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Abstract 

Background: Generally, cancer cells undergo metabolic reprogramming to adapt to energetic and biosynthetic 
requirements that support their uncontrolled proliferation. However, the mutual relationship between two critical 
metabolic pathways, glycolysis and oxidative phosphorylation (OXPHOS), remains poorly defined.

Methods: We developed a “double-score” system to quantify glycolysis and OXPHOS in 9668 patients across 33 
tumor types from The Cancer Genome Atlas and classified them into four metabolic subtypes. Multi-omics bioinfor-
matical analyses was conducted to detect metabolism-related molecular features.

Results: Compared with patients with low glycolysis and high OXPHOS (LGHO), those with high glycolysis and low 
OXPHOS (HGLO) were consistently associated with worse prognosis. We identified common dysregulated molecular 
features between different metabolic subgroups across multiple cancers, including gene, miRNA, transcription factor, 
methylation, and somatic alteration, as well as investigated their mutual interfering relationships.

Conclusion: Overall, this work provides a comprehensive atlas of metabolic heterogeneity on a pan-cancer scale and 
identified several potential drivers of metabolic rewiring, suggesting corresponding prognostic and therapeutic utility.
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Background
Metabolic reprogramming improves cancer cell’s fitness 
to provide a selective advantage during tumorigenesis 
[1]. The key characteristic of tumor metabolism is the 
phenomenon that instead of oxidative phosphorylation 
(OXPHOS), cancer cells prefer to enhance glucose uptake 
and rely on aerobic glycolysis, even in the presence of 
oxygen and fully functioning mitochondria, also known 
as Warburg effect [2–4]. Pyruvate, an important metabo-
lite in glycolytic process, is more likely to be transferred 

to lactate in cancer cells rather than enter tricarboxylic 
acid cycle followed by OXPHOS. This metabolic rewir-
ing has been proposed to be an adaption mechanism to 
support the energetic and biosynthetic requirements of 
cellular processes and uncontrolled proliferation, as well 
as the acidification of microenvironment for enhanced 
invasiveness [4–6]. The “branching point” for glycolysis 
and OXPHOS lies in how and where the conversion of 
pyruvate occurs, which is regulated by multiple impor-
tant oncogenic factors and tumor suppressor pathways. 
However, this notion was sharply challenged recently. For 
example, Xian et al.’s study on tumor metabolic microen-
vironment at single-cell resolution noted the significant 
positive correlation between OXPHOS and glycolysis in 
melanoma and HNSC [7]. Meanwhile, a study in mice 
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bearing KRAS-driver tumors shows that non-small cell 
lung tumors demonstrated higher levels of both glycoly-
sis and OXPHOS compared with adjacent normal tissues 
[8]. Given the existed controversy on this issue, it is wor-
thy to reconsider the balance between these two meta-
bolic pathways.

Previous researchers have reported considerable meta-
bolic heterogeneity both within and among cancer types. 
However, a comprehensive study is still warranted to 
illustrate the mutual relationship between glycolysis 
and OXPHOS, as well as its regulatory mechanism and 
clinical implication. Herein, by employing multi-omics 
molecular data from The Cancer Genome Atlas (TCGA) 
across 33 cancer types, we stratified patients into differ-
ent subgroups based on the expression patterns of gly-
colytic and OXPHOS genes, and explore their survival 
status and key-regulators potentially driving metabolic 
alteration from multiple dimensions.

Methods and materials
TCGA data acquisition and preprocessing
Level 4 gene sequencing (FPKM normalized), mature 
microRNA (miRNA) expression, DNA methylation, 
somatic single nucleotide variants (SNVs) and somatic 
copy number variation (CNVs), and corresponding clini-
cal data of 33 human cancers in TCGA were downloaded 
from the UCSC Xena browser (GDC hub: https:// gdc. 
xenah ubs. net). We removed patients whose clinical out-
come information, including survival time and vital sta-
tus, were vague or absent. We also downloaded mass 
proteomic spectrum data for breast invasive carcinoma 
(BRCA) and ovarian serous cystadenocarcinoma (OV) 
from the Clinical Proteomic Tumor Analysis Consortium 
(CTPAC) [9, 10].

Pan‑cancer metabolic scoring and subtype classification
Genes sets downloaded from MSigDB [https:// www. 
gsea- msigdb. org/ gsea/ msigdb] and Reactome [https:// 
react ome. org/] were used as candidate glycolytic and 
OXPHOS signature genes, respectively. Consensus 
clustering was performed using ConsensusClusterPlus 
package [11] (Parameters: reps = 1000, pItem = 0.8, pFea-
ture = 1; clustering algorithm: K-means; distance metric: 
Euclidean distances), thus the signature genes that exhib-
ited similar expression mode for glycolysis and OXPHOS 
pathway were identified. Based on the two “filtered” gene 
signatures, the Glycolysis score and OXPHOS score were 
respectively computed from RNA sequencing of each 
bulk sample using the gene set variation analysis (GSVA) 
algorithm in the GSVA package [12], an unsupervised 
gene set enrichment method that computes an enrich-
ment score by integrating the collective expression of a 
given gene set relative to the other genes in the sample. 

It has been reported that GSVA outperforms single-cell 
gene set enrichment analysis (ssGSEA) when measuring 
the signal-to-noise ratio in differential gene expression 
and differential pathway activity identification analyses 
because GSVA includes normalization of gene expres-
sion aimed at reducing the noise of the data [13]. Besides, 
we assessed the correlation of Glycolysis and OXPHOS 
scores across all five “primary” signatures mentioned 
above (4 for glycolysis and 1 for OXPHOS). For each pair 
of signatures, the Pearson’s correlation was calculated 
on a pan-cancer scale. Afterward, in each cancer type, 
the medians for the Glycolysis score and OXPHOS score 
were used to assign the patients enrolled in this study into 
different metabolic subgroups. Survival analysis based on 
log-rank test (p < 0.05) and univariable Cox proportional 
hazard model regression analysis was performed using 
survival and survminer packages, and corresponding 
Kaplan–Meier plots were produced by ggplot2 package. 
The results of survival analyses are presented as hazard 
ratios (HR) with corresponding 95% confidence intervals 
(95%CI).

Analysis of metabolite profiling data
We obtained metabolite profiling data and correspond-
ing RNA sequencing data on 48 patients with breast 
cancer [14]. We focused on the metabolites belonging 
to glycolytic and OXPHOS pathways. For each metabo-
lite, we computed the Pearson’s correlation between its 
abundance and the expression levels of genes in corre-
sponding metabolic pathways. Significance of hypothesis 
testing was adjusted with false discovery rates (FDR). The 
correlations with an FDR less than 0.05 were considered 
to be significant. Next, to assess whether the metabolic 
pathway signature genes are more informative about 
actual metabolic activities than other genes, we per-
formed a simulation analysis by randomly selecting a 
gene set with the same size of the glycolysis pathway and 
identified the number of genes significantly correlated 
with the abundance for glycolysis-related metabolites in 
the same way as the genes belonging to glycolysis signa-
ture. This analysis was repeated for 1000 times to gener-
ate the background distribution of significant hits from 
which we evaluate whether the actual observed numbers 
were significantly higher than random expectation.

