prioritization of KTR-specific miR-PPIN: (a) Overview of the network. The red and blue nodes represent 
miRNAs and genes, respectively; (b) BP terms significantly enriched by miR-PPIN with the highest strength according to STRING online; (c) 
Distribution of targets at miRNA-mRNA level. miRNAs with more targets were fewer in number; (d) Degree distribution of genes at PPI level, where 
P (Degree) is the fraction of genes in the network with the given Degree to others. Both Degree and P (Degree) were 2-based log transformed; (e) 
Distribution of CORE targets at miR-PPIN level. miRNAs with more CORE targets were fewer in number

Table 2  The identified miRNAs as candidate biomarkers

miRNA ID Expression NTGA (p-value) NTGc (p-value)

miR-145-5p Down 44 (6.75e-04) 9 (7.81e-03)

miR-155-5p Up 77 (1.84e-07) 10 (1.95e-03)

miR-23b-3p Down 131 (9.31e-10) 9 (7.81e-03)
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level of urinary miR-155-5p was significantly increased 
in patients before and during acute rejection, and this 
miRNA held the power to be a biomarker for early 
diagnosis of rejection after kidney transplantation [26].

The remaining two miRNAs, i.e., miR-145-5p and miR-
23b-3p, were also reported to be functional in KTR pro-
gression. According to the RT-PCR analysis by Matz et al., 
the abnormal expression of miR-145-5p distinguished 
rejection from the normal controls and it was downreg-
ulated in patient cohorts with interstitial fibrosis/tubu-
lar atrophy (IFTA), which indicated its diagnostic role as 
an IFTA-specific biomarker in blood for fibrosis-caused 
etiology study [27]. Meanwhile, this miRNA, as well as 
miR-23b-3p, could distinguish acute rejection and acute 
pyelonephritis, which provided underlying clues for rejec-
tion identification from inflammatory conditions [28].

To summarize, miR-155-5p is a reported biomarker 
for KTR diagnosis and the remaining candidates also 
have close associations with KTR especially with kidney 

acute rejection processes, supporting the overall predic-
tive performance of the proposed model. Compared with 
previous approaches and findings, the expression pattern 
of identified miRNAs in KTR group was highly consist-
ent. More importantly, in this study a network-based 
computational strategy was applied to identify miRNAs 
with biomarker potential both in KTR diagnosis (KTR vs. 
nKTR) and subtyping (AMR vs. CMR), which provided 
novel insights in miRNA-medicated KTR pathogenesis.

Key regulatory modules and mechanisms in KTR 
pathogenesis
It is widely known that immune response is a leading 
factor affecting the function of allograft after kidney 
transplantation [29, 30]. In this study immune-related 
BP terms, e.g., interferon-gamma-mediated signaling 
pathway, type I interferon signaling pathway, immune 
response, antigen processing and presentation, etc. were 
significantly enriched by biomarker miRNA targets 

Fig. 3  The expression pattern of identified miRNA biomarkers in nKTR (normal control), AMR and CMR group. The expression data were 2-based log 
transformed from the selected prediction dataset (GSE30282)

Fig. 4  The ROC analysis of identified miRNA biomarkers and their combined signature for KTR diagnosis and subtyping: (a) and (b) The 
performance in kidney allograft biopsy samples (GSE30282); (c) and (d) The performance in blood samples (GSE115816); (e) Comparison of AUC 
values among different conditional groups. Blue and red shadings represent biopsy and blood sample respectively

(See figure on next page.)
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Fig. 4  (See legend on previous page.)



Page 9 of 12Lin et al. J Transl Med          (2021) 19:346 	

including HLA-A, HLA-C, HLA-G, SAMHD1, ICAM1, 
IRF1/2, etc. in KTR-specific miR-PPIN (see Additional 
file  3). To explore genetic interactions associated with 
identified BP terms, the plug-in MCODE of Cytoscape 
was applied to cluster functional modules for pathoge-
netic understanding. As illustrated in Additional file  4, 
a total of 18 clusters were extracted from KTR-specific 
PPIN based on MCODE analysis and the Cluster 2 with 
identified biomarker targets was selected for etiologic 
study.

