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Abstract 

Background: Surgical resection is the only potentially curative treatment for pancreatic ductal adenocarcinoma 
(PDAC) and the survival of patients after radical resection is closely related to relapse. We aimed to develop models to 
predict the risk of relapse using machine learning methods based on multiple clinical parameters.

Methods: Data were collected and analysed of 262 PDAC patients who underwent radical resection at 3 institutions 
between 2013 and 2017, with 183 from one institution as a training set, 79 from the other 2 institution as a validation 
set. We developed and compared several predictive models to predict 1- and 2-year relapse risk using machine learn-
ing approaches.

Results: Machine learning techniques were superior to conventional regression-based analyses in predicting risk 
of relapse of PDAC after radical resection. Among them, the random forest (RF) outperformed other methods in the 
training set. The highest accuracy and area under the receiver operating characteristic curve (AUROC) for predict-
ing 1-year relapse risk with RF were 78.4% and 0.834, respectively, and for 2-year relapse risk were 95.1% and 0.998. 
However, the support vector machine (SVM) model showed better performance than the others for predicting 1-year 
relapse risk in the validation set. And the k neighbor algorithm (KNN) model achieved the highest accuracy and 
AUROC for predicting 2-year relapse risk.

Conclusions: By machine learning, this study has developed and validated comprehensive models integrating clin-
icopathological characteristics to predict the relapse risk of PDAC after radical resection which will guide the develop-
ment of personalized surveillance programs after surgery.
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Introduction
Pancreatic ductal adenocarcinoma (PDAC) is one of the 
most lethal human malignant diseases worldwide and 
the sixth leading cause of cancer-related deaths in China 
[1]. So far, radical resection followed by adjuvant chemo-
therapy has been the only potentially curative treatment 
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[2]. However, only a minority of patients present with a 
tumor suitable for this combination therapy at diagno-
sis, due to lack of early clinical symptoms and effective 
screening approaches [3]. Even after curative resection, 
up to 80% of patients will suffer from disease relapse 
resulting in a 5-year survival of only 20–30% [4–7]. 
Hence, the survival of patients with resectable PDAC is 
closely related to recurrence. It is necessary and urgent 
to build robust models to identify those patients with 
increased risk of relapse and further optimize treatment 
decision-making.

Nowadays, development of methods to predict treat-
ment outcomes and prognosis is an important paradigm 
in the realm of personalized medicine [8]. Several studies 
have shown comparable prediction accuracy by using tra-
ditional regression-based statistical methods on a basis of 
a combination of biomarkers and multiple clinical factors 
[9–12]. However, common statistical methods familiar to 
clinicians ignore more complex non-linear interactions 
between variables that might play significant roles in the 
potential of future relapse, and which could be captured 
using more sophisticated modeling approaches [13]. 
In recent years, machine learning, as a branch of artifi-
cial intelligence (AI) technology, has attracted extensive 
interest in developing clinical predictive tools for diagno-
sis, staging and prognosis of various diseases [14–16]. It 
has been successfully applied for recognizing hidden pat-
terns in complex data, allowing for better predictions of 
clinical outcomes than conventional statistical models, 
especially when applied to large-scale datasets [17].

Thus, the aim of this study was to develop, and exter-
nally validate, new cutting-edge machine learning-based 
models that accurately predict 1- and 2-year relapse of 
PDAC using clinicopathological factors in patients with 
resectable disease. Predicting the risk of relapse offers the 
potential to improve personalized surveillance schedules, 
determine clinical trial eligibility and compare results 
across studies and different institutions [18].