Differential expression and functional enrichment analysis
Differentially expressed genes (DEGs) and miRNAs 
were identified between different metabolic subgroups 
across cancer types using the package limma, which 
implements the Benjamini and Hochberg method to 
estimate gene expression changes using the moder-
ated t-test and adjust the P-value as FDR [15]. |Log 
(fold change) (Log FC)|> 0.5 and adjusted P-value < 0.05 
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were considered cutoff criteria to screen for differential 
expression. We combined the results from MiRWalk 
[http:// mirwa lk. umm. uni- heide lberg. de/ search_ mir-
nas/] and TargetScan [http:// www. targe tscan. org/] to 
identify potential targeting relationships between DEGs 
and miRNAs [16].

For DNA methylation, we employed the TCGA meth-
ylation data obtained by the Illumina Human Methyla-
tion450 BeadChip array, which contains 485,577 probes 
(396,066 after filtering invalid probes) covering 99% of 
RefSeq genes. The methylation levels of each probe were 
quantified as β-values, which are the ratios of the inten-
sities of methylated and unmethylated alleles. 5′-C-phos-
phate-G-3′ (CpG) methylation data between different 
metabolic groups were normalized and compared with 
the CHAMP pipeline [17]. The algorithm used for dif-
ferentially methylated CpG sites is similar to that used in 
the DEG analysis, and the threshold was set as adjusted 
p-value < 0.05 and an absolute ∆β-value > 0.2. A gene was 
considered to be differentially methylated if there was at 
least one differentially methylated CpG in its promoter 
region.

To identify transcription factor (TF) potentially regu-
lating tumor metabolic status, we adopted previously 
proposed tumor context-specific TF regulator networks 
for 21 tumor types in TCGA from package arcane.net-
work [18]. Then, given the existing networks, we used 
the Master Regulator Inference Algorithm (MARINa, 
from ssmarina package) in each cancer type to compu-
tationally infer the TF protein activity using the expres-
sion profile data of genes that are most directly regulated 
by a given target as an accurate reporter of its activity. 
Furthermore, to address the confounding shadow effect, 
that a regulator may appear to be significantly activated 
simply because several of its targets may also be regu-
lated by other activated TF (shadow effect) [19, 20], we 
perform a post-hoc shadow analysis to correct the results 
from MARINa. Therefore, the potential master TFs pass-
ing the shadow analysis with FDR < 0.05 were identified 
in each cancer type. TFs processing regulatory functions 
in ≥ 6 tumor types were considered as “common TF,” and 
the target genes of them were identified using the ledge 
function of ssmarina package. Next, the detected tar-
get genes, which were regulated by ≥ 3 TFs in at least 
ten cancer types, were defined as “common target”. The 
differential expression between different metabolic sub-
groups of these common TFs and targets in each cancer 
was computed, and the pan-cancer TF regulatory net-
work was visualized by the use of circlize package.

Functional enrichment analyses of the detected 
DEGs and common TFs were performed with the clus-
terProfiler package [21]. Gene Ontology (GO) terms, 
including molecular function, biological pathway, and 

cellular component, were identified with a strict cutoff of 
adjusted P < 0.05.

Somatic alteration association analysis
To identify oncogenic somatic alterations that potentially 
drive metabolic reprogramming, we analyzed the asso-
ciations of SNVs and CNVs with metabolic subtypes in 
each cancer type. All results in this section were gener-
ated with maftools package. We performed Fisher-exact 
test to determine the association between the metabolic 
subtypes and a specific differentially mutated gene sta-
tus, where P-values < 0.05 were considered statistically 
significant.

Driver CNV associations were assessed within all 33 
tumor types for 112 previously described oncogenes and 
tumor-suppressor genes [22]. For each oncogene, differ-
ences in Glycolysis score and OXPHOS score were com-
puted between tumors with copy-number amplification 
and those without (Wilcoxon test, FDR < 0.05). For each 
tumor-suppressor gene, differences in Glycolysis score 
and OXPHOS score were computed between tumors 
with copy-number loss and those without (Wilcoxon test, 
FDR < 0.05). The CNV fraction data, also known as the 
percentage of the genome altered by CNV, were down-
loaded from cBioportal [https:// www. cbiop ortal. org/], 
and the correlations between this index and metabolic 
scores were calculated.

Pathway functional enrichment analysis
We computed the GSVA score of 57 biological pathways, 
including 50 hallmark gene sets proposed by Liberzon 
et al. [23], seven metabolic super-pathways from the lat-
est Reactome annotations [24] in each cancer type, as 
well as the tumor stemness index [25]. These gene signa-
tures were classified into ten subgroups according to their 
function: cellular component, development, DNA dam-
age, hallmark metabolism, immune, metabolic products, 
pathway, proliferation, signaling, and others. The corre-
lations between our metabolic scores and these pathway 
scores were calculated in each cancer type, respectively 
(FDR < 0.05).

Analysis of drug sensitivity data
We downloaded cancer cell line drug sensitivity databases 
from the Genomics of Drug Sensitivity in Cancer (GDSC; 
available at https:// www. cance rrxge ne. org/ downl oads/ 
anova) [26–28], which includes gene expression data 
obtained using an Affymetrix HT HG U133A array and 
drug sensitivity data, presented as the area under the 
dose–response curve (AUC) values and  IC50 values (half 
maximal inhibitory concentration) based on cell viability 
assays. Using the same classification pipeline, we classi-
fied them into metabolic subgroups mentioned above 
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and performed Student’s t-test to determine whether 
AUC values showed a significant difference among dif-
ferent metabolic subtypes. We also employed networkD3 
package to exhibit the correlations among the drug sensi-
tivity data and metabolism-related DEGs.

