
Zhong et al. J Transl Med           (2021) 19:58  
https://doi.org/10.1186/s12967-021-02705-9

RESEARCH

Eight‑lncRNA signature of cervical cancer 
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Abstract 

Background:  Copy number variation (CNV) suggests genetic changes in malignant tumors. Abnormal expressions of 
long non-coding RNAs (lncRNAs) resulted from genomic and epigenetic abnormalities play a driving role in tumori-
genesis of cervical cancer. However, the role of lncRNAs-related CNV in cervical cancer remained largely unclear.

Methods:  The data of messenger RNAs (mRNAs), DNA methylation, and DNA copy number were collected from 292 
cervical cancer specimens. The prognosis-related subtypes of cervical cancer were determined by multi-omics inte-
gration analysis, and protein-coding genes (PCGs) and lncRNAs with subtype-specific expressions were identified. The 
CNV pattern of the subtype-specific lncRNAs was analyzed to identify the subtype-specific lncRNAs. A prognostic risk 
model based on lncRNAs was established by least absolute shrinkage and selection operator (LASSO).

Results:  Multi-omics integration analysis identified three molecular subtypes incorporating 617 differentially 
expressed lncRNAs and 1395 differentially expressed PCGs. The 617 lncRNAs were found to intersect with disease-
related lncRNAs. Functional enrichment showed that 617 lncRNAs were mainly involved in tumor metabolism, 
immunity and other pathways, such as p53 and cAMP signaling pathways, which are closely related to the develop-
ment of cervical cancer. Finally, according to CNV pattern consistent with differential expression analysis, we estab-
lished a lncRNAs-based signature consisted of 8 lncRNAs, namely, RUSC1-AS1, LINC01990, LINC01411, LINC02099, 
H19, LINC00452, ADPGK-AS1, C1QTNF1-AS1. The interaction of the 8 lncRNAs showed a significantly poor prognosis of 
cervical cancer patients, which has also been verified in an independent dataset.

Conclusion:  Our study expanded the network of CNVs and improved the understanding on the regulatory network 
of lncRNAs in cervical cancer, providing novel biomarkers for the prognosis management of cervical cancer patients.
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Background
Cervical cancer is one of the most frequently diag-
nosed cancers and a leading cause of cancer deaths to 
women [1]. Annually there are 500,000 newly diag-
nosed cases of cervical cancer and 300,000 deaths, and 
80% of all the cervical cancer cases occur in develop-
ing regions [2]. Human papillomavirus (HPV) infection, 
particularly HPV 16 and HPV 18, and immunosuppres-
sion, smoking, pregnancy history and long-term use of 
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oral contraceptives are the most critical risk factors for 
developing cervical cancer [3]. The techniques of cervi-
cal cancer screening such as the papanicolaou and HPV 
detection have been greatly improved in the past decades 
[4]. The infection of high-risk HPV does not necessar-
ily lead to cervical cancer, suggesting that HPV infection 
is a principal but not a decisive cause of cervical cancer 
[5]. Study found that cervical cancer could develop inde-
pendently by genetic changes with altered expressions of 
oncogenes or tumor suppressor genes or together with 
HPV infection [6]. The five-year survival rate for cervical 
cancer patients with early detection of cervical cancer is 
92% [4], but the chance drops sharply for patients with 
tumor spreading to surrounding tissues or other distant 
organs. Therefore, the early detection of cervical cancer 
has a strong significance in cervical cancer intervention 
and treatment.

Copy number variation (CNV) is defined as a varia-
tion in genetic structure, usually between increase or 
decrease of 1kB-3 Mb at the copy number of a genome 
fragment [7]. Copy number amplification or deletion in 
cancer genome often leads to the inactivation of tumor 
suppressor genes or the expressions of oncogenes that 
have important effects on cell functions, including cell 
adhesion and recognition [8]. For example, the increase 
in the copy number of PD-L1 gene has been found to 
be related to the anti-PD-1/PD-L1 treatment of locally 
advanced cervical cancer [9]. HPV16 and HPV18 genome 
copies are associated with the grade of cervical lesions 
[10]. CNV not only refers to tumor biology, but also have 
effects on some complex immune diseases. Patients with 
copy number abnormalities of CCL3L1 are more sus-
ceptible to HIV/acquired immunodeficiency syndrome 
(AIDS) [11]. CNV of human Fcgr3 gene is determinant 
of glomerulonephritis [12]. At present, a large number 
of studies focused on messenger RNAs (mRNAs) and 
investigated the phenotypic changes and tumor progres-
sion caused by CNVs, while only a few studies were con-
ducted to analyze the regulatory relationship between 
CNVs and non-coding RNAs, especially long non-coding 
RNAs (lncRNAs).

LncRNAs are defined as RNA transcripts with more 
than 200 base pairs in length and are a major class of 
ncRNA [13]. Abnormally expressed lncRNAs are closely 
related to complex human diseases, especially in tumors 
[14]. Dysfunctions of lncRNAs contribute to the devel-
opment, progression and metastasis of cancers [15]. For 
example, lncRNA ARAP1-AS1 promotes the transla-
tion of the proto-oncogene c-Myc by isolating PSF/PTB 
dimers in cervical cancer, thereby promoting tumorigen-
esis and metastasis [16]. LncRNA NKILA inhibits prolif-
eration and promotes the apoptosis of cervical squamous 
cells by down-regulating miRNA-21 expression [17]. 

