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biomarker of pathological complete response 
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Abstract 

Background:  Pathological complete response (pCR) is considered a surrogate endpoint for favorable survival in 
breast cancer patients treated with neoadjuvant chemotherapy (NAC). Predictive biomarkers of treatment response 
are crucial for guiding treatment decisions. With the hypothesis that histological information on tumor biopsy images 
could predict NAC response in breast cancer, we proposed a novel deep learning (DL)-based biomarker that predicts 
pCR from images of hematoxylin and eosin (H&E)-stained tissue and evaluated its predictive performance.

Methods:  In total, 540 breast cancer patients receiving standard NAC were enrolled. Based on H&E-stained images, 
DL methods were employed to automatically identify tumor epithelium and predict pCR by scoring the identified 
tumor epithelium to produce a histopathological biomarker, the pCR-score. The predictive performance of the pCR-
score was assessed and compared with that of conventional biomarkers including stromal tumor-infiltrating lympho-
cytes (sTILs) and subtype.

Results:  The pCR-score derived from H&E staining achieved an area under the curve (AUC) of 0.847 in predicting 
pCR directly, and achieved accuracy, F1 score, and AUC of 0.853, 0.503, and 0.822 processed by the logistic regression 
method, respectively, higher than either sTILs or subtype; a prediction model of pCR constructed by integrating sTILs, 
subtype and pCR-score yielded a mean AUC of 0.890, outperforming the baseline sTIL-subtype model by 0.051 (0.839, 
P  =  0.001).

Conclusion:  The DL-based pCR-score from histological images is predictive of pCR better than sTILs and subtype, 
and holds the great potentials for a more accurate stratification of patients for NAC.
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Background
Neoadjuvant chemotherapy (NAC) has been widely used 
as a standard treatment for patients with locally advanced 
and sometimes large operable breast cancers [1]. As 
reported in previous studies [2, 3], NAC not only facili-
tates the reduction of the tumor burden and increases 
the rate of breast preservation but also enables the 
assessment of sensitivity to different treatment regimens 
in  vivo. Correspondingly, the assessment of treatment 
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response to NAC requires a pathological examination. 
Patients who have the pathological complete response 
(pCR) are expected to have a better outcome than those 
with the pathological noncomplete response (non-pCR) 
[4]. Therefore, pCR after NAC has been regarded as a 
surrogate endpoint of favorable survival for NAC [5]. 
However, NAC is not effective for all patients, and only a 
subset of them can achieve pCR [6]. Patients who do not 
achieve pCR may suffer from toxic effects during NAC, 
which is likely to worsen their prognosis while accruing 
high treatment costs. Therefore, predicting pCR before 
NAC of breast cancers has significant value in sparing the 
patients from possibly ineffective treatment.

At present, the biomarkers of tumor size [7], histologi-
cal grade [8], Ki67 [9], immunochemistry (IHC)-based 
subtype [8, 10, 11], and stromal tumor-infiltrating lym-
phocytes (sTILs) [12–14] are the clinicopathological 
(CP) factors used in predicting pCR partly due to their 
wide availability in routine clinical practice. Briefly, small 
tumor size [7], high grade [8], high Ki67 expression [9]], 
and high sTILs [12–14] are positively related to pCR in 
NAC settings, while hormone receptor-positive (HR +) 
or human epidermal growth factor receptor 2-negative 
(HER2 −) subtypes have lower pCR rates than HR- or 
HER2 + subtypes [10, 11]. However, these easy-to-get 
factors from CP data are not robust enough for pCR pre-
diction in all breast cancer patients. In the meantime, 
although recent studies have proposed some molecu-
lar signatures to predict pCR to NAC in breast cancer 
[15–18], those have been validated in only some of the 
conducted trials, and they also have the substantial draw-
backs of high cost and a considerable time investment. 
Therefore, there is still an urgent need to develop robust 
and inexpensive biomarkers for the prediction of pCR to 
NAC in breast cancer.

Apart from the CP and molecular biomarkers for pCR 
prediction, artificial intelligence technologies applied in 
image data can develop predictive signatures by extract-
ing hidden information directly from medical images, 
such as applications in radiological images involving dif-
fuse optical spectroscopy [19], MRI [20], and PET/CT 
[21], to predict the treatment response to NAC in breast 
cancer. Compared with radiological images, histological 
images, which have been regarded as the gold standard 
for disease diagnosis, can provide more abundant infor-
mation on tumor characteristics reflecting underlying 
molecular processes and disease progression. However, 
the complex and abundant information from histologi-
cal images is difficult to adequately use because human 
assessment mainly relies on visually visible features, 
while deep learning (DL) technology can address the 
problem by integrating the visible and subvisible infor-
mation of recurring patterns from complex images [22]. 

