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Abstract 

Asthma is an inflammatory disease of the lung airway network, which is initiated and perpetuated by allergen-specific 
CD4+ T cells, IgE antibodies, and a massive release of Th2 cytokines. The most common clinical manifestations of 
asthma progression include airway inflammation, pathological airway tissue and microvascular remodeling, which 
leads to airway hyperresponsiveness (AHR), and reversible airway obstruction. In addition to inflammatory cells, a tiny 
population of Regulatory T cells (Tregs) control immune homeostasis, suppress allergic responses, and participate in 
the resolution of inflammation-associated tissue injuries. Preclinical and clinical studies have demonstrated a tremen-
dous therapeutic potential of Tregs in allergic airway disease, which plays a crucial role in immunosuppression, and 
rejuvenation of inflamed airways. These findings supported to harness the immunotherapeutic potential of Tregs 
to suppress airway inflammation and airway microvascular reestablishment during the progression of the asthma 
disease. This review addresses the therapeutic impact of Tregs and how Treg mediated immunomodulation plays a 
vital role in subduing the development of airway inflammation, and associated airway remodeling during the onset of 
disease.
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Background
Asthma is an inflammatory disease of the lungs, which 
leads to wheezing and exacerbates breathing in the 
affected patients, and globally more than 339 million 
people are suffering, and more than 80% of asthma-
associated fatalities occur in low-income countries and 
therefore new therapeutics are warranted to subdue and 
control asthma [1–8]. Pathologically, the progression 
of asthma is defined by airway epithelium hyperplasia, 
mucus cell metaplasia, increased airway smooth muscle 
mass, and increased deposition of extracellular matrix 
proteins, which disarray normal functioning of the 
lung airway system [9]. Airway inflammation is medi-
ated by T cells, B cells, macrophages, eosinophils, and 

activated complement fragments, which play a critical 
role in tissue injury, and remodeling [6, 10–14]. Airway 
tissue associated remodeling phase refers to structural 
perturbations during asthmatic airway inflammation, 
and these perturbations are initiated and regulated 
through a series of cellular and molecular responses 
[15–20]. The conventional therapeutic formulations to 
control asthma have focused on the use of potent anti-
inflammatory drugs, particularly steroids, which have 
broad-spectrum suppressive activity against effector 
cells and their mediators [21]. Management and control 
of asthma include inhaled corticosteroids, bronchodi-
lators (β-agonists and anticholinergics), theophylline, 
leukotriene-receptor antagonists, leukotriene synthe-
sis inhibitors, anti-IgE antibodies, anti-IL5 antibodies, 
and anti-IL4/IL13 antibodies [22–25]. Although, most 
popular glucocorticoid regimens are potent in most 
asthma patients but ineffective to support continuous 
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respite of disease without repeated long-term adminis-
tration, which can be associated with serious toxic side-
effects, and fail to control the disease in a large number 
of asthma patients [26].

Airway inflammation
Airway inflammation during asthma is characterized by 
the accumulation of Th2 type cells, IgE, and eosinophils, 
which leads to airway hyperresponsiveness and tissue 
remodeling. As a result, this inflammatory condition is 
related to a defective T cell immune response to vari-
ous environmental allergens. Inflammation associated 
airway remodeling in lung diseases mainly represents 
structural changes associated with a reduction in lung 
functions, which includes sub-epithelial fibrosis, airway 
smooth muscle hypertrophy, hyperplasia, tissue eosino-
philia, and epithelial injuries [11, 12, 15, 27–31]. These 
inflammatory responses are usually suppressed by Tregs, 
which maintain airway immunotolerance through IL-10, 
which is a vital immunosuppressive and antifibrotic 
cytokines secreted by the majority of regulatory cells 
[32–36]. During an immune response, Th1 cells produce 
IL-2 and IFN-γ; they are important in immune responses 
in allergic inflammation while Th2 cells are essential in 
allergic inflammation through IL-4, IL-5, IL-9, and IL-13 
cytokines [1, 37–39]. Th1 cells secreted IFN-γ has inhibi-
tory effects on Th2 cells, and during allergic inflamma-
tion, it suppresses isotype switching of IgE and it can also 
stimulate cell-mediated cytotoxic effects [1]. Further-
more, Th17 cells are a distinct lineage of Th cells express-
ing IL-17 and mediate neutrophilic type inflammation 
and exacerbate Th2 mediated-allergic inflammation [40, 
41].