LncRNA SBF2-AS1 enhances cervical cancer progres-
sion through regulating miR-361-5p/FOXM1 axis [18]. 
Expression profile shows highly abnormal expressions of 
lncRNAs in cancer, suggesting that lncRNAs could serve 
as a biomarker for predicting clinical outcomes [19].

High-throughput technologies allow histological stud-
ies to interrogate thousands of manufacturers with simi-
lar biochemical properties (e.g., RNA transcriptomes). 
Monolayer "histology" provides only limited insight 
into the biological mechanisms of diseases. In genome-
wide association studies, although a great number of 
single-nucleotide polymorphisms have been identified 
for complex diseases and traits, the functional impli-
cations and mechanisms of the loci of interest remain 
largely unknown. In addition, genomic variation alone 
cannot fully explain changes in disease risk over a life-
time; DNA, RNA, proteins, and metabolites often play 
complementary roles and perform certain biological 
functions together. Such complementary effects and syn-
ergies between genomic layers in a life course can only 
be obtained through comprehensive studies of multiple 
molecular layers [20].

In this study, based on mRNA expressions, DNA 
methylation, and DNA copy number, we identified three 
molecular subtypes related to the prognosis of patients 
with cervical cancer. Differentially expressed mRNAs and 
lncRNAs in the three molecular subtypes were analyzed 
and examined to analyze the functions of co-expressed 
lncRNAs. Although CNVs play important role in tran-
scriptional regulation, it was unclear whether CNV is 
systematically related to the expressions of lncRNAs in 
cervical cancer. By analyzing the copy number profile of 
lncRNAs across the genome, we carefully examined these 
abnormal lncRNAs induced by copy number amplifica-
tion or deletion. In addition, Kaplan–Meier (KM) sur-
vival analysis was conducted to assess the prognostic 
performance of the lncRNAs with copy number abnor-
malities. Finally, a prognostic model was established to 
predict the survival of cervical cancer patients. This study 
aimed to identify CNV-related lncRNAs that can better 
predict cervical cancer prognosis.

Methods
Data download and processing
Methylation data, RNA-seq data, CNV, whole exome 
sequencing (WES) mutation data and sample follow-
up information of Illumina Infinium 450  k Human 
DNA methylation Beadchip v1.2 platform for cervi-
cal cancer were downloaded from The Cancer Genome 
Atlas (TCGA) database (https://​tcga-​data.​nci.​nih.​gov/) 
[21]. All the samples were collected before the first treat-
ment. RNA-seq counts were converted into TPM (Tran-
scriptsPerKilobase of exonmodel per Million mapped 

https://tcga-data.nci.nih.gov/
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reads) expression profile data. Finally, expression pro-
file data sets incorporating 304 cancer tissue samples 
and 3 para-cancer samples were obtained. According to 
the GeneCode v33 GTF [22], the expression profiles of 
14,851 sense-intronic, sense-overlapping, antisense, pro-
cessed-transcript, or primer-overlapping lncRNAs were 
acquired when gene type was defined as the lncRNA. 
When gene type was defined as protein-coding genes 
(PCGs), the expression profiles of 19,611 PCGs were 
obtained. For methylation data, CpG probes with the 
presence of NA expression in each sample were removed. 
At the same time, according to the cross-reactive site 
provided by Chen et  al. [23], the CpG sites with cross-
reactive in the genomes or unstable genome methylation 
sites were all removed, that is, the CpGs and single nucle-
otide sites on the sex chromosome were removed. In this 
way, a total of 372,137 CpGs sites were finally obtained. A 

total of 304 samples of copy number variation data were 
acquired after the removal of germline CNV data. Single 
nucleotide mutation data processed by MuTect software 
and clinical follow-up information of 307 cervical cancer 
samples were downloaded. A total of 292 primary tumor 
samples before the first treatment with complete data 
of RNA-seq, SNV, and methylation were detected for 
multi-omics clustering analysis. Meanwhile, standardized 
expression profile data GSE19711 containing 300 cervical 
cancer samples was download from the Gene Expression 
Omnibus (GEO) database (http://​www.​ncbi.​nlm.​nih.​gov/​
geo/), with Illumina HumanHT-12 WG-DASL V4.0 R2 
expression beadchip platform as an external validation. 
Sample information in TCGA data and GEO dataset are 
shown in Table 1.

Table 1  Clinical features of the data set

Characteristics TCGA-Set GSE44001(N = 300)

Common Samples RNA-seq(N = 304) Methylation(N = 304) CNV(N = 340)