For instance, the cooperation of DL technology and his-
tological images has shown positive results in process-
ing clinical matters, such as tumor detection [23] and 
prognosis prediction [24, 25], even presenting satisfying 
performance in complex matters such as the prediction 
of gene mutations [26], classification of multimolecular 
profiles [27], and microsatellite instability [28] among 
different cancer types. Additionally, a recent investiga-
tion in rectal cancer reported that quantitative features 
extracted by machine learning from histological images 
can be predictive for treatment response to neoadjuvant 
chemoradiotherapy (NCRT) [29]. According to these 
studies, we argue that analyzing histological images 
through DL technology could contribute to developing 
predictive biomarkers of treatment response to NAC in 
breast cancer.

In this study, we aimed to develop a DL-based bio-
marker using H&E-stained images, pCR-score, to predict 
pCR of breast cancer patients receiving NAC, which pre-
sents a stronger prediction ability than the conventional 
pathological factors of subtype and sTILs.

Methods
Study population and slides
A total of 540 patients who received NAC in January 
2008 and June 2020 at West China Hospital were retro-
spectively enrolled. The inclusion criteria were as fol-
lows: (1) patients diagnosed with primary breast invasive 
ductal cancer (IDC) without metastasis via a needle 
biopsy before NAC; (2) patients receiving NAC regimens 
based on anthracycline, taxane, or anthracycline com-
bined with taxane (≥ 4 cycles) and not undergoing prior 
therapy (detailed NAC regimens in Additional file  1: 
Table S1); and (3) patients underwent surgery after NAC 
and was confirmed by pathologic examination whether 
pCR. The exclusion criteria were as follows: (1) patients 
received a nonstandard treatment regimen, mainly refer-
ring to the treatment of HER2 + breast cancers without 
trastuzumab; (2) patients lacking complete CP data; (3) 
patients diagnosed with bilateral, multifocal, or special 
invasive breast cancer; and (4) the pathological slides 
from the patient’s biopsy were lost, or the H&E-stained 
slides were of insufficient quality. The process of patient 
inclusion is summarized in Additional file 1: Figure S1.

Apart from the H&E-stained-slides correspond-
ing to patients enrolled, an additional dataset of 25 
H&E-stained IDC slides were designated for develop-
ing the automated workflows for tumor epithelium 
identification.

Pathological evaluation and data collection
Pretreatment breast biopsies were performed via ultra-
sound-guided core needle, routinely fixed in 10% neutral 
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buffered formalin, and stained as H&E slides for diagno-
sis after paraffin embedding. The surgical specimens after 
NAC were sampled adequately in the form of tissue slides 
and examined microscopically by experienced patholo-
gists. pCR was defined as ypT0/isN0 (no residual invasive 
disease in breast and node) (4). The estrogen receptor 
(ER), progesterone receptor (PR), HER2 status, and the 
Ki67 index were assessed through IHC. ER/PR positiv-
ity was defined as positive nuclei staining no less than 1% 
of tumor cells [30]. Regarding Ki67 index, samples were 
divided into a low-expression set (≤ 20%) and a high-
expression set (> 20%)[31]. HER2 status was defined as 
positive only when IHC (3 +) and (or) amplified by fluo-
rescence in situ hybridization (FISH), while breast cancer 
with IHC (0/1 +) and (or) unamplified by FISH was con-
sidered as HER2-negative disease [32]. sTILs were evalu-
ated on H&E-stained slides according to the international 
recommended guidelines [33], with intervals of 10% from 
1 to 90%, separated into low sTILs (< 10%), moderate 
sTILs (10%  ≤  and  < 40%), and high sTILs(≤ 40%). The 
nuclear grade was assessed based on the Nottingham 
grading system, and the presence or absence of necro-
sis was assessed on diagnostic H&E-stained slides. To 
reduce the subjectivity of pathological evaluation, exami-
nations of sTILs, nuclear grade, and treatment response 
were performed by two observers separately, and samples 
that were scored inconsistently by the two observers were 
assessed repeatedly until a consensus was reached.