Materials and methods
Study population
Data of PDAC patients who underwent radical resec-
tion at 3 institutions between January 2013 and Decem-
ber 2017 were obtained. The study was approved by the 
Institutional Review Boards of 3 institutions. And no 
additional patient consent was required since the medi-
cal records were retrospectively reviewed. As this study 
aimed to build models based on preoperative clinical and 
pathological factors affecting relapse risk after surgery in 
resectable PDAC, patients who had initially borderline 
resectable/unresectable cancers according to the NCCN 
guideline [19] or received neoadjuvant therapy were 
excluded. So were those who were lost to follow-up or 

lacking complete clinical data. The inclusion criteria were 
met by a total of 262 patients, including 183 from the 
Second Affiliated Hospital of Zhejiang University School 
of Medicine, 70 from the Cancer Hospital of the Uni-
versity of Chinese Academy of Sciences and 9 from the 
Fourth Affiliated Hospital of Zhejiang University School 
of Medicine.

Data collection
Preoperative blood biomarkers including carcinoem-
bryonic antigen (CEA), CA199, CA125, white blood 
cell (WBC) count, hemoglobin (Hb) count, platelet (Plt) 
count, neutrophil (Neut) count, lymphocyte (Lymp) 
count, monocyte (Mono) count, albumin (Alb), globulin 
(Glb), aspartate transaminase (AST), alanine transami-
nase (ALT), alkaline phosphatase (ALP), gamma-glu-
tamyltransferase (GGT), total bilirubin (TB) and direct 
bilirubin (DB) were collected using the measurements 
that were closest to the operation and within at least 
1 week before the surgery. Inflammation-based prognos-
tic scores, including albumin-globulin ratio (AGR) [20], 
lymphcyte-monocyte ratio (LMR) [21], neutrophil–lym-
phocyte ratio (NLR) [22] and platelet-lymphocyte ratio 
(PLR) [23], were calculated. Additionally, pathological 
diagnosis and description was carried out by experienced 
pancreatic pathologists at 3 institutions, including surgi-
cal margin status, tumor site, tumor size, tumor differ-
entiation, T-stage, lymph node status (N-stage), vascular 
invasion, perineural invasion and adipose tissue invasion.

After surgery, the follow-up of patients was initially 
performed every 3  months for the first 2 years, every 
6  months during years 3 and 4, and then annually. The 
surveillance protocol included physical examination, 
serum CA19-9 level and contrast-enhanced abdomin-
operineal computed tomography (CT). When imaging 
features were consistent with a cancer recurrence, mag-
netic resonance imaging (MRI) and/or fluorodeoxyglu-
cose positron emission tomography (PET) was carried 
out to further clarify ambiguous CT findings if neces-
sary. Relapse-free survival (RFS) and overall survival (OS) 
were defined as the duration from the date of surgery 
until the date when a relapse was diagnosed and death, 
respectively, or last follow-up.

Statistical analysis
Differences of clinical characteristics between the train-
ing set and the validation set as well as between patient 
groups with or without 1- and 2-year relapse were 
assessed using independent sample t test, Mann–Whit-
ney U test, or χ2 test with a statistical significance level 
set at 0.05. Clinical variables found significantly different 
(p < 0.05) between patient groups with or without 1- and 
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2-year relapse were selected as inputs for the predictive 
models.

In our study, six algorithms were applied to build mod-
els for predicting 1- and 2-year relapse. In addition to the 
basic binary LR model, several machine learning mod-
els were developed: random forest (RF), support vector 
machine (SVM), gradient boosting machine (GBM), Neu-
ral network (NN), k neighbor algorithm (KNN). RF and 
GBM both are tree-based ensemble algorithms. RF cre-
ates multiple decision tree models by bootstrap samples, 
and aggregates decisions through averaging or majority 
voting [24]. And GBM uses all the data to build a regres-
sion tree model from the beginning, and constructs the 
new models to be maximally correlated with the negative 
gradient of the loss function [25]. SVM provides two-
class prediction by constructing the separating hyper-
plane that has the largest distance to the nearest training 
data points from each of the two classes [26]. The neural 
network algorithm recognizes the potential relationships 
in a set of data through constructing a network structure 
composed of three main layers (input, hidden and output 
layer) and the main task is to transform raw input units 
into useful output units [27]. The K-nearest neighbor 
algorithm is based on analogical reasoning, it stores all 
the training data and classifies the new data point based 
on similarity measures [28].