Survival event

 Dead 67 72 71 67 38

 Live 225 232 233 235 262

Pathological_T

 T1 134 140 140 139 NA

 T2 69 70 71 71 NA

 T3 20 21 20 21 NA

 T4 8 10 10 8 NA

Pathological_N

 N0 127 133 133 133 NA

 N1 56 61 60 58 NA

 N2 0 0 0 0 NA

 N3 0 0 0 0 NA

Pathological_M

 M0 108 114 116 111 NA

 M1 10 11 10 10 NA

Pathological_Stage

 Stage I 40 44 44 42 258

 Stage II 55 56 57 57 42

 Stage III 45 46 45 46 0

 Stage IV 19 22 21 19 0

Pathological_Grade

 G1 18 19 18 18 NA

 G2 128 134 135 133 NA

 G3 113 118 118 118 NA

 G4 1 1 1 1 NA

Age

  >  = 60 56 59 59 56 NA

  < 60 236 245 245 246 NA

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Prognostic molecular subtype identification based 
on multi‑omics
The iClusterPlus [24], which is developed for comprehen-
sive cluster analysis of multiple types of genomic data, is 
an enhanced version of iCluster. In this study, iCluster-
Plus was used to identify molecular subtypes based on 
DNA methylation, CNVs and transcriptome data. Spe-
cifically, we first analyzed the effects of PCGs, CNVs, and 
methylation on the prognosis of cervical cancer. Then the 
prognostic-related characteristics of DNA methylation, 
CNVs and transcriptome were examined by establishing 
Univariate COX proportional risk regression model. For 
potentially relevant features, the significance threshold 
was set as p < 0.05. Next, DNA methylation, CNVs and 
transcriptome samples were integrated to extract the 
data corresponding to the features related to the cancer 
prognosis. The R software package iClusterPlus [25] in 
R software package was further used for cluster analysis, 
The copy number data were segmented using the CBS 
algorithm21. The segment means were used as the input 
for integration to reduce the noise level, and the differ-
ent histological data were further z-transformed and 
clustered using the K-means clustering algorithm, with 
the classification results of k = 2–10. Euclidean distance 
was used to assesses the distance of difference between 
samples. The classification results with the least differ-
ence within the group and the greatest difference among 
the groups were selected and employed to determine the 
molecular subtypes of cervical cancer prognosis.

Subtype identification based on differentially expressed 
lncRNAs and PCGs
We used the R package DESeq2 [26] to identify lncR-
NAs and PCGs with subtype differences. Firstly, after 
removing the genes with an average count of < 5 in the 
expression profile, the differences of each subtype were 
compared. Other samples outside the subtype were 
taken as the control group, with the threshold of fold-
change greater than twice and FDR < 0.05. Furthermore, 
the absolute value of the difference multiple was used 
as the rank order, and Gene Set Enrichment Analysis 
(GSEA) was applied to detect the distribution of DE-
lncRNAs. The ncRNAs closely related to cervical cancer 
were downloaded from LncRNADisease [27], with Lnc-
2Cancer [28] database serving as the background for the 
comparison of the relationship between de-lncRNAs and 
cervical cancer.

Identification of enriched lncRNA modules by weighted 
gene co‑expression network analysis
Weighted gene co-expression network analysis (WGCNA) 
package [29] in R was used to construct a scale-free co-
expression network for the differentially methylation sites 

(DMPs). Pearson’s correlation matrices and average-linkage 
method were both conducted for differential expression 
(DE)-PCGs/lncRNAs. β was a soft-thresholding param-
eter that emphasizes strong association between PCGs 
and penalized weak association. Then, the adjacency was 
converted into a topological overlap matrix (TOM), which 
was defined by the sum of its adjacency with all other DE-
PCGs/lncRNAs for network DE- PCGs/lncRNAs ration, 
and the corresponding dissimilarity (1-TOM) was calcu-
lated. p < 0.05 was set as the threshold to identify the mod-
ules with significant enrichment in DE-lncRNAs. Finally, 
based on the genes in the DE-lncRNAs enrichment mod-
ule, R package clusterprofiler was used to perform Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analysis.

Genomic copy number anomalies and their relationship 
to lncRNAs were analyzed by GISTIC algorithm
Genes targeted by somatic cell copy number change 
(SCNA) play an important role in tumorigenesis and 
cancer therapy. Here, we used GISTIC2.0 [30] soft-
ware to define CNVs extracted from of all the genes in 
the 292 cervical cancer samples were related to lncR-
NAs. Copy number > 1 or < -1 was defined as copy num-
ber amplification and deletion, respectively. According 
to FDR < 0.05, the boundaries of the regions with peak 
amplification or deletion limits identified by GISTIC 2.0 
were determined with at least 95% confidence to include 
the target gene/lncRNA(s). Samples with lncRNA 
expression profiles were selected, lncRNA expression 
profiles and copy numbers were calculated by Spear-
man’s rank correlation coefficient, and random differ-
ences in the distribution of correlation coefficients were 
compared. Finally, the lncRNAs with CNV in more than 
25% of the samples were identified, and their expression 
differences were compared in copy amplification and 
copy deletion samples.

Identification of lncRNA prognostic markers with abnormal 
copy number and establishment of gene signature based 
on lncRNAs
We systematically analyzed the CNV of these de-lncRNAs 
on the basis of molecular subtypes, and selected lncRNAs 
with a proportion of abnormal copy number higher than 
15%. Univariate cox was used to analyze the relationship 
between these lncRNAs and overall survival (OS). The 
threshold was defined as p < 0.01 to screen lncRNAs sig-
nificantly related to the prognosis of cervical cancer. In 
addition, least absolute shrinkage and selection operator 
(LASSO) Cox was used for analyzing the expression pro-
files of these lncRNAs for feature selection [31]. The tenfold 
cross-validation was used to construct the model. Finally, 
the Multivariate Cox survival analysis was performed, and 
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the lncRNAs with minimal Akaike information criterion 
(AIC) value was considered as the final prognostic markers 
to establish the risk score model:

 where N is the number of prognostic lncRNAs, Expk is 
the expression value of prognostic lncRNAs, and eHRk is 
the estimated regression coefficient of lncRNAs in the 
multivariate Cox regression analysis.