Apart from the factors above, other clinical data includ-
ing the age of the patient at diagnosis, tumor/node (T/N) 
stages, and menstrual status were collected at the same 
time.

Image processing and model construction
The H&E-stained slides of pretreatment biopsies were 
scanned at 40 ×  magnification via a Hamamatsu scanner 
to prepare whole slide images (WSIs) for experiments. 
Tumor epithelium (TE) regions of WSIs were identified 
using a DL-based classification approach (details in Addi-
tional file 1: Figure S2). Based on a convolutional neural 
network I (CNN I), a training dataset of 20 WSIs from an 
additional dataset was used to develop an automated TE 
identifying model, and the remaining 5 WSIs were used 
as the test set. Under manual review, TE was annotated 
inside two representative tumor regions in the training 
dataset and global image annotations were conducted in 
the testing dataset as the gold standard to test the perfor-
mance of CNN I. Besides, the NDP Viewer 2 was applied 
in the annotation. Tiles identified as tumor epithelium by 
CNN I were delivered to a convolutional neural network 
II (CNN II), scoring the probability of the pCR for each 
tile.

In the pre-processing step, the developed tissue rec-
ognition tool in our previous study [34] was employed 
to segment the valid tissue areas from the input WSIs, 
which are cropped into tiles at a scale of 128 × 128 pixels. 
The deep learning method was employed to automati-
cally identify tumor epithelium and make predictions of 
pCR based on H&E stained images. CNN I and CNN II 
were developed based on deep learning methods; Incep-
tion V3 was selected as the base deep learning architec-
ture for the presented biomarker generating pipeline, 
because of its trade off between inferencing speed and 
classification accuracy [35]. Cross-entropy loss [36] and 
stochastic gradient descent (SGD) [37] were used in opti-
mization. However, due to that TE tiles were more homo-
geneous to some extent than original mixed tiles after 
identified by CNN I, scoring the pCR of these selected TE 
tiles is more difficult than identifying TE regions in the 
segmented valid tissue areas. Hence, we first leveraged 
the recently proposed supervised contrastive learning 
[38] to optimize the feature extraction part of CNN II to 
produce features that can distinguish between pCR and 
non-pCR in the selected tiles. Then, based on the learned 
discriminative features, we optimized the prediction 
(classification) part of CNN II by using cross-entropy loss 
[36] and SGD [37]. Additionally, we leveraged a recently 
proposed fast ensemble deep learning strategy [39–41] 
to further boost the optimized CNN II. In the post-pro-
cessing step, a pCR-score was calculated by averaging the 
pCR probabilities of TE tiles for each WSI, which was 
regarded as a novel biomarker for pCR prediction from 
histology (Fig.  1). More details about the training and 
inference procedures of CNN I and CNN II are provided 
in Additional file 1: Figures S2, S4. The whole pipeline of 
pCR-score computing was implemented using Python 
based on TensorFlow/Keras.

Statistic analysis
The distribution of clinical characteristics between 
cohorts was compared using the χ2 test or Fisher’s exact 
test. The performance of the CNNs for identifying TE 
and predicting pCR was assessed by the area under the 
curve (AUC) for the receiver operating characteristic 
(ROC) curve. Univariate logistic regression analysis was 
used to evaluate the odds ratios and probabilities of both 
conventional predictors and pCR-score in correlation 
with pCR, after which multivariate logistic regression 
analysis was performed. The Mann–Whitney U test was 
used to compare the distribution of pCR-scores across 
patients with different sTILs densities and subtypes. 
Based on the logistic regression method, the prediction 
performance of pCR across biomarker-based models was 
assessed using the F1 score, accuracy, and AUC, along 
with sensitivity (equal to recall score)/specificity and 
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positive predictive value (PPV, equal to precision)/nega-
tive predictive value (NPV), and comparisons of perfor-
mance metrics among models were performed with the 
Wilcoxon signed-rank test or a paired t-test as appropri-
ate. Additionally, the pCR-scores were normalized by z 
score. All statistical analysis was two-sided and P-value 
is less than 0.05 indicating statistical significance. The 
statistical analyses were performed using SPSS software, 
version 20.