As shown in Fig. 5, in KTR-specific Cluster 2 the iden-
tified targets were interacted and formed as a key module 
in regulating immune and interferon-related pathways. 
Herein HLA-A, HLA-C, HLA-G, IRF1/2 and SP100 were 
regulated by miR-23b-3p and the remaining three were 
targets of miR-155-5p, respectively. Among them, HLA 
(human leukocyte antigen) is known to be the expres-
sion product of human major histocompatibility complex 
(MHC). The mismatch of HLA is a risk factor to affect 
kidney allograft function and to increase the chance of 
rejection [31–33]. For example, Ko et al. investigated the 
clinical outcome of kidney transplantation with ABO and 
HLA incompatibilities. The result found that ABO and 

HLA incompatibilities could increase the probability of 
infection-medicated rejection and influence the overall 
survival both for patient and graft [31]. Moreover, HLA 
donor-specific antibodies could induce inflammation, 
vessel injury and AMR by binding to vascular endothelial 
cells of the allograft [34]. As three important members 
in HLA class I heavy chain paralogues, HLA-A, HLA-C 
and HLA-G were found to be potentially regulated by 
miR-23b-3p in this study. Here HLA class I molecules 
have central functions in the immune system, and they 
can be detected by cytotoxic T cells via presenting pep-
tides originated from the endoplasmic reticulum lumen. 
In particular, Janssen et al. found that polymorphisms in 
donor derived HLA-G had significant effects on acute 
rejection after kidney transplantation, and 14-bp ins/ins 
and the + 3142GG genotypes may be protective factors to 
decrease KTR [35]. Hence the signaling of miR-23b-3p/
HLA/immune axis offers novel insights in KTR genesis. 
In addition to HLA groups, ICAM1 and VCAM1 are 
well investigated in the function of transplanted kidney. 
For example, the immunological response after kidney 
transplantation would increase the endothelial expres-
sion of ICAM1 and VCAM1, and the rs5498 ICAM1 

Fig. 5  The key miRNA-mRNA regulatory module and putative mechanism associated with KTR development
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polymorphism and the C allele of the rs1041163 in 
VCAM1 highlighted the rejection risk and long-term 
allograft failure [36, 37]. Moreover, as an inflammatory 
protein, ICAM1 plays active roles in kidney chronic 
rejection, and the ICAM1-based network biomarker 
accelerated the precision classification of different KTR 
phenotypes [38]. Last but not least, IRF1 is a transcrip-
tion factor and it mediated MHC induction and regulated 
resistance to necrosis in KTR, which would be crucial for 
the interventions against rejection [39].

Based on these findings, the putative “miRNA-gene-
pathway” axis was inferred at the computational level and 
more insightful mechanisms in KTR pathogenesis need 
to be experimentally validated in the future work.

Discussion
Allograft rejection is a common complication after kid-
ney transplantation. The early detection and precise sub-
typing of rejection signatures are of clinical significance 
for personalized therapy. As a class of non-coding RNAs 
with regulatory role in multiple biological processes, 
miRNAs are well reported to be potential biomarkers for 
predicting rejection response in kidney transplantation 
[40, 41]. However, most of the studies are experimen-
tal, which lacks deep insights in the global interactions 
between miRNAs as well as target genes for systems-level 
pathogenesis understanding.

In this study, a novel bioinformatics framework was 
proposed based on integration of microarray data and 
multi-omics network knowledge for cross-level decipher-
ing of RNA interplay during KTR development. In meth-
odology, a KTR-specific miR-PPIN was constructed and 
topological characterization was conducted to uncover 
theoretical hypothesis for miRNA biomarker discovery. 
Compared with traditional methods that equally rank 
the contribution of miRNAs in miRNA-mRNA network 
[42, 43], the network system in this study was expanded 
by reasonably weighting the interaction among targets 
of miRNAs based on downstream PPI analysis. Hence in 
this model, the topological importance of genes targeted 
by miRNAs was prioritized according to their structural 
characteristics in PPIN. Two feature parameters, i.e., 
NTGA and NTGC, were defined for biomarker identifi-
cation. Finally, a total of three miRNAs, i.e., miR-145-5p, 
miR-155-5p, and miR-23b-3p, were screened as candi-
date biomarkers for monitoring the rejection after kidney 
transplantation.

