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Abstract 

Background:  Accurate lymph node metastasis (LNM) prediction in colorectal cancer (CRC) patients is of great 
significance for treatment decision making and prognostic evaluation. We aimed to develop and validate a clinical-
radiomics nomogram for the individual preoperative prediction of LNM in CRC patients.

Methods:  We enrolled 766 patients (458 in the training set and 308 in the validation set) with clinicopathologically 
confirmed CRC. We included nine significant clinical risk factors (age, sex, preoperative carbohydrate antigen 19-9 
(CA19-9) level, preoperative carcinoembryonic antigen (CEA) level, tumor size, tumor location, histotype, differen-
tiation and M stage) to build the clinical model. We used analysis of variance (ANOVA), relief and recursive feature 
elimination (RFE) for feature selection (including clinical risk factors and the imaging features of primary lesions and 
peripheral lymph nodes), established classification models with logistic regression analysis and selected the respec-
tive candidate models by fivefold cross-validation. Then, we combined the clinical risk factors, primary lesion radiom-
ics features and peripheral lymph node radiomics features of the candidate models to establish combined predictive 
models. Model performance was assessed by the area under the receiver operating characteristic (ROC) curve (AUC). 
Finally, decision curve analysis (DCA) and a nomogram were used to evaluate the clinical usefulness of the model.

Results:  The clinical-primary lesion radiomics-peripheral lymph node radiomics model, with the highest AUC value 
(0.7606), was regarded as the candidate model and had good discrimination and calibration in both the training and 
validation sets. DCA demonstrated that the clinical-radiomics nomogram was useful for preoperative prediction in the 
clinical environment.

Conclusion:  The present study proposed a clinical-radiomics nomogram with a combination of clinical risk factors 
and radiomics features that can potentially be applied in the individualized preoperative prediction of LNM in CRC 
patients.
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Background
Colorectal cancer (CRC) is the third most common can-
cer and the fourth leading cause of cancer death world-
wide [1]. Lymph node metastasis (LNM) is the main 
metastatic mode of CRC and an important cause of 
postoperative recurrence and death [2]. At the same 
time, the metastasis of lymph nodes (LNs) determines 
the surgical range of CRC, the formulation of adjuvant 
treatment plans, and the postoperative survival rate of 

Open Access

Journal of 
Translational Medicine

*Correspondence:  gyang@phy.ecnu.edu.cn; t983352@126.com
†Menglei Li and Jing Zhang contributed equally to this work and should 
be considered equal first authors
1 Department of Radiology, Fudan University Shanghai Cancer Center, 
Fudan University, Shanghai 200032, People’s Republic of China
3 Shanghai Key Laboratory of Magnetic Resonance, East China Normal 
University, Shanghai 200062, People’s Republic of China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-020-02215-0&domain=pdf


Page 2 of 10Li et al. J Transl Med           (2020) 18:46 

patients [3–5]. Currently, surgical treatment is the pre-
ferred method for the treatment of CRC. However, the 
operative treatment is relatively invasive, costly, and 
associated with considerable surgery-related morbidity. 
The postoperative mortality of colon and rectal cancer 
surgery has been reported to be approximately 3–6% [6]. 
For early colorectal cancer (ECC), local treatment such as 
endoscopic local resection is considered feasible manage-
ment for patients without LNM because of its low risk of 
metastasis (3.6–16.2%) [7, 8]. In other words, additional 
radical resection may be unnecessary for ECC without 
LNM to avoid overtreatment. It is well known that LN 
status is a key factor in the TNM staging of CRC. For 
patients with stage III and IV CRC, modern treatment 
regimens have a significant impact on long-term survival. 
Therefore, determining the status of LNs is the main 
determinant of adjuvant chemotherapy [5, 9]. Multiple 
large studies have shown that the LNM rate (LNR) is an 
important predictive factor for estimating the prognosis 
of CRC [2, 10, 11]. Therefore, adequate and accurate LN 
status assessment and prediction are important for treat-
ment decision making and prognostic evaluation in CRC.