Functional enrichment analysis
GSVA [32] was performed using the R package on C2 
Canonical pathway gene set collection that contained 
1320 gene sets obtained from MsigDB database. The 
enrichment scores of each sample in these gene sets 
were analyzed using single sample GSEA, and the asso-
ciation between the enrichment scores of each gene sets 
and RiskScore was further calculated by Spearman’s rank 
correlation coefficient. KEGG pathway with the absolute 
correlation coefficient greater than 0.4 and FDR < 0.01 
was selected.

Performance comparison of the lncRNA signatures
To determine the independence of the lncRNA signature, 
we performed single-factor and multi-factor Cox regres-
sion to analyze the relationships among T, N, M stage, 
age and risk score and prognosis. Furthermore, we com-
pared the newly established lncRNA signatures with four 
recently reported prognostic risk models, which were 
4-lncRNAs signature by sun et  al. [33], 10-lncRNA sig-
nature by Shen et al. [34], 9-lncRNAs signature by Mao 
et al. [35], and 6-lncRNA signature by Luo et al. [36]. To 
ensure the model comparability, we calculated the risk 
score of each cervical cancer sample in the TCGA data-
set using the same method based on the corresponding 
genes in these 4 models. Moreover, the receiver operating 
characteristic (ROC) of each model was determined and 
the risk score was calculated based on the median risk 
score. The samples were divided into Risk-H and Risk-L 
groups, and the prognostic differences between the two 
groups of samples were calculated. Furthermore, we 
compared these four models with restricted mean sur-
vival, concordance index (C-index), and decision curve 
analysis (DCA) of the lncRNA signature.

Other statistical descriptions
Except for special instructions, the normality of variables 
was examined by Shapiro–Wilk normality test. Signifi-
cance of the normal distribution variables was estimated 
by the unpaired Student’s t test between two groups, and 
the non-normal distribution variables were analyzed 
by the Mann–Whitney U test. Kruskal–Wallis test and 

RiskScore =
∑n

k=1
Expk ∗ e

HR
k

one-way analysis of variance served as non-parametric 
and parametric methods, respectively, to analyze differ-
ences among multiple groups. Correlation coefficient was 
calculated by Spearman’s rank correlation coefficient. 
Two-sided Fisher exact test was performed to determine 
contingency tables. The p value was converted into FDR 
by Benjamini–Hochberg method. Survival curves of each 
subgroup in the dataset were plotted by Kaplan–Meier 
(KM) method. Logrank test was used to determine the 
statistical significance of the differences, which was 
defined as p < 0.05. All the analyses were performed in R 
3.4.3 using default parameters unless otherwise specified.

Results
Identification of prognostic molecular subtypes 
through comprehensive analysis of DNA methylation, 
CNVs and transcriptome
To identify the prognostic molecular subtypes of cervi-
cal cancer, genes showing PCGs, CNV and methylation 
with prognostic significance were screened based on 
univariate Cox proportional risk model, with a thresh-
old of p < 0.05. Finally, 3897 genes, 4897 CNV regions 
and 20,144 CpG sites with significant prognostic asso-
ciation were obtained. Next, iClusterPlus was used for 
multi-omics cluster analysis, and identified three molec-
ular subtypes, which were Cluster1 (N = 77), Cluster2 
(N = 142) and Cluster3 (N = 73). The results of multi-
omics clustering were compared with those obtained by 
separate hierarchical clustering (Fig. S1A), and the results 
showed that the three molecular subtypes determined by 
multi-omics clustering had some consistency with those 
obtained by single-omics clustering. For example, the 
methylation clustering results of Cluster1 and Cluster2 
subgroups overlapped with those of multi-omics patients 
with Cluster1, suggesting that the molecular subtypes 
identified by multiple histologies combining the molecu-
lar characteristics of multiple histological data are richer 
in terms of information dimensions than those of individ-
ual histology, and that no one histology could reproduce 
the molecular subtypes identified by multiple histolo-
gies alone. The three subtypes had significant prognostic 
differences (p = 0.0047) (Fig.  1a), among them, Cluster1 
showed the most favorable prognosis, while the Cluster3 
had the worst prognosis. There was no significant dif-
ference in prognosis between the Cluster1 and Cluster2 
groups (Fig. 1c), but the prognosis of Cluster3 was greatly 
worse than that of Cluster1 (p = 0.00247) and Cluster2 
(p = 0.01297) (Fig. 1d, e). A total of 16 were obtained by 
the detection of the top10 high-frequency mutated genes 
of each subtype (Fig. 1b). The distribution of these genes 
was similar in all three subtypes, suggesting a high degree 
of consistency in the genes associated with the most 
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common mutations in the three subtypes. In addition, 
TTN, PIK3CA, KMT2C, and MUC4 with higher muta-
tion rates may suggest that these genes play a key role 
in canceration. The findings here indicated that subtype 
classification based on PCGs, methylation, and CNVs 
could predict the prognosis of patients with cervical can-
cer and have certain regulatory relationships at the levels 
of genome, epigenome, and transcription.