Results
Study population characteristics
According to the inclusion and exclusion criteria, a 
total of 540 eligible patients were enrolled in this study. 
Patients were randomly divided into the primary and 
validation datasets at a ratio of 8:2. The pCR rates were 
18.7% in the primary dataset and 19.6% in the valida-
tion dataset, and no significant difference was detected 
in CP factors between the two datasets (Additional file 1: 
Table  S2). The characteristics of the pCR cohort and 
non-pCR cohort in the two datasets are summarized 
in Table 1. It was observed that the statuses of ER (P  <  
0.001, P  <  0.001), PR (P  <  0.001, P  =  0.005), and HER2 
(P  <  0.001, P  <  0.001) were significantly associated 
with pCR in the primary and validation datasets. Simi-
larly, sTILs at different levels (low, moderate, and high) 
showed a different distribution between pCR and non-
pCR patients in both the primary and validation datasets 
(P  <  0.001, P  <  0.001). However, no significant difference 
was detected in terms of age, menopausal status, T stage, 
N stage, or necrosis in pCR and non-pCR cohorts, while 
the Ki67 index and nuclear grade were significantly cor-
related with pCR only in the primary dataset but not in 
the validation dataset.

The pCR‑score derived from H&E‑stained images 
is predictive of pCR
In the pre-processing step, an intelligent tool [34] devel-
oped previously was employed to segment the valid tissue 
for the WSI, with tiles of 128 × 128 pixels were generated. 
Then 44,348 tiles were generated from the training set (20 
WSIs), and 20,313 tiles were generated from the test set 
(5 WSIs), which were used for developing the automated 
workflows for tumor epithelium identification. CNN I, 
which subdivided the tiles into TE, and non-TE, achieved 
an AUC of 0.851 for identifying TE tiles compared with 
the reference standard (Additional file 1: Figure S3), and 
other relevant performance metrics were shown in Addi-
tional file 1: Table S3.

From CNN I,  ≤  1000 TE tiles with identified high 
probabilities (> 0.9999) per WSI were selected for pCR 
scoring, resulting in a total of 292,025 tiles for the whole 
cohort. TE tiles with definite labels of pCR or non-pCR 

in the primary dataset were used to train CNN II to cal-
culate the probability of pCR for each tile, and the mean 
risk of all selected tiles was computed as a pCR-score for 
one WSI (Fig. 1). Examples of DL-based pCR-score gen-
eration for patients with pCR and non-pCR are shown in 
Fig. 2. The five-fold cross-validation on the primary data-
set and one test on the validation dataset were conducted 
to assess performance in predicting pCR to NAC directly 
using the raw pCR-score data. As shown in Fig.  3, the 
mean AUC in the primary dataset was 0.712 on the WSI 
level, while it was 0.847 in the validation dataset. Besides, 
AUCs at the tile level are provided in Additional file  1: 
Figure S5. Moreover, the predictive performance of the 
pCR-score for different subtypes (HR + /HER2 −, HR + /
HER2 + , HR −/HER2 − and HR −/HER2 +) on the tile-
level and WSI-level are shown in Additional file 1: Figure 
S6. Distributions of the generated pCR-score in the pCR 
group and the non-pCR group of the validation dataset 
are provided in Additional file 1: Figure S7.  

The pCR‑score is an independent biomarker correlated 
with pCR
To evaluate the clinical significance of the pCR-score, 
univariate and multivariate logistic regression analyses 
were performed in the validation dataset, including the 
biomarkers of routine clinical use as well (Table 2). Nota-
bly, as CNN II for pCR scoring was built on the primary 
dataset, the following experiments were conducted only 
in the validation dataset to avoid overfitting of the pCR-
score. In univariate analysis, the pCR-score was a signifi-
cant biomarker related to pCR with an odds ratio of 3.516 
(95% CI 2.003–6.173, P  <  0.001). Apart from pCR-score, 
subtype and sTILs were significantly correlated with pCR 
in the validation dataset, but T stage, Ki67, and nuclear 
grade were not. Besides, subtype and sTILs were inde-
pendent markers correlated with pCR in the multivariate 
analysis without pCR-score; while adding it, pCR-score 
was the only significant predictor with an odds ratio of 
4.045 (95% CI 1.822–8.980, P  =  0.001). These results 
showed that the pCR-score was an independent bio-
marker correlated with pCR.