At present, an increasing number of studies are try-
ing to explore the relevant risk factors for tumorigenesis 
and metastasis from the perspective of tumor molecular 
immunology or genetics [12–14]. For instance, Zhang 
et  al. [12] found that IBSP, MMP9, TNFAIP6, DHRS3, 
RIPK4, and CD200 had diagnostic value for patients 
with breast cancer bone metastasis. Studies on risk fac-
tors associated with CRC are also emerging [7, 8, 15, 16]. 
For example, the group of Jerome Galon has extensively 
investigated the important impact of immune-related 
characteristics and the tumor microenvironment on 
the prognosis and metastasis of CRC [16]. However, the 
limitation of using those risk indicators to assess LNM in 
CRC patients is that some of the influencing factors are 
related to histopathological information, which cannot 
be obtained before surgery to guide clinical treatment. In 
clinical practice, computed tomography (CT) is the most 
commonly used preoperative imaging method for detect-
ing metastatic lesions and performing tumor staging in 
patients with colorectal cancer. However, the limitation 
of CT examination is that it cannot accurately identify 
the benign and malignant lymph nodes [17]. Hence, we 
need to develop more powerful and sensitive diagnostic 
tools to improve the diagnostic accuracy of LNM in CRC 
patients.

In recent years, with the advancement of computer 
technology and the realization of the storage and shar-
ing of medical image data, radiomics has become an 
emerging research method for extracting lesion informa-
tion using artificial intelligence methods to aid clinical 
decision making. Radiomics is the process of converting 

medical images into high-dimensional mineable data 
through the high-throughput extraction of image features 
[18, 19]. At present, some studies have demonstrated the 
feasibility of radiomics for the prediction of CRC LNM. 
Huang et al. [20] established a radiomics model for pre-
dicting CRC LNM (C-index: 0.778) that had favorable 
discrimination and calibration and incorporated clinico-
pathological risk factors, the CT-reported LN status and 
a radiomics signature. However, in their study, only the 
radiomics features of the primary tumor were extracted 
and analyzed, and the radiomics features of the LNs 
themselves were not explored.

Therefore, in this study, we sought to analyze and 
explore the performance of clinical risk factor and radi-
omics signatures, including imaging features of the pri-
mary lesion and peripheral LNs, in predicting LNM. 
Then we built and validated a combined clinical-radiom-
ics nomogram as a useful clinical tool for the individual-
ized preoperative prediction of LNM in CRC patients.

Methods
Patients
Our Institutional Review Board (Fudan University 
Shanghai Cancer Center Medical Ethics Committee) 
approved this study and waived the requirement for 
obtain informed consent. A total of 766 consecutive 
CRC patients (341 females and 425 males, mean age 
58.96 ± 12.03  years, age range 19–87  years) who were 
treated between May 2012 and December 2015 were 
enrolled in our study according to the following inclusion 
criteria: (i) performance of standard contrast-enhanced 
CT examination less than 10 days before any treatment; 
(ii) pathological confirmation of CRC; (iii) performance 
of LN dissection; (iv) availability of complete CT datasets 
and reconstructed images; and (v) availability of clinical 
and pathological information. The exclusion criteria were 
as follows: (i) preoperative neoadjuvant chemotherapy or 
radiotherapy; and (ii) presence of other tumor diseases 
during the same period. The patients were allocated to a 
training and a validation set at a ratio of 6:4 by the scan-
ning date: the early data before the 60th percentile scan-
ning date were allocated to the training set, and the other 
data were allocated to the validation set. The patient 
recruitment pathway is shown in Fig. 1.

The baseline clinical characteristics and pathologic data 
of each patient, including age, sex, preoperative carbo-
hydrate antigen 19-9 (CA19-9) level, preoperative carci-
noembryonic antigen (CEA) level, pathological grading, 
histotype, tumor location, tumor size and M stage, were 
all derived from medical records and were preoperatively 
available. The CT reports of the enrolled patients were 
also collected.