Distribution of differentially expressed lncRNAs and PCGs 
in the three subtypes
The differentially expressed lncRNAs and PCGs in three 
subtypes were determined. We found the small num-
ber of differentially expressed lncRNAs in both Cluster2 
samples and Cluster3 samples. A total of 617 lncRNAs 

and 1395 PCGs were obtained from the three subtypes 
(Additional file  1: Table  S1). The volcano map data of 
the differential expressions of the lncRNAs showed that 
in the three subtypes the number of up-regulated lncR-
NAs was generally smaller than those down-regulated 
(Fig.  2a-c). Moreover, the numbers of differentially 
expressed PCGs was much larger than that of lncRNAs 
(Fig. 2d). Finally, 584 lncRNAs closely related to cervical 
cancer were downloaded from LncRNADisease and Lnc-
2Cancer databases. We found that there was an obvious 
intersection between differentially expressed lncRNAs in 
the three subtypes and cervical cancer-related lncRNAs 
(p < 0.0001) (Fig. 2g). Those data suggested that lncRNAs 
may play an important role in the heterogeneity and pro-
gression of cervical cancer.

Fig. 1  Prognostic differences and molecular characteristics of the three molecular subtypes. a The total survival and prognosis of the three 
subtypes were different by KM curves. b The mutation distribution of high-frequency mutation genes in the three molecular subtypes of cervical 
cancer. The horizontal is molecular subtypes, ordinate (left) is the mutation frequency of the gene in each sample, ordinate (right) is mutation genes 
and colors in heat-map are different mutation types. c KM curve results showed there is no difference in prognosis between Cluster1 and Cluster2. d 
KM curve results showed there is significantly difference in prognosis between Cluster1 and Cluster3. e KM curve results showed there is significant 
difference in prognosis between Cluster2 and Cluster3
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Identification of differentially co‑expressed lncRNAs‑PCGs 
and functional modules for lncRNAs enrichment 
in the three subtypes
To identify differentially co-expressed lncRNA-PCGs, 
based on the differential expression profiles of lncRNAs 
and PCGs, outlier samples were removed by hierarchi-
cal clustering analysis. The linkage method was chosen 
as the complete method, and the clustering distance was 
calculated by Euclidean clustering, and those cluster-
ing distances exceeding five times the standard devia-
tion (80,572.36) were considered as outliers and were 
rejected. We finally obtained a total of 307 samples 
(Fig.  3a). WGCNA was conducted for building expres-
sion network, with β = 3 (scale-free R 2 = 0.92) of power 
as a Soft Thresholding to ensure a scale-free network 
(Fig.  3b, c). Here, a total of 26 modules were screened 
(Fig.  3d). The numbers of lncRNAs and PCGs in each 
module are shown in Additional file 2: Table S2. By ana-
lyzing the enrichment level of lncRNAs in each module, 
the number of lncRNAs and PCGs in each module was 
first counted, then the significance of lncRNA enrich-
ment in each module was calculated using Fisher exact 
test with all DE-lncRNAs and DE-PCGs as background. 
The following four modules with significant enrichment 
of lncRNAs were identified: green, pink, magenta, and 
darkgreen (Fig.  3e). The KEGG pathway enrichment 
analysis of the PCGs in the four modules showed that the 
PCGs in these four modules were enriched to a total of 
41 KEGG pathways (Fig. 4a). The pathways enriched by 

the four modules each showed limited intersection, and 
they tended to enrich to different pathways, suggesting 
that different modules may have different functions. The 
green module was found enriched to 19 KEGG pathways, 
and was mainly enriched to p53 signaling pathway, cAMP 
signaling pathway, Glucagon signaling pathway and 
some other pathways significantly related to tumorigen-
esis, development, tumor metabolism of cervical cancer 
(Fig. 4b). The pink module was enriched to the collecting 
duct acid secretion and SNARE interactions in vesicu-
lar transport pathway (Fig. 4c). As shown in Fig. 5D, the 
magenta module was enriched to 6 KEGG pathways, 
which are mainly the pathways related to cardiomyopa-
thy such as Hypertrophic cardiomyopathy (HCM) and 
Dilated cardiomyopathy (DCM) (Fig.  4d). It is known 
that advanced cancers can easily induce great changes 
in metabolism, promote cardiac atrophy, and heart fail-
ure [37]. As shown in Fig.  5e, the darkgreen module 
was enriched to 7 KEGG pathways, mainly to PI3K-Akt 
signaling pathway, Nicotine addiction and other path-
ways related to tumorigenesis and development (Fig. 4e). 
These results indicated that lncRNAs may be directly or 
indirectly involved in important pathways of the tumori-
genesis and development of cervical cancer.

Abnormal expressions of lncRNAs were relevant to CNVs
To analyze the relationship between lncRNA expres-
sions and CNVs, lncRNAs copy number data were 
extracted from 292 cases of cervical cancer cases 