Result
Dual analysis of glycolytic and OXPHOS gene expression 
describes the metabolic landscape of cancer
The study design is summarized in Additional file  1: 
Fig.  S1. In order to investigate the landscape of tumor 
metabolism, we complied a pan-cancer cohort of 9668 
cases from 33 cancer types from TCGA and stratified 
them based on their relative expression levels of gly-
colytic and OXPHOS pathway genes. Gene signatures 
representing all enzymes and isoenzymes involved in 
these two pathways proposed by different studies [23, 
24] (Glycolysis = 292; OXPHOS = 200) were integrated 
together for further analysis to achieve the best compre-
hensiveness and representativeness when measuring the 
actual status of the metabolic pathways. However, previ-
ous studies have figured out the potential heterogeneity 
in metabolic gene expression, including the isoenzymes 
within specific pathways between different cancer types 
[29–31]. To avoid this problem, we performed consen-
sus clustering to identify the signature genes exhibit-
ing similar expression pattern among multiple tumor 
types. As shown in Fig.  1A, based on the pan-cancer 
RNA-sequencing data, the expression level of the genes 
involved in the signatures mentioned above [23, 24] 
were categorized into five clusters, in which the cluster 1 
(n = 72) mainly consists of glycolytic genes whereas clus-
ter 4 (n = 66) mainly consists of OXPHOS genes. There-
fore, we selected these co-expressed genes belonging 

to the two groups as the glycolysis and OXPHOS path-
way gene signatures respectively to be used for describ-
ing the status of the two pathways (Fig.  1A, Additional 
file 9: Data 1). The Glycolysis and OXPHOS scores were 
then calculated by GSVA based on the corresponding 
“co-expressed” gene signatures for each cancer patient 
enrolled in this study (Additional file  10: Data 2). The 
robustness and representativeness of the two “filtered” 
metabolic scores could be verified by their strong corre-
lations with the GSVA scores for the above mentioned 2 
“primary” signatures on a pan-cancer scale (Additional 
file  2: Fig.  S2A, Glycolysis: r = 0.75; OXPHOS: r = 0.96). 
However, the correlation between these two scores is not 
completely opposite to each other as expected (r = 0.33), 
indicating the complicated mutual relationship between 
the two pathways.

The Glycolysis and OXPHOS scores exhibited distinct 
distribution patterns in different cancer types (Fig.  1B), 
highlighting the metabolic diversity among tumor types. 
For example, in terms of Glycolysis score, the median 
(interquartile range) was − 0.30 (− 0.33 to − 0.24) 
for lymphoid neoplasm diffuse large B-cell lymphoma 
(DLBC); for acute myeloid leukemia (LAML), the value 
was even lower: − 0.35 (− 0.39 to − 0.31). These were 
in contrast to the solid tumor types such as colon ade-
nocarcinoma (COAD): 0.17 (0.08–0.27), liver hepatocel-
lular carcinoma (LIHC): 0.014 (0.08–0.21), and rectum 
adenocarcinoma (READ): 0.14 (0.07–0.24). These results 
suggest that glycolysis-related genes are significantly 
upregulated in digestive malignancies such as COAD, 
LIHC, and READ, thus leading to the increased score, 
while the Glycolysis scores are much lower in non-solid 
tumors like DLBC and LAML. As for OXPHOS score, 
we observed higher viability among different tumor types 

(See figure on next page.)
Fig. 1 A The identification of gene signatures for OXPHOS by consensus clustering algorithm on a pan-cancer scale (k = 5). B The distribution of 
the Glycolysis score and OXPHOS score across 33 cancer types. Within each group, the scattered dots represent the two scores of each patient. 
The lines in the boxes represent the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile range). 
The whiskers encompass 1.5 times the interquartile range. The statistical difference of the two scores was compared through the Wilcoxon 
test. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. C, D The bubble plot shows the correlations between the expression level of signature 
genes and the abundance of metabolites annotated to Glycolysis (C) and OXPHOS (D) pathways. Significant correlations (Pearson’s correlation, 
FDR < 0.05) are displayed. Red dots indicate a positive correlation, while blue ones for negative. Dot size is proportional to the strength of the 
correlation. E The density plot displays the “background distribution” of significant hits when assessing the correlation between the abundance of 
glycolysis-related metabolites and expression of random-selected gene sets (n = 72 for each gene set, repeated for 1000 times). The black dashed 
line indicates the true number. FDR, false discovery rates. ACC  adrenocortical carcinoma, BLCA bladder urothelial carcinoma, BRCA  breast invasive 
carcinoma, CESC cervical squamous cell carcinoma and endocervical adenocarcinoma, CHOL cholangiocarcinoma, COAD colon adenocarcinoma, 
DLBC lymphoid neoplasm diffuse large B-cell lymphoma, ESCA esophageal carcinoma, GBM glioblastoma multiforme, HNSC head and neck 
squamous cell carcinoma, KICH kidney chromophobe, KIRC kidney renal clear cell carcinoma, KIRP kidney renal papillary cell carcinoma, LAML 
acute myeloid leukemia, LGG brain lower grade glioma, LIHC liver hepatocellular carcinoma, LUAD lung adenocarcinoma, LUSC lung squamous 
cell carcinoma, MESO mesothelioma, OV ovarian serous cystadenocarcinoma, PAAD pancreatic adenocarcinoma, PCPG pheochromocytoma and 
paraganglioma, PRAD prostate adenocarcinoma, READ rectum adenocarcinoma, SARC  sarcoma, SKCM skin cutaneous melanoma, STAD stomach 
adenocarcinoma, TGCT  testicular germ cell tumors, THCA thyroid carcinoma, THYM thymoma, UCEC uterine corpus endometrial carcinoma, UCS 
uterine carcinosarcoma, UVM uveal melanoma



Page 5 of 18Bi et al. J Transl Med          (2021) 19:219  



Page 6 of 18Bi et al. J Transl Med          (2021) 19:219 

(Fig.  1B). LAML also exhibits lowest score: − 0.79 (− 
0.81 to − 0.77), whereas kidney chromophobe (KICH) 
has the highest: 0.72 (0.69–0.75).

We further adopted metabolite data to investigated 
whether the expression patterns of metabolic pathway 
genes and corresponding scores could reflect actual 
metabolic activities in tumor patients. Considering the 
unavailability of metabolite data in TCGA, we enrolled 
an independent dataset that provides parallel gene 
expression and metabolites profiling data and focused 
on the 12 metabolites that had been annotated to Gly-
colysis (n = 9) and OXPHOS (n = 3) pathways [14]. The 
correlations between metabolite abundance and cor-
responding pathway genes were calculated and exhib-
ited in Fig.  1C, D (only those with an FDR < 0.15). For 
example, HMMR, a hyaluronan associated gene from 
the Glycolysis signature, was found to be significantly 
correlated with 5 glycolytic metabolites, with 4 of them 
displaying correlation > 0.6 (3-phosphoglycerate, r = 0.63, 
FDR < 0.001; fructose-6-phosphate, r = 0.68, FDR < 0.001; 
lactate, r = 0.75, FDR < 0.001; glucose-6-phosphate (G6P), 
r = 0.76, FDR < 0.001). And we also noticed SPAG4, 
whose expression level was significantly in agreement 
with six glycolytic metabolites (Fig. 1C). As for OXPHOS 
pathway, only three metabolites were annotated, but we 
still detected the significant correlation between phos-
phate, a key factor in OXPHOS process, and five genes in 
this pathway (Fig. 1D). However, the correlation between 
pathway scores and metabolites are quite weak (Addi-
tional file 2: Fig. S2B–E). This result might be due to the 
integrative nature of the Glycolysis and OXPHOS score, 
which represent the overall activity of the corresponding 
metabolic process rather than the abundance of a specific 
metabolite. Besides, to assess the statistical significance 
of the number of significant hits detected, we conducted 
a simulation analysis to compare the number of genes 
with significant signals from Glycolysis signature with 
those based on random gene sets of the same size (n = 72, 
FDR < 0.05). Strikingly, the mean number of genes exhib-
iting significant correlations with glycolytic metabolites 
in 1000 random samples was only 16.862, whereas the 
real number of significant genes in glycolytic signatures 
was 27 (Student t-test: p < 0.001, Fig.  1E). These results 
demonstrate that the expression patterns of metabolic 
pathway genes do reflect actual metabolic activities.