For data standardizing, we centered and scaled the 
input features to the same range of values with mean of 
zero prior to modeling. Model tuning were carried out 
using the repeated fivefold cross-validation method with 
the training set. Repeated cross-validation means repeat-
ing the procedure of cross-validation for k times (k = 3 
in this study), each time with different splits. The model 
assessment metric was calculated in each repetition and 
finally averaged as the final result. Compared with per-
forming cross-validation only once, repeated cross-vali-
dation can improve estimated performance of a chosen 
model [29]. In each cross-validation, we tried all pos-
sible combinations of parameters by grid search. For 
each set of parameters, we used 4/5 of the data to fit the 
model, and the remaining 1/5 was assessed to compute 
the performance measure. Here we selected accuracy as 
the performance measure, which was calculated 5 times 
and averaged to produce the performance score of each 
parameter set. The ranges of training parameters for grid 
search were provided in Additional file 1: Table S1. Rela-
tive variable importance was calculated and plotted to 
find out the impact of features on the predictive models.

The performance of the final models was assessed 
in the validation set. The evaluation indicators used to 
compare the performance of models were AUROC, sen-
sitivity, specificity, accuracy, positive predictive value 
(PPV), negative predictive value (NPV), F1 score and 

root mean squared error (RMSE). To further evaluate 
the performance of the models, we used bootstrapping 
resampling (2000 times) to compute the 95% confidence 
interval (CI) of AUROC and compared the AUROCs 
of machine learning models using 2-sided test. Finally, 
95%CI of AUROCs and p values from comparisons were 
plotted together. We determined the best machine learn-
ing models for prediction of 1- and 2-year relapse with 
the validation set. Calibration curves were constructed 
to regress observed data against model fits of the best 
machine learning models. We also tried other variable 
sets as inputs for these ML models: (1) all the 32 clinical 
variables, (2) variables obtained through fivefold cross-
validation Lasso analysis.

All statistical analysis was performed with R 4.0.2. 
The R package ‘caret’ was used for data pre-processing, 
model training (SVM and KNN), and calculation of vari-
able importance. The R packages ‘randomForest’, ‘gbm’ 
and ‘nnet’ were used for the RF, GBM, and NNET model 
training, respectively. Lasso analysis was performed by 
the R package ‘glmnet’.

Results
Basic characteristics
The clinicopathological characteristics of the training set 
and validation set are shown in Table 1. 183 from the Sec-
ond Affiliated Hospital of Zhejiang University School of 
Medicine were included as the training set. 70 from the 
Cancer Hospital of the University of Chinese Academy 
of Sciences and 9 from the Fourth Affiliated Hospital of 
Zhejiang University School of Medicine were used as the 
external independent validation cohort. Several clinical 
features were found significantly different between the 
training and validation datasets including globulin (Glb), 
albumin-globulin ratio (AGR), tumor differentiation, 
T-stage, lymph node status (N-stage) and vascular inva-
sion (VI).

Comparison of characteristics between patients with 
and without 1- or 2-year relapse in training set was shown 
in Additional file 1: Table S2 and S3, respectively. Accord-
ing to the univariate analysis, significant differences were 
observed in various clinical parameters (CA199, N stage, 
vascular invasion, adipose tissue invasion, differentiation) 
for 1-year relapse, and (CA199, N stage, vascular inva-
sion, monocyte counts, albumin, AGR) for 2-year relapse. 
These variables were then included in the construction 
of machine learning models to predict the relapse risk of 
PDAC after radical surgery.