Page 3 of 10Li et al. J Transl Med           (2020) 18:46 

Image acquisition and segmentation
All patients underwent contrast-enhanced abdominal or 
pelvic CT according to standard clinical scanning proto-
cols (120 kV, 200 mA, and slice thickness of 5 mm) with 
the Brilliance (Philips Healthcare) and the Sensation 64 
(Siemens Healthcare) systems. All images were recon-
structed with a standard reconstruction kernel as fol-
lows: slice thickness, 5.0 mm; pitch, 1.4 or 0.9; increment, 
5.0  mm; matrix, 512 × 512; and field of view, 4.11  cm. 
We retrieved all reconstructed images from the picture 

archiving and communication system (PACS) in the hos-
pital for image segmentation and analysis.

Three-dimensional semiautomatic segmentation was 
conducted by an operator (ML, graduate student) with 
ITK-SNAP software (v3.6.0; www.itksn​ap.org) and then 
validated by a senior expert radiologist (TT, with 11 years 
of experience in CRC). In this study, the regions of inter-
est (ROIs) included the primary lesion and the peripheral 
LN, which were drawn on the portal venous enhanced 
CT images along the lesion contour on each consecutive 

Fig. 1  Flow chart of patients’ recruitment pathway

http://www.itksnap.org
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slice within the borders of the primary tumor lesions, 
excluding adjacent air, vessels, fat and normal tissues.

Radiomics feature extraction and selection
We extracted radiomics features from each ROI with 
PyRadiomics (http://pyrad​iomic​s.readt​hedoc​s.io/en/
lates​t/index​.html). Because of some impact on the imag-
ing features, we normalized each CT image by centering 
it at the mean with standard deviation to eliminate the 
influence of the different ranges of gray values in PyRa-
diomics. The classes of the features used included first 
order, shape, gray level cooccurrence matrix, gray level 
run length matrix, gray level size zone matrix, gray level 
dependence matrix and neighboring gray tone difference 
matrix. Since some of the features were redundant, we 
used the Pearson correlation coefficient to remove the 
redundant features. We applied normalization on the 
feature matrix. Each feature vector was subtracted by the 
mean value and divided by the standard deviation.

Analysis of variance (ANOVA), Relief and recursive 
feature elimination (RFE) were used for feature selection. 
For the radiomics features that remained, we selected the 
top 20 features from all clinical and radiomics features, 
and the number of selected features was iterated from 1 
to 20. The best feature number was found by comparing 
the performance of fivefold cross-validation on the train-
ing cohort by logistic regression (LR).

Model construction
The clinical model was constructed by multivariable LR 
analysis using nine clinical parameters, including age, 
sex, preoperative CA19-9 level, preoperative CEA level, 
pathological grading, histotype, tumor location, tumor 
size and M stage. Akaike’s information criterion was 
used as the stopping rule for backward step wise selec-
tion. Then, a multivariate LR model was established and 
its diagnostic performance was tested on the training 
cohort.

Two radiomics models were constructed with the 
selected radiomics features from the primary lesion and 
the peripheral LN ROI respectively.

We also constructed three clinical-radiomics models 
combining the radiomics and clinical features with a LR 
mode and evaluated the performance of the combined 
models.

Hence, a total of six models were constructed to preop-
eratively predict the LNM of CRC: 1 clinical-only model, 
2 radiomics-only models (the LN radiomics model 
and the lesion radiomics model) and 3 combined clin-
ical-radiomics models (clinical-lesion, clinical-LN and 
clinical-lesion-LN).

Model validation and comparison
Receiver operating characteristic (ROC) curve analysis 
was used to assess the model performance in the train-
ing and testing cohorts. The area under the ROC curve 
(AUC) was calculated for quantification. We regarded the 
model with the highest AUC value in the fivefold cross-
validation of the training set as the candidate model. The 
accuracy, sensitivity, specificity, positive predictive value 
(PPV) and negative predictive value (NPV) were also cal-
culated at a cutoff value that maximized the value of the 
Youden index. Moreover, we also boosted the estimation 
1000 times and applied paired t-test to determine the 
95% confidence intervals (CIs).