Fig. 2  Volcano gram and distribution of differentially expressed lncRNAs. a Volcano plot of differentially expressed lncRNAs in Cluster1. b Volcano 
plot of differentially expressed lncRNAs in Cluster2. c Volcano plot of differentially expressed lncRNAs in Cluster3. Red is up-regulated lncRNAs, blue 
is down-regulated lncRNAs. d The number of differentially expressed lncRNAs and PCGs genes in the three subtypes. Red is differentially expressed 
lncRNAs and blue is differentially expressed PCGs. e Venn diagram of the intersection of subtype-different lncRNAs and disease-related lncRNAs
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obtained from the TCGA, with copy number greater 
than 1 as the threshold of copy number amplification 
and less than -1 as the copy number deletion threshold. 
The ratio of copy number amplification and copy num-
ber deletion of each lncRNAs and its distribution in the 
genome were analyzed (Fig.  5a). Hwere, copy number 
deletion and copy number amplification showed differ-
ent distributions on different chromosomes. For exam-
ple, most copies of chromosome 3, 4, 8, 11 and 17 were 
absent, while some copies of chromosome 1 and 3 were 
increased. The association distribution between the 
expression profile of lncRNAs and copy number dem-
onstrated an overall positive related trend, and the dis-
tribution in the actual situation was significantly larger 
than that in the random case (p < 2.2e-16) (Fig. 5b). The 

frequently changing regions in the genome of cervical 
cancer patients were detected using GISTIC algorithm, 
and the data revealed many regions with significant 
copy number amplification or deletion of lncRNAs 
(Fig. 5c), suggesting that the abnormal copy number of 
lncRNAs may be related to the occurrence and devel-
opment of cervical cancer. A total of 3 lncRNAs with 
a copy number ratio of more than 25% in each sam-
ple were identified, and their expression differences 
in copy number amplification/deletion and normal 
copied samples were analyzed. The data showed that 
the expressions of lncRNAs in the samples with copy 
amplification were significantly higher than that in the 
samples with normal copies (Fig.  5d), indicating that 

Fig. 3  The co-expression modules of lncRNAs and PCGs were identified by WGCNA analysis. a The hierarchical clustering analysis of samples was 
based on the expression profiles of lncRNAs and PCGs. b Analysis of the scale-free fit index for various soft-thresholding powers (β). c Analysis of 
the mean connectivity for various soft-thresholding powers. d Dendrogram of all differentially expressed genes clustered based on a dissimilarity 
measure (1-TOM). e Relative multiples of lncRNAs ratio and PCG ratio in 25 modules. The value on the right is the significant p value, the horizontal 
axis is the multiple of the ratio of lncRNAs to PCG in the module, and the vertical axis is the module

Fig. 4  KEGG enrichment analysis of four lncRNA enrichment modules. a Network relationship of enrichment results of the four modules (green, 
pink, magenta and darkgreen). b Enrichment results of gene KEGG in green module. c KEGG enrichment results of genes in pink module. d KEGG 
enrichment results of genes in magenta module. e KEGG enrichment results of genes in darkgreen module. The color from red to blue represents 
the p value from large to small, the size of the circle represents the number of genes in the enrichment pathway, with a larger circle representing 
more gene data

(See figure on next page.)
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the abnormal expressions of lncRNAs were related to 
the abnormal copy number.

Identification of lncRNA prognostic markers with abnormal 
copy number in cervical cancer patients and establishment 
of a lncRNA signature
A total of 575 lncRNAs with CNV greater than 15% 
were selected. Univariate Cox analysis was performed 
to examine the relationship between these lncRNAs 
and OS, and we found that 41 lncRNAs significantly 
related to the cancer prognosis p < 0.01 (Additional 
file  3: Table  S3). LASSO Cox regression analysis was 
further performed to analyze the expression pro-
files of these lncRNAs. The change trajectory of each 
independent variable (Fig.  6a) demonstrated that the 
number of independent variable coefficients close to 0 
gradually increased with the gradual increase of lambda 
(Fig. 6b). The model was built using tenfold cross-vali-
dation, and the confidence interval under each lambda 
was analyzed. When lambda = 0.0285, we found that 
the model reached the highest performance, and there 
were 12 lncRNAs, which could serve as the poten-
tial prognostic markers. Furthermore, multivariate 
Cox survival analysis was performed, and 8 lncRNAs 
(Additional file 4: Table S4) with the lowest AIC value 
(AIC = 546.05) were obtained as the final prognostic 
markers to establish a risk regression model:

RiskScore = 0.486*expENSG00000225855 + 2.707*expENSG

00000273125 + 0.573*expENSG00000249306−2.601*expENSG0000

0253490 + 0.096*expENSG00000130600 + 0.768*expENSG0000022

9373−3.111*expENSG00000260898 + 0.684*expENSG00000265096.
The relationship between risk score and lncRNA 

expressions was shown in Fig.  7c. As the risk score 
increased, the mortality rate of the samples also 
increased. 6 high-expressed lncRNAs associated 
with high risk score were a risk factors, while 2 low-
expressed lncRNAs associated with high risk score 
were protective factors (Fig.  6c). One-year, three-year 
and five-year of ROC analysis and prediction showed 
that the model had a high AUC area, and they all had 
an AUC above 0.75 (Fig. 6d). Finally, Zscore of the risk 
score was calculated to divide the samples with a risk 
score higher than zero into high-risk group (N = 114) 
and with a score lower than zero into low-risk groups 

(N = 121). Interestingly, the samples in the high-risk 
group showed significantly worse prognosis than those 
in the low-risk group (p < 0.0001, HR = 3.406, 95% CI: 
1.912–6.064) (Fig. 6e).