Model performance
Six models including LR, RF, SVM, GBM, KNN and 
NN were built and externally validated and the optimal 
parameters of these models were shown in Additional 



Page 4 of 10Li et al. J Transl Med          (2021) 19:281 

Table 1 Characteristics of the study population in training set and validation set

Variables Training (n = 183) Validation (n = 79) P

Age (years) Median (q1–q3) 63.0 (56.0–70.0) 63.0 (59.0–67.5) 0.881

Gender Male (%) 115 (62.8) 43 (54.4) 0.255

Female (%) 68 (37.2) 36 (45.6)

BMI (kg/m2) Median (q1–q3) 22.4 (20.3–23.9) 21.8 (19.9–24.1) 0.353

CEA (ng/mL)  < 5 (%) 140 (76.5) 51 (64.6) 0.065

 ≥ 5 (%) 43 (23.5) 28 (35.4)

CA199 (U/mL)  < 37 (%) 49 (26.8) 16 (20.3) 0.334

 ≥ 37 (%) 134 (73.2) 63 (79.7)

CA125 (U/mL)  < 35 (%) 147 (80.3) 68 (86.1) 0.349

 ≥ 35 (%) 36 (19.7) 11 (13.9)

WBC (*10^9) Median (q1–q3) 6.0 (4.8–7.3) 5.7 (4.4–6.8) 0.220

Hb (g/L) Median (q1–q3) 127.0 (116.0–140.0) 129.0 (120.0–142.0) 0.110

Plt (*10^9) Median (q1–q3) 191.0 (154.5–232.0) 204.0 (164.0–265.5) 0.132

Neut (*10^9) Median (q1–q3) 3.9 (2.9–4.8) 3.4 (2.4–4.6) 0.093

Lymp (*10^9) Median (q1–q3) 1.4 (1.1–1.7) 1.5 (1.1–1.9) 0.275

Mono (*10^9) Median (q1–q3) 0.5 (0.4–0.6) 0.4 (0.3–0.6) 0.295

Alb (*10^9) Median (q1–q3) 40.4 (37.3–43.3) 40.4 (36.4–43.4) 0.622

Glb (*10^9) Median (q1–q3) 26.7 (24.3–29.5) 28.2 (26.1–31.9) 0.002

AGR Median (q1–q3) 1.5 (1.4–1.7) 1.4 (1.2–1.6) 0.005

NLR Median (q1–q3) 2.7 (2.0–4.2) 2.4 (1.6–3.3) 0.153

LMR Median (q1–q3) 3.0 (2.1–4.2) 3.5 (2.0–5.1) 0.113

PLR Median (q1–q3) 137.1 (106.3–184.1) 140.0 (96.6–217.2) 0.528

AST (U/L) Median (q1–q3) 44.0 (20.5–111.5) 31 (20–90.5) 0.448

ALT (U/L) Median (q1–q3) 50.0 (17.0–200.5) 29.0 (17.0–139.0) 0.119

ALP (U/L) Median (q1–q3) 156.0 (89.5–391.5) 105.0 (67.5–367.0) 0.257

GGT (U/L) Median (q1–q3) 159.0 (25.0–704.0) 51.0 (20.0–494.0) 0.162

TB (μmol/L) Median (q1–q3) 22.1 (12.0–177.3) 14.6 (9.4–134.1) 0.716

DB (μmol/L) Median (q1–q3) 6.4 (2.6–105.2) 5.5 (3.2–109.2) 0.360

Location Head-isthmus (%) 139 (76.0) 54 (68.4) 0.259

Body-tail (%) 44 (24.0) 25 (31.6)

Margin R0 (%) 176 (96.2) 79 (100.0) 0.106

R1 (%) 7 (3.8) 0 (0.0)

T stage 1 (%) 43 (23.5) 2 (2.5)  < 0.001

2 (%) 86 (47.0) 55 (69.6)

3 (%) 54 (29.5) 22 (27.8)

N stage 0 (%) 105 (57.4) 36 (45.6) 0.009

1 (%) 56 (30.6) 39 (49.4)

2 (%) 22 (12.0) 4 (5.1)

VI Yes (%) 83 (45.4) 20 (25.3) 0.004

No (%) 100 (54.6) 59 (74.7)

PI Yes (%) 143 (78.1) 67 (84.8) 0.283

No (%) 40 (21.9) 12 (15.2)