Clinical manifestations of asthma are characterized by 
airway inflammation, airway obstruction, airway hyper-
responsiveness, and massive infiltration of eosinophils, 
neutrophils, T lymphocytes, and mast cells in the airway, 
which play a crucial role in the initiation and progression 
of chronic airway inflammation and airway remodeling 
[10, 12, 32, 39, 42–44]. The development and prevailing 
of asthma pathogenesis are highly modulated by both the 
inflammation of airways and mucosal injury inflicted by 
chronic inflammation. The activation of mast cells and 
eosinophils, and the subsequent release of leukotrienes 
(LTB4, LTE4, LTD4), cationic proteins (histamine), ser-
ine proteases, chemical inflammatory mediators, and 
cytokines make them crucial to lead the epithelium inju-
ries [45, 46]. This results in the activation and release of 
fibrogenic cytokines (TGF-β1) to initiate the process of 
myofibroblast proliferation, which leads to the progres-
sion of subepithelial fibrosis, angiogenesis, smooth mus-
cle hyperplasia, and mucus gland hypertrophy [47–49].

Airway microvascular remodelling
Clinical studies have shown the role of Tregs in human 
asthma, but these studies have been hampered by the 
lack of a clear correlation between Tregs and airway 
microvascular remodeling, which is the main pathologi-
cal symptoms of asthma [50, 51]. In healthy lungs, the 
airway microvasculature supplies key vital functions nec-
essary for maintaining a normal physiological process 
[52]. In particular, it delivers oxygen and nutrients, and 
act as a primary site for most of the humoral immune 
response to foreign antigens, which confers the first line 
of immunity before the onset of disease. Microvascu-
lar remodeling during airway inflammation mainly trig-
gers though the pro-angiogenic action of growth factors 
and inflammatory mediators, and as seen in both human 
asthma and allergic reaction that airway microvascula-
ture affected during the progression of the disease, which 
further signifies the key involvement of microvascula-
ture and airway remodeling during asthma [29, 53–55]. 
Previous investigations on airway microvascular remod-
eling in chronic airway inflammation demonstrated that 
microvascular components of airway remodeling are the 
vital contributors to the alteration of the airway wall in 
asthma and COPD (Chronic obstructive pulmonary dis-
ease) progression [43, 56]. Airway microvascular altera-
tions as seen in patients with asthma are accompanied by 
a rise in airway blood flow and diminished β2-adrenergic 
vasodilator responsiveness, suggesting the presence of 
endothelial dysfunction, increased microvascular per-
meability and edema are common features during vas-
cular remodeling in bronchial asthma [54, 57–59]. While 
most studies identify the immunosuppressive proper-
ties of FOXP3+ Tregs to control allergic airway inflam-
mation, these studies do not explain any impact of Tregs 
in microvascular changes and associated remodeling, 
as reported in clinical conditions [60]. Increased micro-
vascular permeability and edema are common features 
during vascular remodeling in bronchial asthma [57], 
however, most previous investigations on airway micro-
vascular remodeling in chronic airway inflammation 
extracted clinical outcomes of patients with asthma, and 
these data demonstrated that microvascular compo-
nents of airway remodeling are vital contributors to the 
alteration of the airway wall in asthma progression [15, 
43, 54]. Interestingly, these airway microvascular pertur-
bations are also seen during the development of COPDs 
[56]. Most of the ongoing therapies target the suppres-
sion of inflammatory response without modulating the 
actual pathogenic mechanism. Although glucocorticoids 
are the first drug choice to subdue airway inflamma-
tion, glucocorticoid treatment is also associated with the 
expression of IL-10, FOXP3 (Forkhead box P3) mRNA, 
and induction of Tregs in bronchoalveolar lavage (BAL) 
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of asthmatic patients [61–63]. These observations specu-
lated that the presence of Tregs in BAL is crucial to play 
an immunoregulatory role in mediating the suppressive 
effect of corticosteroids [64–67]. In the last decade, sev-
eral therapeutic alternatives for asthma cure have been 
acquired; however, their selectivity limits their success 
because asthma pathology is a multifactorial event. Alto-
gether, these airway microvascular changes in asthma 
and COPD are strongly associated with airway inflamma-
tion and contribute to an increase in airway wall thick-
ness, which is associated with disease progression [54].