The pCR‑score outperforms biomarkers of sTILs 
and subtype in predicting pCR
For comparisons with pCR-score, we also assessed the 
predictive ability of the baseline biomarkers using logis-
tic regression models. 60% WSIs of the validation data-
set were randomly selected as the training set to build 
prediction models with biomarkers and the remaining 
40% were taken as the test set to compare the perfor-
mance. This procedure was repeated 16 times to avoid 
unfair assessments due to data bias (Fig. 4; Table 3; and 
Additional file 1: Table S4). The prediction model based 
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on the pCR-score presented better performance in pre-
dicting pCR than sTILs/subtype-based model, especially 
showed significantly higher accuracy and PPV/precision 
(Table  3: 0.853 vs. 0.810/0.815, P  <  0.001, P  =  0.008; 
0.781 vs.0.494/0.418, P  <  0.001, P  <  0.001), even rivaling 

that of a baseline model combined sTILs and subtype 
(Table 3). Other detailed performance metrics are availa-
ble in Fig. 4; Table 3. Moreover, the T stage/Ki67/nuclear 
grade-based models showed poor predictive ability, and 

Table 1  Characteristics in the primary and validation datasets

Bold indicates statistical significance (P  <  0.05)

ER estrogen receptor; PR progesterone receptor; HER2 human epidermal growth factor receptor 2; HR hormone receptor; sTILs stromal tumor-infiltrating lymphocytes; 
pCR pathological complete response

Factors Primary dataset P Validation dataset P

pCR (n  =  81) Non-pCR (n  =  352) pCR (n  =  21) Non-pCR (n  =  86)

Age at diagnosis (%)

 < 50 46 (56.8) 209 (59.4) 0.708 11 (52.4) 48 (55.8) 0.811

 ≥ 50 35 (43.2) 143 (40.6) 10 (47.6) 38 (44.2)

Menopausal status (%)

 Premenopausal 45 (55.6) 221 (62.8) 0.255 10 (47.6) 49 (56.9) 0.472

 Postmenopausal 36 (44.4) 131 (37.2) 11 (52.4) 37 (43.1)

T stage (%)

 T1–T2 39 (48.1) 161 (45.7) 0.712 11 (52.4) 39 (45.3) 0.630

 T3–T4 42 (51.9) 191 (54.3) 10 (47.6) 47 (54.7)

N stage (%)

 N0 8 (9.9) 32 (9.1) 1.000 0 (0.0) 5 (5.8) 1.000

 N1–N3 73 (90.1) 320 (90.9) 21 (100.0) 81 (94.2)

ER status (%)

 Positive 26 (32.1) 243 (69.0) < 0.001 4 (19.0) 66 (76.7) < 0.001
 Negative 55 (67.9) 109 (31.0) 17 (81.0) 20 (23.3)

PR status (%)

 Positive 27 (33.3) 231 (65.6) < 0.001 7 (33.3) 59 (68.6) 0.005
 Negative 54 (66.7) 121 (34.4) 14(66.7) 27 (31.4)

HER2 status (%)

 Positive 44 (54.3) 75 (21.3) < 0.001 15 (71.4) 17 (19.8) < 0.001
 Negative 37 (45.7) 277 (78.7) 6 (28.6) 69 (80.2)

Subtype (%)

 HR + /HER2 − 16 (19.8) 223 (63.4) < 0.001 3 (14.3) 59 (68.6) < 0.001
 HR + /HER2 +  20 (24.7) 40 (11.4) 5 (23.8) 11 (12.8)

 HR −/HER2 − 21 (25.9) 54 (15.3) 3 (14.3) 10 (11.6)

 HR −/HER2 +  24 (29.6) 35 (9.9) 10 (47.6) 6 (7.0)

Ki-67 index (%)

 ≥ 20% 76 (93.8) 296 (84.1) 0.021 20 (95.2) 70 (81.4) 0.184

 < 20% 5 (6.2) 56 (15.9) 1 (4.8) 16 (18.6)

Nuclear grade (%)

 1 or 2 40 (49.4) 252 (71.6) 0.001 11 (52.4) 59 (68.6) 0.202

 3 41 (51.6) 100 (28.4) 10 (47.6) 27 (31.4)

sTILs (%)

 Low 31 (38.3) 207 (58.8) 0.001 4 (19.0) 57 (66.3) 0.001
 Moderate 44 (54.3) 136 (38.6) 14 (66.7) 26 (30.2)

 High 6 (7.4) 9 (2.6) 3 (14.3) 3 (3.5)

Necrosis (%)

 Yes 22 (27.2) 67 (19.0) 0.126 6 (28.6) 13 (14.9) 0.200

 No 59 (72.8) 285 (81.0) 15 (71.4) 74 (85.1)
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the addition of them did not improve the baseline model 
(Table 3; Additional file 1: Table S4). 