Among the three candidates, miR-155-5p was sig-
nificantly overexpressed in rejection groups, whereas 
the remaining two were downregulated in KTR pro-
cess. The ROC analysis showed that all the three miR-
NAs distinguished KTR from the normal controls 
with the AUC > 0.8 in kidney allograft biopsy samples, 

and they achieved comparable performance on AMR 
and CMR subtyping (AUC > 0.75) as well. Meanwhile, 
miR-155-5p/miR-23b-3p (AUC > 0.75) and miR-145-5p 
(AUC > 0.9) were respectively found to be powerful for 
KTR prediction and subtyping in blood, indicating the 
noninvasive diagnostic potential of identified miRNAs. 
In addition to single biomarkers, the three miRNAs 
could serve as a combined signature to improve the 
overall performance for KTR management.

According to literature reports, miR-155-5p had 
found to be a diagnostic biomarker and a prognostic 
factor for predicting allograft status and rejection [4, 
26, 44]. The remaining miRNAs were also found to be 
dysfunctional during KTR development. Compared 
with existing findings, in this study the miRNAs showed 
the predictive power both in KTR diagnosis and sub-
typing. Moreover, miR-23b-3p and miR-155-5p were 
inferred to regulate immune and interferon-medicated 
pathways via targeting the module of HLA-related and 
ICAM1/VCAM1 genes respectively, which highlighted 
the novel putative mechanisms for KTR understanding.

The limitations in this study should be carefully con-
sidered although meaningful results were obtained 
and analyzed. First, the importance and contribu-
tion of miRNAs and genes in the network were pri-
oritized based on their structural characteristics, the 
functional significance of genes in immune processes 
related to rejection responses needs to be investigated 
and quantified to improve the sensitivity of miRNAs 
in KTR management. Second, in addition to KTR and 
the normal controls, samples from other conditional 
phenotypes such as infection-mediated or drug tox-
icity-induced delated graft function (DGF) should be 
included and compared to test the biomarker speci-
ficity of identified miRNAs in rejection since similar 
clinical symptoms, e.g., decreased amount of urine and 
increased level of serum creatinine, often occurred in 
the early stage both of KTR and DGF [45, 46]. Finally, it 
is potentially important that the biomarkers originally 
identified from tissue biopsies were able to be validated 
in blood samples as blood could be easily obtained for 
clinical translation. However, the ROC result from tis-
sue and blood group tended to be heterogeneous in this 
study. Although many studies reported that the con-
cordance rate for detection of gene variant and expres-
sion may be affected by the type and source of sample 
data [47–49], it should be admitted that the blood sam-
ple set used for comparison was relatively small. Hence 
the biomarker significance of identified miRNAs in 
blood needs to be further explored with the accumula-
tion of enough public data to decrease the risk of model 
overfitting. On the other hand, large-sample-based 
multi-center experimental validation and pathogenetic 
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survey are expected to be performed for future transla-
tional applications.

Conclusion
In this study, a total of three miRNAs, i.e., miR-145-5p, 
miR-155-5p, and miR-23b-3p, were screened as candi-
date biomarkers for diagnosis and subtyping of allograft 
rejection after kidney transplantation based on an inte-
grated bioinformatics model with multi-omics network 
characterization. The potential regulatory mechanisms 
of HLA-related genes, immune signaling pathways and 
identified miRNAs were computationally discovered for 
pathogenic understanding. In the future work, molecular 
experiments using human samples will be performed for 
further clinical validation.
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