In addition, 50% of the 292 samples were randomly 
selected and repeated one thousand times. The model 
was applied to the prognostic prediction of these one 
thousand samples, and the prognostic significance 
p-values were calculated for each calculation (Addi-
tional file 5: Fig. S1B). The prognostic predictive power 
in these samples was observed to show significant dif-
ferences in the prognostic significance p-values for 
each of the one thousand random samples. In addition, 
we also analyzed the correlation between 8 lncRNAs 
(Additional file  5: Fig. S1C), and only a few were sig-
nificantly correlated, as expected there was no covari-
ance among them.

Prognostic model validation and functional analysis 
of the 8‑lncRNA model
To verify the performance of the 8 CNV-related lncRNAs in 
predicting the prognosis of cervical cancer, the risk scores of 
each sample in all TCGA data sets were calculated according 
to the expressions of the samples, and the predictive clas-
sification efficiency of 1-year, 3-year, and 5-year AUC was 
determined. The results showed that the model had a high 
AUC line area above 0.75 (Additional file 6: Fig. S2a). The 
samples were divided into high- and low-risk groups accord-
ing to the threshold, and we found that the prognosis of the 
high-risk group was significantly worse than that of the low-
risk group (p < 0.0001, HR = 3.133, 95%CI:1.854—5.291) 
(Additional file 6: Fig. S2a). To further verify the robustness 
of the model, the GSE44001 data of GPL14951 platform was 
downloaded. The average AUC of 1-year, 3-year, and 5-year 
ROC was all higher than 0.6 (Additional file  6: Fig. S2c). 
Moreover, we also assessed the prognosis of the samples in 
high-risk group and low-risk group, and observed that the 
prognosis of the high-risk group was significantly worse 
than that of the low-risk group (p = 0.036, HR = 1.957, 
95%CI: 1.032–3.707) (Additional file  6: Fig. S2d). These 
data indicated that the performance model of 8-lncRNA 
signature model had a great robustness. To investigate the 
relationship between Riskscore and biological functions of 

(See figure on next page.)
Fig. 5  Abnormal expressions of lncRNAs were positively correlated with abnormal copy numbers. a Distribution of lncRNA copy number 
amplification and deletion in genome. b The correlation distribution between lncRNA expressions and CNVs, light blue represents the distribution 
under random conditions, orange represents the distribution under actual conditions, t-test was used to examine the difference. c The lncRNAs 
located in the focal CNA peaks are cervical cancer-related. False-discovery rates and scores from GISTIC 2.0 for alterations (x-axis) are plotted against 
genome positions (y-axis); dotted lines indicate the centromeres. The deletions (right, blue) and amplifications (left, red) of lncRNAs genes are also 
shown. The green line represents 0.05 (FDR) as cut-off point that determines significance. d The expressions of lncRNAs in the samples with copy 
amplification are significantly higher than that in the samples with normal copies
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Fig. 6  Screening of lncRNA prognostic markers and establishment of prognostic models. a The number of genes is increasing as lambda increases, 
the horizontal axis represents the log value of the independent variable lambda, and the vertical axis represents the coefficient of the independent 
variable. b Confidence interval under each lambda. c Risk score, survival time, survival status and expression of the 8-lncRNA signature in the 
training set. d ROC curve and AUC of the 8-lncRNA signature in training set. e KM survival curve distribution of the 8-lncRNA signature in the 
training set
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different samples, risk score was correlated with the enrich-
ment score of KEGG pathways in each sample. KEGG path-
ways with a correlation greater than 0.4 and FDR < 0.01 
contained 20 pathways (Additional file  6: Fig. S2e). Inter-
estingly, these 20 pathways were negatively correlated with 
Riskscore and mainly included T CELL RECEPTOR SIGN-
ALING PATHWAY, B_CELL_RECEPTOR_SIGNALING_
PATHWAY, CYTOSOLIC_DNA_SENSING_PATHWAY, 
CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 
and some other immune-related pathways. The results sug-
gested that the samples from the high-risk group and the 
low-risk group may have different immune microenviron-
ments, and that these lncRNAs may be involved in tumor 
progression by affecting immune-related pathways.

Comparison of 8‑lncRNA prognosis model with clinical 
features and the existing models
To identify the independence of the 8-lncRNA sig-
nature, the relationship between T, N, M stage, age, 
and risk score and prognosis was analyzed by Univari-
ate and multivariate Cox regression analysis. Univari-
ate Cox regression analysis showed that N stage, TNM 
stage and risk score were significantly related to survival 
(Additional file  7: Fig. S3a), However, multivariate Cox 
regression analysis found that only risk score (p < 0.0001, 
HR = 3.425, 95% CI: 1.922–6.104) was significantly corre-
lated with prognosis (Fig. S3B). Thus, the data revealed 
that the 8-lncRNAs signature can serve as a prognostic 
predictor independent of clinical characteristics. Fur-
thermore, we compared the 8-lncRNA signature with 
four recently reported prognostic-related risk models, 
namely, the 4-lncRNA signature by sun et  al. [33], the 
10-lncRNA signature by Shen et  al. [34], the 9-lncRNA 
signature by Yu et  al. [35], and the 6-lncRNA signature 
by Luo et  al. [36]. In order to ensure the comparabil-
ity of the models, according to the corresponding genes 
in these 4 models, the same method was used to calcu-
late the risk score of each cervical cancer sample in the 
TCGA dataset and ROC of each model, and KM survival 
curve was plotted. Although the prognosis of the Risk-H 
and Risk-L group samples of the four models were sig-
nificantly different, the AUC prediction accuracy of the 
four models was lower than that of our 8-lncRNA model 
(Additional file  7: Fig. S3C-F). The restricted mean sur-
vival of these four models was also compared with our 
8-lncRNA model. We observed that the 8-lncRNA model 
was more accurate in predicting a longer follow-up time 
and the C-index was higher than the other four models 
(Additional file  7: Fig. S3g). Similarly, the DCA results 
showed that the risk score of the 8-lncRNA model devel-
oped in this study was far more indicative than the other 
four subtypes (Additional file 7: Fig. S3H). These results 

suggested that the 8-lncRNA signature is a new reliable 
prognostic marker independent of clinical stages.