Moreover, an integrated logistic regression model was 
constructed based on the biomarkers of sTILs, subtype, 
and pCR-score to assess the relative ability of the pCR-
score to predict pCR in comparison with the baseline 
model. With the addition of the pCR-score in the inte-
grated model, we found that the mean performance met-
rics were significantly improved from 0.840 to 0.884 (P  <  
0.001), 0.839 to 0.890 (P  =  0.001), and 0.565 to 0.682 
(P  =  0.002) in the accuracy, AUC, and F1 score respec-
tively, and other metrics including sensitivity/recall, PPV/
precision were significantly improved while specificity 
and NPV were increased without significance (detailed 
metrics in Fig. 4; Table 3).

Distributions of the pCR‑score varied among subtypes
To further investigate the relationship of the pCR-score 
with sTILs and subtype, we visualized how the pCR-score 
was distributed across patients of different subtypes 
and sTILs densities (Fig.  5). Patients with the HR  −/
HER2 + or HR + /HER2 + subtypes appeared to have 
higher pCR-scores than those with the HR + /HER2  − 
subtype (P = 0.003, P = 0.019). However, HR −/HER2 − 
had an intermediate pCR-score among the four subtypes, 
showing a slightly higher trend of pCR-score than that 

of the HR + /HER2 − subtype without significance (P  =  
0.79). Additionally, we visualized the distribution of the 
pCR-score in different sTILs densities. A trend toward 
elevated pCR-scores was observed in patients with higher 
sTIL density, but the difference between the distributions 
was not significant (Fig. 5).

Discussion
In this study, we proposed the DL-based pCR-score, 
probably the first biomarker without predefined features 
from H&E-stained slides, which indicated the predic-
tive potentials of the histological images for treatment 
response. The pCR-score presented herein is an inde-
pendent predictor correlating with pCR in multivariate 
analysis, and it outperforms the conventional biomarkers 
in predicting pCR. Moreover, further experiments show 
that the pCR-score reflects additional predictive informa-
tion solely from H&E-stained slides and is complemen-
tary to the existing biomarkers, providing a more robust 
prediction of pCR to identify the patients who are most 
likely to benefit from NAC.

Breast cancer is characterized by high heterogene-
ity of morphology reflecting the underlying molecular 
process, which can provide indicative information for 
clinical decision-making. For instance, nuclear pleomor-
phism is an essential constituent of the breast histological 

Fig. 1  The pipeline of the pCR-score computing consists of five sub-steps: a pre-processing; b CNN I; c middle-processing; d CNN II; and e 
post-processing. First, the pre-processing step segments valid tissue areas from the input WSI and crops the segmented valid tissue areas into small 
tiles. Second, the CNN I takes the cropped tiles as inputs and identifies TE regions by mapping the input tiles into probabilities corresponding to TE. 
Third, the middle-processing step selects TE tiles with identified high probabilities from the outputs of CNN I. Fourth, the CNN II takes the selected 
TE tiles as inputs and score the pCR of the input tiles by mapping them into probabilities corresponding to pCR. Finally, the post-processing step 
fuses the pCR probabilities of TE tiles scored via CNN II to produce the final predicted pCR-score of the input WSI
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Fig. 2  Examples for the pCR prediction of based on CNNs. A An example of pCR: a shows a represnetative WSI from a patient who achieved 
the pCR. bThe probability map of TE produced by the CNN I. c The selection of tiles with a high probability of TE. d The map produced by CNN 
II showing the pCR probability for image a, where pink and white separately represent high and low probabilities of pCR. e The distributions of 
tile-level pCR scores of the image a. B An example of non-pCR: f shows a representative WSI from a patient who did not achieve the pCR. g, h, and i 
for image f are corresponding to the steps of b, c, and d for image a. j A predominant distribution of low pCR scores for image f 

Fig. 3  ROC curves of raw pCR-scores based on CNN II for pCR prediction in the primary dataset (A) and validation dataset (B)
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grading system, which implies the aggressiveness of the 
disease and is related to prognosis. Apart from the man-
ual assessment of the morphological features, computer-
extracted features of morphology like the nuclear shape/
texture were capable of predicting the patient survival 
[42]. These facts proved that the morphological charac-
teristics of breast cancer could provide essential infor-
mation on the disease. In this study, our results showed 
that the DL-based raw pCR-scores derived solely from 
H&E-stained slides achieved an AUC of 0.847 in pre-
dicting pCR; this simple predictor is not based on prior 
knowledge of breast biology or pathology, which implies 
that histological images contain potential information 
predicting the treatment response of breast cancer.