Classification of metabolic subtypes and their prognostic 
value
We classified all the cancer patients enrolled in this 
study into four metabolic subgroups according to 
their Glycolysis and OXPHOS scores: High-glycolysis 
and high OXPHOS (HGHO), High-glycolysis and low 
OXPHOS (HGLO), low-glycolysis and high OXPHOS 

(LGHO), and Low-Glycolysis & Low OXPHOS (LGLO) 
(Fig.  2A, Additional file  10: Data 2). The medians for 
the two scores in each cancer type were considered as 
the cut-off value for the definition of “High” and “Low” 
(Using LUAD as an example, Fig. 2B).

We next investigated the clinical relevance of the met-
abolic subtypes mentioned above, since overall survival 
serves as a key index for evaluating tumor aggressive-
ness (Fig. 2C, Additional file 3: Fig. S3). Notably, com-
pared with HGLO, LGHO subtypes were consistently 
associated with better prognosis in 23 out of 33 tumor 
types, with 7 exhibiting statistical significance, includ-
ing cervical squamous cell carcinoma and endocer-
vical adenocarcinoma (CESC; HR: 0.33 (0.16–0.70), 
p = 0.003), kidney renal papillary cell carcinoma (KIRP; 
HR: 0.20 (0.07–0.60), p = 0.004), mesothelioma (MESO; 
HR: 0.38 (0.18–0.80), p = 0.011), pancreatic adeno-
carcinoma (PAAD; HR: 0.35 (0.18–0.69), p = 0.002), 
and LUAD (HR: 0.49 (0.31–0.80), p = 0.003), sarcoma 
(SARC; HR: 0.49 (0.26–0.94), p = 0.032), and bladder 
urothelial carcinoma (BLCA; HR: 0.57 (0.37–0.86), 
p = 0.008) (Fig.  2C). These results are compatible with 
the role of glycolysis and OXPHOS in tumor progres-
sion [1], where tumors with higher rates of glycolysis 
but lower OXPHOS may be more aggressive than those 
with adverse features. Unexpectedly, LGHO was sig-
nificantly associated with worse survival in esophageal 
carcinoma (ESCA; HR: 3.69 (1.32–10.31), p = 0.012), 
suggesting the potential distinct metabolic feature of 
ESCA. However, we failed to identify common prog-
nostic value in HGHO and LGLO subtypes across 
multiple cancer types (Additional file  4: Fig.  S4), thus, 
subsequent analyses were mainly focused on HGLO 
and LGHO.

Moreover, to further validate the metabolic dis-
crepancy between HGLO and LGHO subgroups at 
a post-transcriptional level, we performed gene set 
enrichment analysis (GSEA) in 102 BRCA patients 
and ten OV patients, since only in these two tumor 
types the mass proteomic spectrum data were avail-
able in the CTPAC [9, 10]. The expression data of 9733 
and 7625 proteins was available for BRCA and OV 
patients, respectively. Based on the metabolic group 
determined by RNA-sequencing data, the Glycolysis 
and OXPHOS pathway mentioned above also exhibited 
similar enrichment features for both cancer types (Gly-
colysis: adjusted p-value = 0.014 for BRCA and 0.004 
for OV; OXPHOS: adjusted p-value = 0.121 for BRCA 
and 0.004 for OV, Fig. 2D). This phenomenon could be 
explained by the high correlations between mRNA and 
protein expression levels in a patient, further indicating 
the robustness of our metabolic scores and classifica-
tion from another dimension.
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Association of metabolic subtypes with multi‑omics 
genomic profiles across multiple cancer types
To systematically outline the genomic characteristics of 
patients in different metabolic subtypes and identify com-
mon changes or regulatory relationship across multiple 
cancer types, we performed a multi-omics comparison 

of three types of molecular features between the HGLO 
and LGHO groups in all 33 cancers: mRNA-sequenc-
ing, mature miRNA, and DNA methylation (Additional 
file  11: Data 3). Significant differential genomic features 
were detected and exhibited varied distribution across 
the 33 cancer types, which could be due to the distinct 

Fig. 2 A The circular bar plot displays the percentages and numbers of samples in four different metabolic subgroups across multiple cancer 
types. The cancers are also annotated with the physiology systems they belong to: ‘R’, Respiratory system; ‘U/G’, Urinary system and Genital system; 
‘D’, Digestive system; ‘N’, Nervous system; ‘O’, Other systems. B The scatter plot showing the distribution of Glycolysis score (x-axis) and OXPHOS 
score (y-axis) in tumor patients. Here we took lung adenocarcinoma as an example to illustrate the rule for subgroup classification: patients were 
assigned to four metabolic subgroups according to the median value of the two scores. C The prognostic value of metabolic classification (LGHO 
vs HGLO) in each cancer type, shown in the forest plot with corresponding hazard ratio (HR, log-transformed) and 95% confident interval (95%CI, 
log-transformed). D Gene set enrichment analysis (GSEA) based on mass proteomic spectrum data for BRCA and OV indicated that the proteins in 
the Glycolysis signature were significantly enriched in HGLO group, while proteins in OXPHOS signature were enriched in LGHO group
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Fig. 3 A Relative abundance and numbers of multidimensional significant discrepant metabolism-associated molecular features: mRNA, miRNA, 
and methylation differentially regulated between HGLO and LGHO across 33 cancer types. B Box plots showing the expression levels of HIF1A 
(upper) and MPC1 (lower) in HGLO and LGHO subgroup in different cancer types, respectively. Within each group, the scattered dots represent the 
two scores of each patient. The lines in the boxes represent the median value. The bottom and top of the boxes are the 25th and 75th percentiles 
(interquartile range). The whiskers encompass 1.5 times the interquartile range. The statistical difference of two scores was compared through the 
Wilcoxon test. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. C GO functional enrichment analysis of the DEGs (upper 15 pathways for genes 
up-regulated in HGLO, lower 15 for LGHO). The bar plot indicates number of genes in each pathway, while the dotted lines displays the adjusted 
P-value of enrichment. BP, biological pathway; CC, cellular component; MF, molecular function. D Common differentially expressed miRNAs (left) 
and their potential target genes (right) across cancer types. The network (middle) shows the predicted targeting relationship between miRNAs 
and genes. The bilateral bar plots display the counts of cancer types in which miRNAs or genes are dysregulated (red: up-regulated in HGLO; blue: 
up-regulated in LGHO)
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tumor characteristics and varied sample sizes (Fig.  3A). 
For instance, no DEG was detected in DLBC, cholangio-
carcinoma (CHOL), and thymoma (THYM), while 3762 
were detected in uveal melanoma (UVM). Differentially 
expressed miRNAs were identified in only 23 out of 33 
cancers, and alterations in DNA methylation probes 
ranged from one in CESC to 14,405 in testicular germ 
cell tumors (TGCT).