Discussion
With the rapid development of next-generation sequenc-
ing and mass spectrometry technology, the biological 
complexity of tumors and the genetic etiology of cervical 
cancer has been increasingly elucidated and developed. 
In this study, we identified three prognostic molecular 
subtypes of cervical cancer based on multidimensional 
omics analysis, and screened subtype-specific lncRNAs 
and PCGs. Based on weighted co-expression analysis of 
the type-specific lncRNAs, three subtypes were found 
significantly related to the metabolism, immunity and 
other pathways of cervical cancer, suggesting that the 
subtype-specific lncRNAs may play different roles in the 
occurrence and development of cervical cancer and have 
different effects on the tumor progression. The relation-
ship between the expressions of these lncRNAs and copy 
numbers were systematically analyzed, and the results 
demonstrated that the expressions of these lncRNAs 
were highly correlated with copy number amplification 
and deletion. LncRNAs with copy amplification tended 
be high-expressed, while those with deletion tended to be 
low-expressed. Based on CNVs and lncRNA expressions, 
8 lncRNAs were identified as the potential prognostic 
markers for cervical cancer. The 8-lncRNA signature 
showed an accurate predictive performance in both the 
training set and the verification set, and can therefore 
be used as an independent prognostic factor for cervical 
cancer. Compared with other existing lncRNA signa-
tures, our 8-lncRNA signature showed more stable pre-
dictive performance and higher AUC.

Past studies have shown that integrating multiomics 
clustering, such as iCluster, intNMF, Similar Network 
Fusion (SNF), could reveal tumor heterogeneity and 
actual prognostic features. In this study, multidimen-
sional data processing was performed using iCluster 
based on a joint latent variable model of cervical cancer. 
The most noticeable feature of iCluster is the combi-
nation of estimated unobserved variables such as copy 
number data, mRNA expression data, and methylation, 
also iCluster can reduce the dimensionality of the data 
set without changing the sample size. Our algorithm 
matrix had a cohort of 292 cervical cancer patients, 
and the genome and epigenome contained three omics 
data, including mRNA, CNV, and methylation, which 
showed unique molecular characteristics and prognos-
tic relevance. The prognosis of the Cluster3 subtype was 
poor, while the results of the Cluster2 subtype were the 
most favorable. Recent studies found that CNVcor and 
methylation-related genes (METcor) are significantly 
co-regulated, moreover, the integration of CNVcor and 
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METcor genes have identified three molecular subtypes 
in liver cancer [38]. This suggested the significance of 
establishing a comprehensive prognostic molecular sub-
type based on genome and epigenome. In this study, 
we compared mutation profiles of the three molecular 
subtypes, and discovered that TTN, PIK3CA, KMT2C 
and MUC4 mutations were more common than other 
genes. Noticeably, the PIK3CA mutation is related 
to the resistance of cervical cancer to the treatment 
[39]. MUC4, which is a transmembrane glycoprotein 
expressed higher in cervical dysplasia than in benign 
cervical epithelium, is also related to lymph node metas-
tasis of cervical cancer [40].

The occurrence and development of cancerous 
changes are often associated with enormous genomic 
mutations, including small size mutations (SNPs) and 
CNVs, loss of copy number, duplication, and amplifi-
cation. CNV is a hallmark of cancer and often causes 
abnormal copy numbers, including amplification, 
increase, loss, and deletion. CNV plays an important 
role in regulating the expressions of PCGs and lncRNAs 
and the activation of multiple signaling pathways. It is 
known that CNV has critical functions in the develop-
ment of various tumors, such as ovarian cancer [41], 
breast cancer [42], endometrial cancer [42].

Although we identified potential lncRNAs predictive 
of the prognosis of cervical cancer from large samples 
by applying bioinformatics techniques, some limita-
tions still exist in this study. Firstly, the sample lacked 
clinical follow-up information, thus, factors such as 
the presence of other health conditions were not con-
sidered during the identification of the biomarkers. 
Secondly, the results obtained by bioinformatics analy-
sis alone were not convincing enough, which requires 
further experimental verification. Therefore, genetic 
and experimental studies with larger sample sizes and 
experimental validation are needed.

Conclusion
To conclude, we identified prognostic-associated molec-
ular subtypes by conducting Multi-omics analysis. 8 
lncRNAs with abnormal copy numbers were determined 
as prognostic markers, and an 8-lncRNA prognostic lay-
ering system was developed. The 8-lncRNA signature 
showed a high AUC in both training and validation sets, 
and was independent of clinical features. Compared with 
clinical features, the 8-lncRNA classifier could greatly 
improve the accuracy of predicting survival risk. There-
fore, this classifier can be used as a reliable molecular 
diagnostic model in evaluating the prognostic risk of 
patients with cervical cancer.
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