Regulatory T cells
Various T cells have the potential to mediate targeted 
immunosuppression, but FOXP3+ Treg has emerged as 
a dominant cell type; they are involved in maintaining 
tolerance during asthma inflammation [68]. Tregs are 
potent immunosuppressive cells that are key in maintain-
ing the homeostatic balance during dysregulated immune 
responses, which is a critical feature of asthma inflam-
mation [69–74]. Tregs are generated in the thymus as a 
functionally mature T cell subset and in the periphery of 
naive T cells and are crucial in maintaining immunologi-
cal unresponsiveness to self-antigens, and suppressing 
heightened immune responses destructive to the tis-
sue during asthma inflammation [12, 69, 75–83]. Tregs 
play a vital role in modulating and regulating immune 
responses by establishing the phase of immunotoler-
ance and negating toxic inflammatory reactions, which 
are essential to maintain routine tissue repair as seen in 
several preclinical and clinical studies [60, 62, 84]. Tregs 
(CD4+/CD8+) are characterized by intracellular expres-
sion of FOXP3, and mainly secrete various key regula-
tory cytokine, which includes IL-10, TGF-β to suppress 
heightened immune responses, and trigger inducible 
Treg expansion [85]. FOXP3+ natural Tregs and periph-
eral induced Tregs are key in maintaining immunotoler-
ance against mucosal injury, pathogenic alloimmunity, 
diabetes, and facilitate tolerance induction in murine 
models of organ transplantations [77, 81, 86–88].

Treg regulates immune responses through the release 
of key regulatory cytokines, IL-10, and TGF-β and mod-
ulates inflammation [68, 89]. Treg-mediated immuno-
suppression mainly operates through the secretion of 
suppressive soluble factors (IL-10, TGF-β, IL-35, Fibrin-
ogen-like protein 2, CD39, and CD73), cell contact-medi-
ated suppression (through Galactin-1, CTLA-4, LAG-3), 
and competition for growth factors (e.g. IL-2) [90]. The 
clinical demand for Treg cell-based immunotherapy is 
rapidly rising, and different Treg subsets including natu-
ral Tregs, induced Tregs, CD8+ Treg cells, and regulatory 
cells has been reported in various preclinical and clini-
cal studies of asthma, which highlighted a crucial link of 

airway inflammation, airway remodeling and associated 
immunosuppressive roles of regulatory T cells to counter 
the ongoing cellular and tissue dysfunctions [86, 91, 92].

Immunoregulatory therapies that balance from Th2 to 
Th1 paradigm have also been investigated but with lim-
ited success in clinical trials [93], and in numerous mouse 
models to investigate the immunological mechanism of 
asthma pathogenesis [94, 95], which further highlighted 
a modulatory role of regulatory cell mechanism to negate 
the inflammatory effects of most of the inflammatory 
cells [12]. Furthermore, several research investigations 
highlighted the cellular and molecular basis of Treg 
development and functions and implicate Treg dysregu-
lation in major pulmonary diseases, including asthma 
[96]. The role of Tregs in asthma is scanty, and quite a few 
studies have reported their clinical benefits, which show 
that depletion of FOXP3+ Tregs augments, whereas the 
reconstitution of Tregs subdues lung allergic responses 
and in some studies of airway hyperresponsiveness 
(AHR) [97–99]. Alternatively, Treg depletion before sen-
sitization is proven sufficient to augments the severity 
of inflammation, and AHR in the lung [100]. Adoptive 
transfer of Tregs has been proven sufficient to subdue 
inflammation before the start of tissue inflammation and 
microvascular repair [77, 79]. These studies emphasized 
that the reconstitution of antigen-specific FOXP3+ Tregs 
was found to subdue allergic inflammatory responses and 
hyper reactivity via the IL-10 dependent pathway [33, 
81, 101], and further downregulated established inflam-
mation and prevent airway remodeling when injected 
after disease onset [102]. The therapeutic application of 
Tregs has been tested in clinical and preclinical platforms 
to achieve desired immunosuppression and to suppress 
asthma inflammation [89, 102–107].