Despite the considerable heterogeneity among differ-
ent tumor types, we still noted lots of common signifi-
cant genomic alterations across different cancer types, 
indicating the respective general characteristics of HGLO 
and LGHO subtypes, regardless of tumor origins. For 
example, our analysis revealed increased expression of 
NDUFA2 and UQCRQ, all key components of the mito-
chondrial respiratory chain, in LGHO group in 25/33 
cancer types (Additional file  5: Fig.  S5). The expression 
of MPC1, which encodes one subunit of mitochondrial 
pyruvate complex (MPC) that is responsible for trans-
porting pyruvate into mitochondria, was downregu-
lated in HGLO group in 15 cancer types (Fig. 3B). It has 
been reported that the effects of glycolysis on tumor 
progression can be diminished by diverting the metabo-
lite pyruvate from conversion to lactate in part through 
transport into the mitochondria via the activity of the 
MPC1/MPC2 heterodimer [32–34]. Therefore, reduced 
expression of MPC1 is associated with increased glyco-
lytic activity in tumors and thus promoting tumor devel-
opment, which is consistent with our findings above. 
Besides, 15 tumor types exhibited increased expres-
sion of HIF1A, which is activated in hypoxia environ-
ment in tumor cells, in HGLO groups, indicating that 
hypoxia serves as the inducer of the glycolytic pathway 
and Warburg effect in cancer (Fig.  3B). Furthermore, 
GO enrichment analysis of the 632 genes (315 upregu-
lated in HGLO and 317 upregulated in LGHO), which 
were differentially expressed in at least ten cancer types, 
also demonstrated similar results. As shown in Fig.  3C 
and Additional file  11: Data 3, in addition to the com-
mon pathways like extracellular matrix organization, we 
found the significant enrichment of a series of metabolic 
pathways involved in glycolysis and OXPHOS, including 
response to hypoxia (adjusted p-value < 0.001), respira-
tory chain (adjusted p-value < 0.001), and NADH dehy-
drogenase activity (adjusted p-value < 0.001), depicting 
the typical common genomic feature of different meta-
bolic subgroups.

Considering the regulatory role of miRNA in gene 
expression, we also investigated the intersection between 
metabolism-related DEGs and differentially expressed 
miRNAs across multiple cancer types based on the 
miRNA-gene targeting relationship predicted by miR-
Walk (Additional file 12: Data 4). As shown in Fig. 3D, 24 

key miRNAs (12 upregulated in HGLO and 12 in LGHO) 
and 38 genes (28 upregulated in HGLO and 10 in LGHO) 
were identified upon the following criteria: (1) the miR-
NAs are significantly differentially expressed in at least 
five tumor types; (2) their targets genes exhibit opposite 
expression mode in at least 15 tumor types. MiR-30c-5p 
(LGHO), miR-362-5p (LGHO), and miR-379-5p (HGLO) 
appear to be strong regulators of tumor glycolysis and 
OXPHOS since they were all dysregulated in 8 cancer 
types and targeted several metabolism-related DEGs. 
Meanwhile, the three miRNAs have been reported to 
play an important role in tumor metabolism and progres-
sion [35–37], which further supports our findings.

For differentially methylated genes (DMGs) between 
HGLO and LGHO subgroups, we focused on gene pro-
moter region including TSS200, TSS1500, 3′-UTR, and 
1st-Exon, since DMGs are commonly defined accord-
ing to their promoter methylation status [38, 39]. The 
genes were classified into four groups based on the 
intersection between metabolism-associated DMGs and 
DEGs: hypermethylated and upregulated (hyper-up), 
hypermethylated, and downregulated (hyper-down), 
hypomethylated and upregulated (hypo-up), and hypo-
methylated and downregulated (hypo-down). Consider-
ing the nature of DMGs and DEGs, we focused on genes 
in the hyper-down and hypo-up groups in downstream 
analyses. However, these differentially methylated and 
expressed genes exhibited few generalities across tumor 
types, suggesting that abnormal methylation of a specific 
gene might not explain the metabolic alteration in multi-
ple cancer types.

Regulatory network of transcription factors in cancer 
metabolic heterogeneity
To further elucidate how the tumor metabolic status 
is regulated by transcription factors (TFs), we adopted 
tumor-context-specific TF regulatory networks, which 
is based on ARACNe algorithm and proposed by Giorgi 
et al. [18], to infer the significantly enriched master TFs 
that potentially drive the conversion of tumor metabolic 
phenotypes (HGLO and LGHO) from one to the other 
using MARINa in each cancer type (Additional file  13: 
Data 5). The results were further statistically adjusted 
by shadow analysis [19] and the activating and expres-
sion level of identified TFs in different cancer types are 
shown in Fig.  4A (we took BRCA as an example) and 
Additional file  6: Fig.  S6. After this two-step screening 
method, 55 common TFs (see “Methods”) were enrolled 
for subsequent analyses, and the result of functional 
enrichment of them also confirms their role in multiple 
metabolic pathways, including respiratory electron trans-
port chain (Fig.  4B). We then employed leading-edge 
analysis to identify the 56 target genes of those common 
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TFs (Additional file  13: Data 5) and integrated their 
genomic location, relative expression level across differ-
ent cancer types, and corresponding TF-target regula-
tory network in Fig.  4C. For example, MTERF2, which 
has been demonstrated to be involved in mitochondrial 
gene transcription and metabolism and serve pivotal 
roles in the pathogenesis of various cancer types [40], 
was identified as a master TF driving the LGHO pheno-
type in 7 cancer types. The regulatory network analysis 
revealed that ZNF10, a transcriptional repressor protein, 
was MTERF2’s potential target in 10 cancers. Meanwhile, 
we found that HIF1A, which is up-regulated in 15 tumor 
types as mentioned above, served as a master TF for the 
HGLO phenotype in 7 of them, as tumor formation asso-
ciated gene SNAPC1 was identified as its downstream 
target in 6 cancers [41]. In addition, we noticed an inter-
esting phenomenon that many TFs mentioned above are 
also downstream target genes of other TFs, indicating 

the complicated TF-related regulatory network of tumor 
metabolism status.