Nomogram development and decision curve analysis 
(DCA)
A nomogram was generated for model visualization and 
clinical application. To evaluate the added value of radi-
omics features to clinical features in individually predict-
ing LNM in CRC patients, we developed six decision 
curves based on the clinical parameters, primary lesion 
radiomics features, LN radiomics features and the com-
bined clinical-radiomics models. The clinical utility could 
be demonstrated by quantifying the net benefits of a 
series of threshold probabilities in the queue.

Results
Clinical features
The LNM rates of the training set and the validation set 
were 44.15% and 44.54%, respectively. There were no 
significant differences in patient age, sex, preoperative 
CEA level, preoperative CA19-9 level, pathological grad-
ing, histotype, tumor location, tumor size and M stage 
between the training set and the validation set (P > 0.05), 
as shown in Table 1.

After multivariate LR analysis, age, sex, pathological 
grading, histotype, preoperative CA19-9 level and pre-
operative CEA level were independent predictors in the 
clinical model.

Feature extraction and model construction
A total of 222 radiomics features were extracted from CT 
images (111 lesion radiomics features and 111 periph-
eral LN radiomics features). ANOVA, RFE and Relief 
were used to reduce the feature number to 20. Then we 
evaluated the candidate feature number in the valida-
tion cohort by assessing the discrimination performance. 
The feature number was validated by fivefold cross-val-
idation. We obtained an candidate subset of 6 clinical 
features (age, M stage, preoperative CA19-9 level, preop-
erative CEA level, pathological grading and tumor size), 
3 primary lesion radiomics features (Lesion_glcm_ldmn, 

http://pyradiomics.readthedocs.io/en/latest/index.html
http://pyradiomics.readthedocs.io/en/latest/index.html
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Lesion_glszm_ZonePercentage, and Lesion_glszm_Low-
GrayLevelZoneEmphases) and 3 peripheral LN radiom-
ics features (Lymph_glrlm_GrayLevelNonUniformity, 
and Lymph_firstorder_Kurtosis, Lymph_gldm_Gray-
LevelNonUniformity) (Fig.  2). Then, we established six 
predictive models using the above selected features: 1 
clinical model, 2 radiomics models and 3 combined clini-
cal-radiomics models.

Model comparison and validation
Figure 3 shows the performance of the clinical features, 
peripheral LN radiomics features and primary lesion 
radiomics features in the training and validation sets, 
respectively. By comparing the models, the clinical-
lesion-LN model presented the optimal discrimina-
tion and best predictive stability with the highest AUC 
value in both the training cohort (AUC = 0.7606; 95% CI 
0.7373–0.7833) and the validation cohort (AUC = 0.7509; 
95% CI 0.6901–0.8071) (Table  2, Fig.  4). We also com-
pared different parameters of the LR model for better 
performance, and there was limited influence on the 
AUC values in the testing set (Additional file 1: Table S1), 
therefore, we used the default values. Though the com-
bined model seemed complex, both the lesion radiomics 
features and the LN radiomics features were extracted 
from the same CT images, so the combined model with 
great performance does not bring about an extra burden 
to clinical examinations. Hence, the clinical-lesion-LN 
model was identified as the candidate classifier model for 
LNM in CRC patients.  

Clinical use
Based on this candidate model, we generated a clinical-
lesion radiomics-LN radiomics nomogram for model 
visualization (Fig.  5). We found that the clinical fea-
tures have higher classification contributions than the 
radiomics features in the candidate nomogram. This 
finding is consistent with the higher AUC value of the 

Table 1  Demographic comparison between  training 
and validation cohorts

Chi-Square or Fisher Exact tests, as appropriate, were used to compare the 
differences in categorical variables (gender, M stage, CA19-9 level, CEA level, 
location, grade, histotype), while a two-sample t-test was used to compare the 
differences in age and tumor size. Laboratory analysis of CEA and CA 19-9 were 
done via routine blood tests within 1 week before surgery. The threshold value 
for CEA level was ≤ 5 ng/mL and > 5 ng/mL and the threshold value for CA 19-9 
level was ≤ 27 U/mL and > 27 U/mL, according to the normal range used in 
clinics