ATI Yes (%) 82 (44.8) 43 (54.4) 0.195

No (%) 101 (55.2) 36 (45.6)

Differentiation Well (%) 37 (20.2) 5 (6.3) 0.019

Moderate (%) 133 (72.7) 68 (86.1)

Poor or undifferentiated (%) 13 (7.1) 6 (7.6)

OS Median (q1–q3) 19.0 (11.0–33.0) 14.0 (9.0–28.0) 0.340

RFS Median (q1–q3) 11.0 (6.0–22.8) 8.0 (4.0–19.5) 0.503
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file 1: Table S4. Relative importance of variables was cal-
culated and shown in Figs.  1 and 2. Pathological char-
acteristics such as lymph node status (N-stage), tumor 
differentiation, and vascular invasion were found to have 
a major impact on most predictive models.

Comparisons of ROC curves and AUROC of different 
models to predict 1- and 2-year relapse in training cohort 
and validation sets were shown in Fig. 3 and Additional 
file  1: Figure S1. All six methods had excellent perfor-
mance in the training set. Among them, the RF model 

outperformed the others in the training set. The high-
est accuracy and AUROC for predicting 1-year relapse 
risk with RF were 78.4% and 0.834, respectively; and for 
2-year relapse risk were 95.1% and 0.998, respectively. 
LR obtained the lowest AUROC value of 0.776 to predict 
1-year relapse risk and KNN of 0.808 to predict 2-year 
relapse risk.

In the validation set, the SVM model showed bet-
ter performance than the others for predicting 1-year 
relapse risk with an accuracy and AUROC of 70.9% 

Table 1 (continued)

Variables Training (n = 183) Validation (n = 79) P

1-year relapse Yes (%) 106 (57.9) 49 (62.0) 0.629

No (%) 77 (42.1) 30 (38.0)

2-year relapse Yes (%) 138 (75.4) 59 (74.7) 1.000

No (%) 45 (24.6) 20 (25.3)

BMI body mass index, CEA carcinoembryonic antigen, CA cancer antigen, WBC white blood cell, Hb Hemoglobin, Plt Platelet, Neut neutrophil, Lymph lymphocyte, 
Mono monocyte, Alb albumin, Glb globulin, AGR  albumin-globulin ratio, NLR neutrophil–lymphocyte ratio, LMR lymphcyte-monocyte ratio, PLR platelet-lymphocyte 
ratio, AST aspartate transaminase, ALT alanine transaminase, ALP alkaline phosphatase, GGT  gamma-glutamyltransferase, TB total bilirubin, DB direct bilirubin, VI 
vascular invasion, PI perineural invasion, ATI adipose tissue invasion, OS overall survival, RFS relapse-free survival

Fig. 1 Relative importance of variables on models to predict 1-year relapse. Interpretation: N2 = N stage 1, N3 = N stage 2; grade 2 = moderate 
differentiation, grade 3 = poor differentiation or undifferentiated; ATI1 = with adipose tissue invasion; VI1 = with vascular invasion; CA1991 = CA 
199 ≥ 37U/mL
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and 0.733, respectively (Table 2). And the KNN model 
achieved the highest accuracy and AUROC for predict-
ing 2-year relapse risk of 73.4% and 0.689, respectively 
(Table  3). We further separately compared these two 
models with the rest using the AUROC. However, there 
was no significant statistical difference between RF and 
either of these two models, implying that these models 
might be similar in terms of their predictive power.

In addition, we also built models based on all the 32 
clinical variables or variables obtained from fivefold 
cross-validation Lasso analysis. Nonetheless, no better 
predictive performance was achieved by either of these 
two approaches (Additional file  1: Tables S5 and S6). 
We still used the results from univariate analysis con-
sidering its simplicity and good performance.

Finally, we used a calibration curve to assess the 
agreement between the predicted and observed risks of 
relapse of PDAC. Adequate consistency was displayed 
in the training set between estimated risks using the 
predictive models and the actual observed outcome. 
However, SVM and KNN showed relatively poorer 

calibration performance in the validation set due to a 
smaller sample size (Additional file 1: Figure S2).