Immunosuppression
Tregs have been reported in suppressing Th2 medi-
ated immune responses to allergens and subdue allergic 
inflammatory conditions, and numerous preclinical stud-
ies have shown that the adoptive transfer of antigen-spe-
cific Tregs subdues the onset and progression of asthma 
in mice [84, 99, 101, 108]. Generally, Tregs prevent the 
generation of immune responses to self-antigens and 
other foreign antigens, including allergens, also limit 
immune responses to pathogens, protecting tissue from 
severe injuries [81]. Tregs modulate Th2-mediated lung 
inflammation, and their therapeutic potential is best 
described by evidence that therapies with Treg in aller-
gic and asthma disease are associated with the induc-
tion or restoration of Treg function, e.g. glucocorticoids, 
allergen immunotherapy [63]. Tregs mediated immuno-
suppression has the potential to protect against allergic 
inflammation and asthma pathogenesis [92, 108, 109]. 
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The primary immunosuppressive and regulatory function 
of Tregs is to control immune responsiveness and regu-
late hyper-airway response [92, 110]. Tregs are involved 
in maintaining immunological unresponsiveness to self-
antigens, inhibit alloimmune inflammatory responses 
[79], counteract self-reactivity, neutralizing killer T cells 
during an inflammatory phase [111], and more specifi-
cally contribute to suppressing worsened immune reac-
tions, which is destructive to the airway epithelium and 
normal physiological outcomes.

Treg operates through various immunosuppressive 
functions that regulate T lymphocyte, antigen-presenting 
cell, and innate cell functions through cell-contact, com-
petition for essential growth factors, cytotoxicity [92, 96]. 
During allergic inflammation, Tregs mediate immuno-
suppression through the release of inhibitory cytokine 
IL-10, TGF-β, or by cell surface molecules [110, 112]. 
IL-10 mainly suppresses the effects of pro-inflammatory 
cytokines, restores epithelial layer integrity, tissue heal-
ing, and inhibits the survival and migration of eosinophils 
during allergic inflammation. IL-10 also down-regu-
lates IL-4 induced isotype switching of activated B-cells 
[36, 108, 113]. Besides, Tregs have been associated with 
the maintenance of immune responses, and secreted 

immunosuppressive cytokines such as TGF-β, IL-10, and 
IL-35 are involved in immune responses following anti-
gens/allergen exposure [114, 115] (Fig. 1). 