CEA carcinoembryonic antigen, CA19-9 carbohydrate antigen 19-9

Characteristic Training cohort Validation cohort P

Age, mean SD 58.86 ± 12.38 59.12 ± 11.53 0.48

Tumor size, mean SD 4.48 ± 1.91 4.53 ± 1.82 0.25

Sex (%) 0.62

 Male 258.0 (60.71%) 167.0 (39.29%)

 Female 200.0 (58.65%) 141.0 (41.35%)

M stage (%) 0.56

 M0 399.0 (60.27%) 263.0 (39.73%)

 M1 59.0 (56.73%) 45.0 (43.27%)

CA19-9 (%) 0.94

 0–27 U/mL 362.0 (59.64%) 245.0 (40.36%)

 ≥27 U/mL 96.0 (60.38%) 63.0 (39.62%)

CEA (%) 0.08

 0–5 ng/mL 298.0 (62.34%) 180.0 (37.66%)

 ≥ 5 ng/mL 160.0 (55.56%) 128.0 (44.44%)

Location (%) 0.42

 Right 208.0 (61.54%) 130.0 (38.46%)

 Left 250.0 (58.41%) 178.0 (41.59%)

Grade (%) 0.63

 High 26.0 (5.68%) 21.0 (6.82%)

 Middle 301.0 (65.72%) 207.0 (67.21%)

 Low 131.0 (28.60%) 80.0 (25.97%)

Histotype (%) 0.93

 Adenocarcinoma 379.0 (82.75%) 258.0 (83.77%)

 Mucinous histology 74.0 (16.16%) 47.0 (15.26%)

 Signet ring cell differen-
tiation

5.0 (1.09%) 3.0 (0.97%)

Fig. 2  Feature selection. Selection of the tuning feature number in LR model via fivefold cross validation based on minimum criteria. The y-axis 
indicates AUC value. The x-axis indicates the feature number. The green point indicates model with highest AUC value in fivefold cross validation
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clinical model than that of the LN radiomics model and 
the lesion radiomics model. However, the LN radiomics 
features greatly help in the decision -making of the can-
didate model and increases the AUC value from 0.7075 
to 0.7509. (Table 2, Fig. 6).

DCAs based on the six models are shown in Fig.  7. 
Both of the single radiomics DCAs showed less benefit 
in predicting the risk of LNM than the single clinical 
DCA, which indicates that the clinical features out-
performed the radiomics features with more accuracy 
in LNM prediction. With the addition of radiomic fea-
tures, the combined clinical-radiomics DCAs achieved 
more clinical utility, especially the clinical-lesion-LN 
DCA, which indicated that the nomogram based on 
the candidate model was a reliable clinical treatment 
tool for predicting LNM in CRC patients. DCA indi-
cated that when the threshold probability for a patient 
is within a range from approximately 0.3 to 0.7, the 

Fig. 3  The ROC curves of the clinical features, peripheral lymph node radiomics features and primary lesion radiomics features in the training and 
validation sets, respectively

Table 2  Accuracy and predictive value between six models

AUC​ area under the curve, PPV positive predictive value, NPV negative predictive value

Training cohort AUC​ 95% CI Sensitivity Specificity Accuracy PPV NPV

Clinical features 0.7127 [0.6876–0.7367] 0.5466 0.7844 0.6785 0.6707 0.6829

Lesion radiomics 0.6007 [0.5756–0.6273] 0.6042 0.5588 0.5790 0.5228 0.6383

Lymph node radiomics 0.6441 [0.6171–0.6681] 0.4363 0.7853 0.6302 0.6106 0.6564

Clinical-lesion radiomics 0.7299 [0.7063–0.7524] 0.5931 0.7951 0.7053 0.6984 0.7095

Clinical-lymph node radiomics 0.7519 [0.7288–0.7738] 0.5637 0.8255 0.7092 0.6282 0.7500

Clinical-lesion-lymph node radiomics 0.7606 [0.7373–0.7833] 0.6495 0.7902 0.7277 0.7124 0.7381