Discussion
The development of predictive tools for individual 
relapse risk assessment after multimodal therapy may 
help to further optimize treatment decision-making [30]. 
In this study, we have constructed and validated compre-
hensive models integrating clinicopathological charac-
teristics to predict the relapse risk of PDAC after radical 
resection. It turned out that machine learning techniques 
were superior to conventional regression-based analyses 
in terms of the predictive performance. In accordance 
with various studies investigating the prognostic factors 
of PDAC [11, 31, 32], lymph node status (N-stage), vas-
cular invasion and CA199 are independent predictors for 
both 1- and 2-year relapse. Although the RF model had 
the highest AUROC in the training set, the SVM model 
and KNN model showed better robustness to predict 1- 
and 2-year relapse in the validation set, respectively.

Fig. 2 Relative importance of variables on models to predict 2-year relapse. Interpretation: VI1 = with vascular invasion; N2 = N stage 1, N3 = N 
stage 2; Mono = monocyte; Alb = Albumin; AGR = albumin-globulin ratio; CA1991 = CA 199 ≥ 37U/mL
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Fig. 3 Comparisons of ROC curves and AUROC of different models to predict 1- and 2-year relapse in training cohort and validation sets (1-year 
relapse: training set: A, validation set: B, comparison of AUROC in validation set: C; 2-year relapse: training set: D, validation set: E, comparison of 
AUROC in validation set: F)

Table 2 Performance comparison of different models to predict 1-year relapse in the validation set

Model AUC 95%CI.lower 95%CI.upper Sensitivity Specificity Accuracy PPV NPV F1 RMSE

LR 0.708 0.579 0.823 0.878 0.400 0.696 0.705 0.667 0.782 0.448

RF 0.653 0.519 0.782 0.837 0.400 0.671 0.695 0.600 0.759 0.501

SVM 0.733 0.603 0.840 0.857 0.467 0.709 0.724 0.667 0.785 0.445

GBM 0.560 0.416 0.708 0.776 0.367 0.620 0.667 0.500 0.717 0.509

NN 0.720 0.604 0.836 0.878 0.400 0.696 0.705 0.667 0.782 0.448

KNN 0.600 0.460 0.740 0.837 0.467 0.696 0.719 0.636 0.774 0.496

Table 3 Performance comparison of different models to predict 2-year relapse in the validation set

Model AUC 95%CI.lower 95%CI.upper Sensitivity Specificity Accuracy PPV NPV F1 RMSE