In one study of 58 breast cancer patients, Dodington 
et al. [43] focused on the nuclear level after segmentation 
was used to extract a limited set of nuclear features for 
analyses; the nuclear intensity and gray-level co-occur-
rence matrix (GLCM-COR) of tumor nuclear features 
were found to be related to pCR in univariate analysis 
(P = 0.035, P  =  0.039). Differently, our learning pro-
cess with CNN II was guided simply by the assessment 
results of the treatment response instead of focusing on 
specific features of tumor nuclear morphology, which 
allowed us to explore a wider range of image informa-
tion values. During the image-processing step, we set 
up automated workflows to identify the regions of inter-
est (ROIs), including valid tissue detection [34] as the 
first step followed by TE identification based on CNN I, 
which addressed the problem of manual annotations for 
large image datasets by automating the annotation pro-
cess. Notably, we found that there was a smaller mean 

number of TE tiles in patients with pCR who were not 
correctly predicted than in patients with pCR who were 
correctly predicted (603 vs 858), and the prediction accu-
racy of pCR for patients with  ≥  500 tiles was higher than 
patients with  <  500 tiles (50% vs 10%), which implied that 
the small number of tumor tissue could not reflect suf-
ficient morphological information, resulting in an unfair 
assessment of pCR-score. A possibility is the high hetero-
geneity of breast cancers, especially in a small quantity of 
sampled tissue of tumor biopsies, which also can affect 
the manual evaluation of histopathological features.

At present, information derived from medical images 
has been accepted as a novel prognostic and predic-
tive biomarker in oncology [22, 24, 44, 45]. For example, 
Skrede et al. [24] developed a useful DL-based prognos-
tic biomarker from histological images and proved it 
outperformed established molecular and morphologi-
cal prognostic markers; Kather et  al. [44] proposed the 
deep stroma score, a DL-based biomarker solely from 
H&E staining images, which was demonstrated to be an 
independent prognostic factor in colorectal cancer. In 
the present study, we proposed the pCR-score, indepen-
dently correlated with pCR, is a promising biomarker 
that can classify breast cancer patients as “potential 
responders” or “potential non-responders” solely based 
on H&E-stained images. Unlike conventional histopatho-
logical biomarkers which require manual assessments, 
the pCR-score from scanned images is generated by the 
DL systems without the extra effort of manual evalua-
tion, which prevents high intra-observer subjectivity and 
inter-observer variation. The DL-based pCR-score can 
provide complementary information that is not being 

Table 2  Univariate and multivariate analysis for pCR-score and important factors

a Multivariate analysis excluding the pCR-score
b Multivariate analysis including the pCR-score

Factors Univariate analysis Multivariate analysisa Multivariate analysisb

OR (95% CI) P OR (95% CI) P OR (95% CI) P

pCR-score 3.516 (2.003–6.173) < 0.001 – – 4.045 (1.822–8.980) 0.001
Subtypes – < 0.001 – 0.003 – 0.084

 HR +/HER2- 1 1 1 1 1 1

 HR +/HER2 +  8.939 (1.861–42.944) 0.006 8.049 (1.484–43.664) 0.016 2.899 (0.395–21.282) 0.295

 HR-/HER2 − 5.900 (1.041–33.477) 0.045 4.798 (0.733–31.387) 0.102 2.327 (0.262–20.671) 0.449

 HR-/HER2 +  32.778 (7.031–152.815) < 0.001 21.497 (4.089–113.00) < 0.001 12.923 (1.783–93.638) 0.011
sTILs density – 0.002 – 0.041 – 0.060

 Low 1 1 1 1 1 1

 Moderate 7.673 (2.302–25.581) 0.001 5.374 (1.311–22.021) 0.019 8.256 (1.404–48.546) 0.020
 High 14.250 (2.143–94.741) 0.006 9.206 (0.939–90.247) 0.057 7.379 (0.511–106.471) 0.142

T stage 0.754 (0.290–1.962) 0.563 1.515 (0.428–5.356) 0.519 2.219 (0.487–10.119) 0.303