Validation cohort AUC​ 95% CI Sensitivity Specificity Accuracy PPV NPV

Clinical features 0.7075 [0.6448–0.7650] 0.6912 0.6337 0.6591 0.5987 0.7219

Lesion radiomics 0.5276 [0.4634–0.5927] 0.3088 0.7791 0.5714 0.5250 0.5877

Lymph node radiomics 0.6500 [0.5829–0.7133] 0.5074 0.7442 0.6396 0.6106 0.6564

Clinical-lesion radiomics 0.7055 [0.6459–0.7637] 0.6912 0.6395 0.6623 0.6026 0.7237

Clinical-lymph node radiomics 0.7359 [0.6750–0.7899] 0.7206 0.6628 0.6883 0.6282 0.7500

Clinical-lesion-lymph node radiomics 0.7509 [0.6901–0.8071] 0.6029 0.8430 0.7370 0.7523 0.7286

Fig. 4  Model performance in validation cohort. Compared with 
different features combination, the AUC value is increased when 
clinical parameters joined either lymph feature or lesion feature. We 
can also see that the more feature species used, the higher AUC value 
and the better model performance are
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Fig. 5  The developed clinical-primary lesion radiomics-peripheral lymph node radiomics nomogram for predicting the probability of lymph node 
metastases. For age, the number represents the age number. For M stage, 0 represents no distant metastasis while 1 represents distant metastasis. 
For the preCA19-9, 0 represents within the normal value while 1 represents above the normal value. For the preCEA, 0 represents within the normal 
value while 1 represents above the normal value. For the grade, 1 for high-middle differentiation and 0 for middle-low differentiation. To use, 
locate the patient’s age, draw a line straight up to the points axis to establish the score associated with that site. Repeat for the other covariates (M 
stage, preCA19-9, preCEA, grade and radiomics features). By summing the scores of each point and locating on the total score scale, the estimated 
probability of lymph node metastases could be determined

Fig. 6  Weight of feature coefficients of the candidate model. 
Feature weights generated by the coefficients of logistic regression 
model. The “P” after the feature name indicates the positive 
correlation, and the “N” indicates the negative correlation. lesion 
GLCM IDMN lesion_CT_original_glcm_Idmn, lesion GLCM ZP 
lesion_CT_original_glcm_ ZonePercentage, lesion GLSZM LGLZE 
lesion_glszm_LowGrayLevelZoneEmphaseslymph, lymph GLDM GLNU 
lymph_glrlm_GrayLevelNonUniformity

Fig. 7  Decision curve analysis (DCAs). The y-axis measures the net 
benefit. Threshold probability refers to the point at which a patient 
considers the benefit of treatment for intermediate to high-risk 
LNM equivalent to the harm of over-treatment for low-risk disease 
and thus reflects how the patient weights the benefits and harms 
associated with the decision. The higher curve at any given threshold 
probability is the optimal prediction to maximize net benefit. The 
decision curve showed that the model using all feature sets adds 
more net benefit than other models
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clinical-radiomics nomogram adds more net benefit 
than the “treat all” or “treat none” strategies.

Discussion
In this study, we built a clinical-radiomics model for the 
individualized preoperative prediction of LNM in CRC 
patients, that consists of clinical risk factors and radiom-
ics features (including imaging features of both the pri-
mary lesion and peripheral LNs). First, by multivariate 
LR analysis, we selected 6 clinical risk factors, 3 primary 
lesion radiomics features and 3 peripheral LN radiom-
ics features as independent risk factors from 9 clinical 
features, 111 peripheral LN radiomics features and 111 
primary lesion radiomics features, respectively. Then, by 
using the above independent risk factors, we constructed 
six predictive models. By comparing the models, the 
clinical-lesion radiomics-LN radiomics model had the 
highest accuracy in predicting LNM (AUC = 0.7509; 95% 
CI 0.6901–0.8071; accuracy: 73.7%; sensitivity: 60.29%; 
specificity: 84.3%: PPV: 75.23%; and NPV: 72.86% in the 
testing set) and was regarded as the candidate model. 
Finally, a nomogram was constructed based on the can-
didate combined model to achieve model visualization 
and provide clinical utility. Our study demonstrates that 
this combined clinical-radiomics model has potential as 
a clinical tool for preoperatively predicting LNM in CRC 
patients.