Metabolism associated somatic genomic changes
The reprogramming of the glycolytic and OHPHOS 
status can be largely viewed as a consequence of onco-
genic driver events [42]. For instance, it has been widely 
accepted that mutated TP53 and amplified MYC are 
linked to several anabolic and catabolic pathways [43, 
44]. To identify somatic genomic changes that poten-
tially characterize tumor metabolism, we systematically 
evaluated the association between metabolic subtypes 
and specific mutational events, including both SNVs and 
CNVs. For SNVs, Fig.  5A shows the overall mutational 
landscape of the 15 most frequently mutated genes on 
the pan-cancer scale (Additional file 14: Data 6). Besides, 
for each cancer type, we identified significantly differ-
ently mutated genes and only noted the elevation rated of 

Fig. 4 A The MARINa plot shows the projection of the negative (repressed, shown in blue color) and positive (activated, shown in red color) targets 
for each TF (vertical lines resembling a barcode) on the DEGs (x-axis) between HGLO and LGHO subgroups, where the DEGs were rank-sorted from 
the one most down-regulated to the on most upregulated in the HGLO vs LGHO conditions. Here we took BRCA as an example. The two-columns 
heatmap displayed on the right side shows the inferred differential activity (first column) and differential expression (second column) of each TF, 
with the rank of displayed genes in DEGs (shown on the right). The corresponding enrichment P-value are displayed on the left. B The GO functional 
enrichment analysis of the common TFs (upper 6 pathways for TFs activated in HGLO pathways, lower 6 for LGHO). The bar plot indicates number 
of genes in each pathway, while the dotted lines displays the adjusted P-value of enrichment. C Circos plot showing the 55 common TF and 56 
common targets across cancer types. Outer to inner: (1) The number of chromosomes. (2) Red genes are the common TFs activated in HGLO group, 
while blue for LGHO and black for common targets. (3) Genomic location of TFs and targets. (4) Heatmaps showing the differential expression of TFs 
and targets across cancer types. Cancer types are GBM, LAML, THYM, THCA, TGCT, READ, PRAD, PCPG, PAAD, OV, LUSC, LUAD, LIHC, KIRP, KIRC, HNSC, 
ESCA, COAD, CESC, BRCA, and BLCA (ordered outer to inner). (5) Networks displaying the regulatory network of these common TFs and targets
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TP53 (Fisher-exact test, P < 0.05) across five cancer types 
in HGLO compared with LGHO, which is in agreement 
with its reported function in metabolism and the selec-
tion of TP53-mutated cells under hypoxic stress [45]. 
However, most metabolism-related SNVs were detected 
in only one or two tumor types, thus highlighting strong 
inter-tumor-type diversity in this mutational feature.

As for CNVs, we first focused on 131 cancer driver 
genes altered by CNVs [22] and identified the onco-
genes and tumor suppressors recurrently associated 
with tumor metabolism in multiple cancer types (Fig. 5B; 
Additional file  7: Fig.  S7A). For example, the amplifica-
tion of the oncogene MYC was significantly associated 
with elevated Glycolysis score in four independent can-
cer types (FDR < 0.05). However, we failed to find CNVs 
recurrently associated with OXPHOS in even three can-
cer types, indicating that individual tumor types might 
have distinctive cancer driver CNV-metabolism relation-
ships. We next investigated the CNV fraction, a surrogate 
of genomic instability that is correlated with aggressiv-
ity in several tumor types (Fig. 5C) [46, 47]. Our analy-
sis revealed that CNV fraction was significantly different 
between HGLO and LGHO subtypes only in BRCA and 
uterine corpus endometrial carcinoma (UCEC, FDR 
adjusted Wilcoxon P < 0.05, Fig.  5C, D). Meanwhile, 
strong correlations were observed between CNV frac-
tion value and the Glycolysis score in BRCA and the 
OXPHOS score in UCEC, respectively. (Fig.  5C, left). 
Therefore, we focused on these two cancers and further 
assessed whether metabolic scores were associated sim-
ply with specific gene-level mutational events, including 
both CNVs and SNVs. As shown in Fig. 5E, F, in BRCA, 
tumors harboring amplification of PIK3CA, GATA3, 
MYC, and deletion of MAP3K1, CHAF1A are more 
likely to have higher Glycolysis score. Besides, high glyco-
lytic breast tumors also exhibit an elevated rate of TP53 
(OR = 3.18, P < 0.001) and decreased rate of PIK3CA 

point mutation (OR = 0.36, P < 0.001). As for UCEC, 
the strong association between mutational events and 
OXPHOS score was observed. Tumors with amplification 
of PIK3CA and BCL6, or those with deletion of ARID1A 
and CH1F1A, are more likely to show lower OXPHOS 
score (Additional file 7: Fig. S7B, C). Additionally, TP53 
point mutations are more common in low-OXPHOS 
tumors (OR = 2.63, P < 0.001). Taken together, these anal-
yses provide a broad view of potential somatic drivers 
related to metabolic reprogramming in human cancer, 
thereby proposing testable hypotheses for future experi-
mental modeling studies.

Tumor metabolism are informative about pathway 
functional enrichment and drug response
To further assess the biological relevance of metabolic 
subtypes, we examined their correlation with various cel-
lular pathways based on mRNA expression (FDR < 0.05, 
Fig.  6A). This analysis enrolled the 50 hallmark gene 
sets proposed by Liberzon et  al. [23] and seven meta-
bolic super-pathways from the latest Reactome anno-
tations [24]. The GSVA score of these 57 pathways was 
calculated for each cancer patient. Tumor stemness data 
proposed by Malta et al. was also enrolled [25]. Interest-
ingly, despite the diversity of cancer types surveyed, we 
observed an almost adverse correlation pattern of most 
pathway enrichment levels with Glycolysis and OXPHOS 
score across multiple cancer types. For example, the 
majority of included pathways, including angiogenesis, 
epithelial-mesenchymal transition, TGF-beta signaling, 
hypoxia, and mTORc, were consistently positively cor-
related with Glycolysis but negatively correlated with 
OXPHOS score. In contrast, asides from the TCA cycle, 
which is an important section of OXPHOS process, the 
tumor-stemness and amino acid metabolism pathway 
displayed recurrent positive correlations with OXPHOS, 
but negative correlation with Glycolysis score across 