LR 0.625 0.482 0.760 0.847 0.350 0.722 0.794 0.438 0.820 0.467

RF 0.655 0.518 0.784 0.898 0.250 0.734 0.779 0.455 0.835 0.431

SVM 0.597 0.460 0.731 0.831 0.200 0.671 0.754 0.286 0.790 0.471

GBM 0.652 0.517 0.776 0.831 0.250 0.684 0.766 0.333 0.797 0.463

NN 0.608 0.464 0.747 0.831 0.200 0.671 0.754 0.286 0.790 0.450

KNN 0.689 0.558 0.817 0.915 0.200 0.734 0.771 0.444 0.837 0.416
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Currently, lack of screening and early detection, the 
proneness for early relapse after radical resection and 
minimally effective systemic therapy remain major bar-
riers to curing patients with PDAC [33]. Timely and 
accurate prediction of relapse even after operative inter-
vention is difficult. Implementation of cutting-edge 
machine learning algorithms may help to identify at-risk 
patients, among whom more intensive surveillance, the 
use of adjuvant treatment, or even the inclusion of these 
patients into clinical trials may be considered. Nowadays, 
artificial intelligence (AI) research in healthcare is accel-
erating rapidly, with potential applications across almost 
every domain of medicine [34–36]. As an important 
branch of AI, machine learning allows computers to train 
models using large numbers of examples and may detect 
difficult-to-recognize patterns from complex dataset 
[37]. Unlike conventional regression-based approaches, 
machine learning algorithms are capable of capturing 
higher-order, non-linear inter-actions between predic-
tors [38]. As a widely used model in biomedical analyt-
ics, SVM creates a set of hyperplanes for each feature 
in an infinite dimensional space, and fits linear or non-
linear models that most effectively discriminate between 
the values of a binary output variable [39]. Its effective-
ness has been proved in studies to predict the recurrence 
of various diseases [40–42]. KNN is another stringent 
methodology for classification and regression. Reports 
have also demonstrated its promising role in prognostic 
research [43–45]. It can be useful to weight the contri-
butions of the neighbours, so that the nearer neighbours 
contribute more to the average than the more distant 
ones [46]. Our study allowed for the comparison of mul-
tiple learning algorithms to identify the approach with 
the most favorable performance.

To the best of our knowledge, this is the first study to 
develop and compare machine learning-based models to 
predict relapse risk of pancreatic ductal adenocarcinoma 
after radical resection from multi-institutional datasets. 
Predictive nomograms based on conventional regression 
methods have been built for early recurrence after pan-
createctomy in resectable pancreatic cancer [9, 12]. Kim 
et al. established a nomogram to predict the probability of 
recurrence within 12 months after surgery in single med-
ical center with AUROC = 0.655 [9]. While in our study, 
we constructed and externally validated a predictive SVM 
model for 1-year relapse risk with AUROC = 0.733 and a 
KNN model for 2-year relapse risk with AUROC = 0.689 
using stringent statistical method. Another work by Guo 
et al. redefined early recurrence as the first 162 days post-
operatively on a basis of its own cohort, which made it 
difficult to compare results across studies and different 
institutions [12]. Particularly, it is understandable that 
this study did not include histopathologic data in its Cox 

proportional hazards regression model for the purpose 
of guiding preoperative decision-making concerning the 
use of neoadjuvant therapy. Other reports regarding this 
topic also have their own specific drawbacks with either 
a very small sample size of less than 40 [30] or lack of 
external validation [10]. In addition, recent research has 
revealed the links between radiomics and underlying 
tumor biology in PDAC, which are strongly correlated 
with tumor phenotype [47], response to treatment [48], 
and prognosis [49–51]. However, the steps of image tex-
ture analysis and manual contouring of region of interests 
(ROIs) are still tedious, laborious and time-consuming, 
which is inconvenient for clinical practice at present and 
has ample room to improve in the future.

Certain limitations of this study and the results need 
to be discussed. First, given the retrospective nature of 
our study, there might be some selection bias existing 
because of its inherent flaws. Second, despite the low 
incidence of PDAC, the relatively limited sample size 
included in the training and validation dataset might 
impair the accuracy for quantifying interpatient vari-
ability effects. Both two models showed high sensitivity 
with a trade-off that the specificity might be sacrificed in 
a certain level, which is relevant to the threshold selec-
tion when performing binary classification [52]. More 
larger and balanced cohorts will be collected from mul-
tiple medical centers in the future to further establish the 
robustness of the proposed models. Third, limitations in 
the interpretability of inner workings of models currently 
poses a severe bottleneck in implementing cutting-edge 
machine learning techniques in biomedical research 
[34, 53]. We need to keep pursuing a better understand-
ing of the complex and evolving relationship between 
physicians and human-centred AI tools in the live clini-
cal environment, thus providing better outcomes to our 
patients [54].

In conclusion, we employed machine learning algo-
rithms to construct models integrating clinicopathologi-
cal characteristics to predict the relapse risk of PDAC 
after radical resection. And we have externally validated 
the prediction capacity of our models in independent 
groups from other medical institutions. Machine learn-
ing systems can provide critical prognostic prediction for 
patients with PDAC after radical resection, and the use of 
predictive algorithms may offer promising clinical deci-
sion support for both practitioners and patients.
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