Ki67 4.571 (0.571–36.610) 0.152 1.166 (0.116–11.737) 0.897 1.859 (0.142–24.352) 0.636

Nuclear grade 1.987 (0.753–5.240) 0.165 1.024 (0.283–3.708) 0.971 1.076 (0.233–4.956) 0.926
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Fig. 4  Comparisons of the pCR prediction performance metrics of sTILs, subtype, and pCR-score in the 16-time repeated validation (In each repeat, 
we randomly select 60% of the data as training data, and the remaining 40% as testing data. Mean values of each metric were calculated from 
the 16 repeats to avoid the impact of data bias). A Comparisons of the F1 score and accuracy of models. B Comparisons of the AUCs of models. C 
Comparisons of the sensitivity (equal to recall score), PPV (equal to precision score), specificity, and NPV of models. D Comparisons of TP, FN, FP, and 
TN in confusion matrices among models
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extracted from routine material in current clinical work-
flows, whose combination with conventional biomarkers 
has the potential of better stratifying patients to decide 
which individuals are more likely to benefit from NAC.

We also found that the distributions of pCR-scores 
across different subtypes of breast cancers were varied, 
which were correlated with the response rates of subtypes 
to NAC [10, 11]. For example, higher pCR-scores are 
more likely to appear in patients with HER2 + subtypes 
or HR  − subtypes (the lack of a significant difference 
between the HR −/HER2 − and HR +/HER2 − subtypes 
might be due to the small number of HR −/HER2 − sam-
ples), which suggests that the pCR-score derived from 
H&E staining images might reflect the histological dif-
ference associated with subtypes to predict treatment 
response to NAC. Indeed, published data support the 
idea that morphological features of breast cancer can 
provide the subtype information [46]. However, the dif-
ferences in the distribution of pCR-scores among sTILs 
densities were not significant, since the pCR-score is 
derived from the TE while the assessment of sTILs is 
focused on stromal regions.

Although our study demonstrated the potential of 
tumor histology to predict pCR via DL approaches and 
proposed a novel biomarker that is a more effective pre-
dictor than sTILs or subtype, it still has some limitations. 
In this study, only 540 patients were used retrospectively 
for training and validation; hence, future studies should 
pursue prospective multicenter investigations. Second, 
only some of the tiles from each WSI were used for train-
ing and prediction; subsequent research should aim to 
develop more advanced methods to incorporate more 
tiles to better account for the heterogeneity of breast 

cancer. Third, although the pCR-score does not rely on 
the manual assessment as sTILs and subtype, it needs an 
expert of data analyst to generate. Additionally, although 
the integrated model was objectively superior to oth-
ers, which has already supported our conclusion, its F1 
score and sensitivity were not subjectively high; future 
improvement of it in a large cohort is essentially required 
for us. Alternatively, considering that this study demon-
strated the value of the TE in predicting the treatment 
response to NAC, we will continue to explore the predic-
tive potential of the nontumor compartment of breast 
cancer via the DL approaches.

Conclusion
Conclusively, we proposed the pCR-score, a promising 
DL-based histological biomarker, and demonstrated its 
excellent performance in predicting pCR to NAC exceed-
ing the basic biomarkers of sTILs and subtype. The pCR-
score facilitates the better stratification of breast cancer 
patients for NAC; with more DL-based biomarkers devel-
oped, a more robust predictive model may be created to 
assist clinical treatment planning.

Abbreviations
pCR: Pathological complete response; NAC: Neoadjuvant chemotherapy; 
DL: Deep learning; H&E: Hematoxylin and eosin; AUC​: Area under the curve; 
sTILs: Stromal tumor-infiltrating lymphocytes,; IHC: Immunochemistry; CP: 
Clinicopathological; HR: Hormone receptor; HER2: Human epidermal growth 
factor receptor 2; NCRT​: Neoadjuvant chemoradiotherapy; IDC: Invasive ductal 
cancer; ER: Estrogen receptor; PR: Progesterone receptor; FISH: Fluorescence 
in situ hybridization; WSI: Whole slide image; TE: Tumor epithelium; CNN: Con-
volutional neural network; SGD: Stochastic gradient descent; ROC: Receiver 
operating characteristic; PPV: Positive predictive value; NPV: Negative predic-
tive value; GLCM-COR: Gray-level co-occurrence matrix; ROI: Region of interest.

Fig. 5  The distributions of pCR-scores across different subtypes and sTILs densities
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