(See figure on next page.)
Fig. 5 A The waterfall plots summarizing the somatic SNVs of 20 most-frequently mutated genes in the four metabolic subgroups across 33 cancer 
types. The type of alterations was annotated by different colors (bottom). B Association of Glycolysis score with CNVs in oncogenes (labeled as red 
on the left) and tumor suppressor genes (labeled as blue on the left, Wilcoxon test). Dot size and color indicate the difference in mean Glycolysis 
between tumors with a CNV (gain for oncogene and loss for tumor suppressor gene) and those without. Background color indicates the FDR of 
Wilcoxon test. The empty region indicates that in that cancer type, there is no CNV of a specific gene. C Left: The correlation between CNV fraction 
and two pathway scores. Center dots represent Pearson’s r, and error bars represent the 95% CI. Right: FDR were calculated by Wilcoxon test to 
compare the CNV fraction between HGLO and LGHO group across multiple cancer types. D Box plots displaying the distribution of CNV fraction 
between HGLO and LGHO group in BRCA and UCEC. Within each group, the lines in the boxes represent the median value. The bottom and top of 
the boxes are the 25th and 75th percentiles (interquartile range). The whiskers encompass 1.5 times the interquartile range. The statistical difference 
of two scores was compared through the Wilcoxon test. ****p < 0.0001. E Associations of SNVs and CNAs with Glycolysis score in BRCA patients. F 
Box plots displaying the distribution of Glycolysis score among patients with different CNV status (amplification, loss, and none) in BRCA. Within 
each group, the lines in the boxes represent the median value. The bottom and top of the boxes are the 25th and 75th percentiles (interquartile 
range). The whiskers encompass 1.5 times the interquartile range. The statistical difference of two scores was compared through the Wilcoxon test. 
****p < 0.0001
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several tumor types. Overall, these results demonstrate 
that tumor metabolic activity is intrinsically coupled with 
cancer pathways and development.

Considering the previously reported associations of 
drug resistance with tumor metabolic features [30], we 
adopted the expression and drug sensitivity data of can-
cer cell lines from GDSC and investigated whether the 
tumor cells from HGLO & LGHO subtypes would har-
bor different sensitivity to anti-cancer drugs. The RNA 
sequencing data of 435 cancer cell lines and their sensi-
tivity to 167 anti-cancer drugs, presented as AUC, were 
used for subsequent analyses. As shown in Additional 
file  8: Fig.  S8, some of the commonly used anti-cancer 
drugs, including cisplatin, gemcitabine, and paclitaxel, as 
well as mTOR suppressor OSI_027, exhibited significant 
different pharmacological effect in the two metabolic 
subtypes. Besides, we further analyzed the correla-
tion between drug sensitivity and the expression of 438 
metabolism-associated DEGs, which were significantly 
differentially expressed between HGLO and LGHO 
subgroups in at least ten cancer types. These drugs tar-
get several important biological processes, including 
metabolism, apoptosis, DNA replication, PI3K-mTOR 
signaling, and the p53 pathway. The network in Fig.  6B 
depicts the complicated correlations among the anti-
cancer drugs and 111 of 438 metabolism-related DEGs 
that were strongly correlated (|r|> 0.3) with cell line sen-
sitivity (AUC) to at least three drugs. For example, the 
expression of ASAP2, which has been identified as a 
biomarker for several types of tumor, is up-regulated in 
HGLO in 16 cancer types and positively correlated with 
the resistance to DNA topoisomerases inhibitor Topote-
can (r = 0.40) and DNA synthesis inhibitor Gemcitabine 
(r = 0.34). It has been reported that overexpression of 
ASAP2 is correlated with worse prognosis in pancreatic 
cancers [48]. Besides, Overexpression of APP in HGLO 
group was detected in 15 cancer types and suggested 
potential resistance to 33 types of drugs, including Teni-
poside, Mitoxantrone, Oxaliplatin, and Irinotecan, all of 
the which target DNA replication (r = 0.434, r = 0.425, 
r = 0.416, and r = 0.366, respectively). Taken together, our 
findings demonstrate the extensive interactions between 
drug responses and tumor metabolism, suggesting that 
our metabolic classification might serve as a predic-
tive marker for the response to different anti-cancer 
treatment.

Discussion
Metabolic reprogramming is considered a hallmark of 
cancer and has been an area of accelerated research over 
the last decade [23, 49, 50]. Although metabolic gene 
expressional levels are not perfectly equivalent to meta-
bolic fluxes or metabolite abundance, our analysis on a 
BRCA cohort with parallel metabolite and gene expres-
sion data demonstrated that metabolic gene profiling 
data could to some if not a large extent reflect meta-
bolic activities, which has also been certified by previous 
researchers [30, 51]. Based on the profiling data of genes 
involved in glycolysis and OXPHOS, we developed a 
“double-score” system and classified the 9668 patients 
spanning 33 tumor types into four metabolic sub-
types, thus depicting the clinical and genomic features 
of tumors with distinct functional status from multiple 
dimensions. Through our analyses, several potential driv-
ers or master regulators associated with tumor metabolic 
rewiring were identified, which may guide therapeutic 
strategies for cancer patients in the future.

There is still a controversy on the mutual relation-
ship between glycolysis and OXPHOS in tumor. Our 
analysis on the scores of these two pathways across 
different cancer types exhibited extensive intertu-
mor- and intratumor-type heterogeneous distribu-
tion pattern: the activity of these two pathways is not 
completely opposed to the other as expected. How-
ever, we even noticed some kinds of positive correla-
tion in both pan-cancer scale and several independent 
cancer types (THYM: r = 0.573, FDR < 0.001; TCGT: 
r = 0.564, FDR < 0.001). Meanwhile, in addition to the 
long-standing notion that tumors are primarily gly-
colytic, including under aerobic conditions, as pos-
tulated by the Warburg effect, several recent studies 
have demonstrated OXPHOS system upregulation in 
many tumors and is a potential therapeutic target [52, 
53]. Several oncogenic pathways rely on mitochon-
drial metabolism and OXPHOS plays a critical role in 
tumor progression and aggressiveness at every stage of 
development [54]. For instance, in cholangiocarcinoma, 
OXPHOS system contributes to a cancer stem cell phe-
notype and correlates with patients’ clinical outcome 
[55]. Besides, LAML cells have an atypical metabolic 
phenotype characterized by great reliance on OXPHOS 
[56, 57]. These findings suggested that the alteration in 
the balance between glycolysis and OXPHOS is more 

Fig. 6 A Glycolysis (upper part of each grid) and OXPHOS (lower part of each grid) scores’ correlations with other pathways across cancer 
types. B The network exhibits the correlation between the drug sensitivity in cancer cell lines from GDSC and the expression level of 438 
metabolism-associated DEGs across cancer types. Dark blue dots represent genes, while dots with other colors represent the anti-cancer drugs 
targeting different biological pathways. Red lines indicate positive correlation and blue lines indicate negative

(See figure on next page.)
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than simple “switch-on/off,” leading to a growing inter-
est in translating this information into clinical practice 
for prognostication and treatment response predic-
tion. Survival analysis on the four metabolic subtypes 
indicated that HGLO subtype is a negative prognostic 
factor in multiple cancer types, compared with LGHO, 
while HGHO and LGLO failed to exhibit typical prog-
nostic value, which is in agreement with previously 
reported role of glycolysis and OXPHOS in tumorigen-
esis and progression [4, 42, 50, 58, 59]. Therefore, we 
inferred that tumor patients with HGLO or LGHO sub-
types are more likely to have worse or better survival 
respectively, and the drivers or targets motivating this 
transition might harbor potential therapeutic value, 
thus benefiting selected tumor patients.