In addition to the cytokine-mediated suppressive 
activity, Tregs are also mediate suppressive functions 
through the release of perforin and granzymes B and 
the release of cyclic adenosine monophosphate (cAMP) 
[90]. However, some clinical studies also validated 
these roles when treatment with glucocorticoster-
oids in asthmatics might increase this FOXP3 protein 
expression within Tregs in humans, and revealed the 
suppression of Tregs number as reported from lung tis-
sue in a model of asthma [63] while asthmatic patients 
have been reported to show decreased FOXP3 protein 
expression within their CD4+ CD25high T regulatory 
cells repertoire [116]. Data collected from patients with 
asthma further highlighted the crucial role of Treg, 
which reported lower Tregs ratio and FOXP3 mRNA 
expression, and lower levels in peripheral blood mon-
onuclear cells may be associated with asthma patho-
genesis in humans [117]. A significant number of 
murine models of allergic inflammation/asthma have 
been adopted, although none replicates all pathologi-
cal parameters of human asthma conditions [94, 118]. 
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However, studies in animal models of allergic airway 
inflammation have investigated a fair amount of pre-
clinical and clinical research, which included the key 
roles of FOXP3+ Treg, IL-10, and TGF-β in asthma 
prevention [108]. In other clinical studies, adop-
tive transfer of purified antigen-specific FOXP3+Treg 
cells in pre-sensitized mice suppressed AHR, eosino-
phil recruitment, and Th2 cytokine release through 
the release of IL-10 and TGF-β, while the depletion of 
CD25+ Tregs before an allergen challenge shifted Th2 
cytokine upregulation, IgE levels, eosinophilia, and 
AHR in allergy-resistant mice (C3H strain), concluded 
that Treg control disease resolution [99, 100, 119]. 
Altogether these previous investigations proved the 
therapeutic value of Treg to resolve established aller-
gen-induced pulmonary inflammation (eosinophilia, 
Th2 infiltration, IL-5, IL-13, and TGF-β, but also pre-
vent the progression of airway remodeling, and reduce 
mucus hypersecretion and peribronchial collagen 
deposition [99, 100]. Treg secreted IL-10 is a key anti-
inflammatory and immunoregulatory cytokine that has 
distinct pleiotropic effects on both innate and adaptive 
immunity [120]. Primarily, it restrains inflammation 
and immune response and extensively participates in 
immunity activities by regulating cell proliferation, dif-
ferentiation, and the function of T cells, B cells, mac-
rophages, and endothelial cells [108]. IL-10 is produced 
by FOXP3+ Tregs and is also secreted by B cells, natural 
killer cells, antigen-presenting cells (APCs), mast cells, 
granulocytes. IL-10 can subdue the release of major 
pro-inflammatory cytokines such as IFN-γ, IL-2, IL-3, 
and TNF-α produced by Th1 cells, activated T helper 
cells, mast cells, NK cells, endothelium, eosinophils, 
and macrophages [33, 108]. Further, IL-10 can modu-
late Tregs to conserve the intracellular expression of 
FOXP3 and suppressive functions [121, 122]. IL-10 
has wide immunosuppressive and anti-inflammatory 
properties suitable to attenuate asthma pathology [123, 
124]. It is a powerful inhibitor of major proinflamma-
tory cytokines and acts on antigen-presenting cells 
to subdue T lymphocyte activation (Th2), suppresses 
effector cells, mast cells, and eosinophils [33, 108, 
114]. In addition, IL-10 augments IgG4 release, which 
plays a key protective in allergic responses but inhib-
its IgE [91]. Many clinical studies have reported higher 
IL-10 in allergic and asthmatics compared to healthy 
individuals [125]. IL-10 has been involved in effective 
immunosuppression of allergic immune reactions in 
the lung [101, 104, 126], which signifies dependence 
on IL-10 and further highlights the T regulatory cell-
mediated modulation of pulmonary immune responses. 
These preclinical reports validated the key role of Tregs 
during airway remolding and disease progression, and 

key secreted anti-inflammatory cytokine-IL-10 play 
a vital role in airway allergic immunomodulation to 
maintain pulmonary physiological functions, and as 
reported, IL-10 suppresses Th1- and Th2-type immune 
responses, inhibits mast cells, eosinophils mediators, 
and pro-inflammatory cytokines [33, 108, 127]. Also, 
decreased IL-10 has been observed in allergic and asth-
matic diseases compared with healthy control subjects 
[33]. Collectively, these regulatory networks are crucial 
to harness the reparative activity of Tregs, which could 
be an important therapeutic advantage in modulating 
allergic inflammation [90].

Conclusions
Tregs mediated immunotherapy is a relatively new 
addition in modern drug development and therapeu-
tics, and tend to replace conventional immunotherapy 
without negligible side effects in various inflamma-
tion-associated diseases including asthma. Modern 
drug discovery plan is quickly drifting toward a bio-
logical mode of therapeutic agents, which involve 
cells and their unique products to rescue the disease 
with minimum side effects, and global research is 
now in a new era with the introduction of clinical tri-
als investigating the safety and potential therapeutic 
role of Treg therapy to rescue asthma exacerbations. 
The multi-regulatory action of Tregs recognized them 
as a potential candidate to rescue the occurrence of 
progressive inflammatory modulations, and superi-
ority over the current immunosuppressive regimen, 
which makes this approach more of therapeutic value 
and will significantly minimize the cost of current 
immunosuppression for future medicine. These facts 
inspire the need for more specific therapies with the 
potential to support long-term recovery without side 
effects, and immunotherapeutic based on the under-
standing of Treg response to the pathophysiology of 
asthma could have overwhelming benefits for the cure 
of patients with asthma. In this review, we discussed 
airway inflammation, remodeling and Treg mediated 
protection to the progression of asthma pathogenesis. 
Therefore, the therapeutic use of Tregs to target effec-
tor responses may be the key approach to modulate the 
underlying cause of asthma disease, and to harness the 
immunoregulatory potency is of utmost requirement in 
asthma.
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