In our study, we identified a series of molecular altera-
tions showing consistency as pan-cancer correlates of 
metabolic status, as well as several differentially enriched 
metabolism-associated biological pathways. In addition 
to MPC1, the “intersection point” between glycolysis 
and OXPHOS, we also found the increased expression 
of lactate dehydrogenase A (LDHA), an enzyme cata-
lyzing the conversion of pyruvate and lactate thus pro-
moting glycolysis and suppressing OXPHOS, in HGLO 
subgroup across cancer types [60]. Meanwhile, many 
of its up-stream molecules, such as HIF1a and mTOR, 
also exhibited consistent alteration tendency, which is in 
agreement with previous researches. It has been reported 
that HIF1a, which could be activated by hypoxia or onco-
genic signaling (for example, downstream of mTORC1) 
pathways [61, 62], is an important contributor to the 
Warburg effect through various mechanisms: (1) induc-
ing the expression of genes encoding glycolytic enzymes 
and glucose transporters [63–65]; (2) suppressing 
OXPHOS by inducing the expression of pyruvate dehy-
drogenase kinase 1 (PDK1), which phosphorylates and 
inhibits mitochondrial pyruvate dehydrogenase (PDH) 
[63, 66, 67]. These findings were further supported by our 
findings that Glycolysis score was positively correlated 
with that of both hypoxia and mTORc signaling path-
way, while OXPHOS score exhibited the opposite result. 
As for others, such as somatic alterations, our result 
that the amplification of oncogene MYC and mutation 
of tumor suppressor gene TP53 are enriched in HGLO 
supports the idea that they were regarded as the driver 
of the initiation of tumor metabolic reprogramming [43, 
44, 60]. Meanwhile, as shown in the results from func-
tional enrichment analyses, several metabolic pathways 
associated with hypoxia, glycolysis, and OXPHOS were 
enriched based on the differentially expressed genes 
between HGLO and LGHO subgroups. Therefore, it is 
natural to speculate that the metabolic reprogramming is 
tightly intersected with the dysregulation of these genes.

A series of potential therapeutic targets were identi-
fied through our comprehensive analysis of common 
DEGs in multiple cancer types and drug-response data, 
such as the “core nodes” in Fig. 6B, like ASAP2, APP, and 
ACTN1, whose expression level were found to be sig-
nificantly correlated to cell’s response to several different 
anti-cancer drugs targeting different pathways. For exam-
ple, one of the “core” drugs, the ATM kinase inhibitor 
KU55933, has been demonstrated to induces apoptosis 
and inhibits motility by blocking GLUT1-mediated glu-
cose uptake in aggressive cancer cells [68]. Besides, we 
also observed vast metabolism-associated dysfunction 
of miRNAs and TF across cancers. Further efforts will be 
warranted to experimentally determine the clinical rele-
vance of these genomic features in patients with different 
metabolic characteristics.

However, our study still has several limitations. First, 
due to the lack of accessible metabolites data in published 
studies or open-access database, we failed to comprehen-
sively analyze the correlation between metabolites and 
metabolic proteins, especially mitochondrial proteins, 
since only the data of 3 metabolites involved in OXPHOS 
were provided. And as for GSEA analyses based on pro-
teomic data, only the data of BRCA and OV patients 
were available in TCGA database, limiting us from fur-
ther validating our results by GSEA in other cancer types. 
Besides, it is difficult for us to disentangle the timing of 
these events: whether a specific gene alteration leads to 
metabolic change or results from metabolic reprogram-
ming. Meanwhile, considering the spatial heterogene-
ity in one tumor sample, the lack of multi-loci sampling 
RNA-sequence data within a single tumor in these public 
large-scale data sets like TCGA might weaken the pre-
dictive value of our metabolic subtypes. With the rapid 
development of novel single-cell omics techniques, we 
are optimistic that a dynamic and comprehensive por-
trait of tumor metabolism will emerge in the near future. 
Further in vitro and in vivo experiments are warranted to 
validate our findings in another dimension.

Conclusions
By integrating multi-omics data, our large-cohort pan-
cancer study provides a comprehensive atlas of genomic 
factors associated with tumor metabolic reprogramming 
and extracts the common molecular alterations across 
tumor types, thus shedding light on the complex regula-
tory network of tumor’s metabolic status and may guide 
a more precise and personalized therapeutic strategy for 
tumor patients with metabolic reprogramming.
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Additional file 4: Fig. S4. Forest plots showing the pairwise survival 
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Additional file 5: Fig. S5. Box plots showing the expression levels of 
NDUFA2 (upper) and UQCRQ (lower) in HGLO and LGHO subgroup in 
different cancer types respectively. Within each group, the scattered dots 
represent the two scores of each patient. The lines in the boxes represent 
the median value. The bottom and top of the boxes are the  25th and  75th 
percentiles (interquartile range). The whiskers encompass 1.5 times the 
interquartile range. The statistical difference of two scores was compared 
through the Wilcoxon test. *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, 
p < 0.0001.

Additional file 6:  Fig. S6. Heatmap displaying the Normalized Enrich-
ment Score (NES, shown as background color) and FDR (shown as dot 
size and color) of common TFs in different cancer types. Only TFs with an 
FDR < 0.05 are shown in the plot.

Additional file 7: Fig. S7. (A) Association of OXPHOS score with copy 
number variation (CNVs) in oncogenes (labeled as red on the left) and 
tumor suppressor genes (labeled as blue on the left, Wilcoxon test). Dot 
size and color indicate the difference in mean OXPHOS between tumors 
with a CNV (gain for oncogene and loss for tumor suppressor gene) and 
those without. Background color indicates the FDR of Wilcoxon test. 
The empty region indicates that in that cancer type, there is no CNV of a 
specific gene. (B) Associations of SNVs and CNAs with OXPHOS score in 
UCEC patients. (C) Box plots displaying the distribution of OXPHOS score 
among patients with different CNV status (amplification, loss, and none) 
in UCEC. Within each group, the lines in the boxes represent the median 
value. The bottom and top of the boxes are the  25th and  75th percentiles 
(interquartile range). The whiskers encompass 1.5 times the interquartile 
range. The statistical difference of two scores was compared through the 
Wilcoxon test. ****, p < 0.0001.

Additional file 8: Fig. S8. Box plots displaying the distribution of AUC 
value, which reflects the sensitivity to specific anti-cancer drug, among 
cancer cells in different metabolic group. Within each group, the lines 
in the boxes represent the median value. The bottom and top of the 
boxes are the  25th and  75th percentiles (interquartile range). The whiskers 
encompass 1.5 times the interquartile range. The statistical difference 

of two scores was compared through the Wilcoxon test. *, p < 0.05; **, 
p < 0.01; ***, p < 0.001.
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