In terms of clinical features, our study found that 
age, M stage, preoperative CA19-9 level, preoperative 
CEA level, tumor size and pathological grading were 
independent risk factors associated with LNM in CRC 
patients, which is consistent with the findings of previ-
ous studies [8, 20–22]. Among the five potential clinical 
risk factors, the preoperative CA19-9 level and preop-
erative CEA level have been considered clinical indica-
tors closely related to the LNM of CRC [20]. Our study 
also suggested that high preoperative CA19-9 levels 
and high preoperative CEA levels were important pre-
dictors of LNM in CRC patients. This finding might be 
due to the higher level of CEA and CA19-9, the higher 
TNM stage of CRC and the stronger tumor cell pro-
liferation ability, which implies poorer differentiation, 
increased invasiveness and stronger metastasis of the 
tumor [23]. In addition, young patients with CRC were 
more likely to have LNM, which might be related to 
the high metabolism of young patients and the occur-
rence of mostly poorly differentiated tumors. However, 
most young people do not have obvious symptoms or 
are not actively undergoing physical examinations, 
leading to a low clinical detection rate of CRC in this 
population. In addition, most of them are generally in 
advanced stages and have a poor prognosis. Therefore, 
young people should be encouraged to actively undergo 

early screening so that early diagnosis and early treat-
ment can be performed. There is no consensus on the 
correlation between tumor size and LNM which might 
be related to differences in the number of clinical case 
samples and methods [15, 24, 25]. However, Wolmark 
et  al. [24] also indicated that the tumor volume of 
Dukes C phase’s rectal cancer was consistently smaller 
than that of Dukes B tumor. Similarly, we observed a 
negative correlation between tumor size and LNM in 
this study. A recent propensity score matching study 
indicated that a smaller tumor size was an independent 
risk factor for cancer-specific survival (CSS) in patients 
with stage I-III CRC [26]. Hence, clinically, multivariate 
analysis should be used to select the best clinical treat-
ment method to reduce the residual lesion and micro-
metastases, thereby reducing the possibility of tumor 
recurrence and improving the patient’s prognosis and 
tumor-free survival.

In addition to assessing clinical risk factors, we also 
tried to explore and find additional imaging information 
on contrast-enhanced CT images. Compared with tradi-
tional imaging methods that can be analyzed from only 
the level of anatomical changes, the advantage of radi-
omics is that high-throughput calculations can extract 
large numbers of quantitative features from the ROI that 
reflect the inherent heterogeneity of the lesion, which has 
been widely used in clinical diagnosis, efficacy evalua-
tions, prognostic evaluations and other aspects [27–29]. 
In 2016, Huang et  al. [20] proposed a predictive model 
of LNM in CRC patients that combined radiomics and 
clinical indicators (CI = 0.736). However, they analyzed 
only the radiomics features of the primary lesion. The 
innovation of our study lies in that we not only ana-
lyzed the radiomics features of the primary lesion, but 
also explored the radiomics features of the peripheral 
LN themselves. In our study, 3 peripheral LN radiomics 
features were selected from the 111 screened peripheral 
LN radiomics features, and these features helped greatly 
improve the AUC of the final candidate model. This 
finding indicated that the radiomics features of the LNs 
themselves might be of greater value in predicting LNM 
and worthy of further exploration.

Since the combined clinical-lesion-LN radiomics 
model, with the highest AUC and greatest net benefits 
across most of the threshold probabilities in DCA, out-
performed the single clinical features, single radiomics 
features and other combined models, it may be the most 
promising approach to guide clinical management. To 
facilitate clinical applications, we constructed a clinical-
radiomics nomogram combining the radiomics features 
with preoperative clinical characteristics. The scoring 
system can generate the probability of LNM to realize the 
individualized preoperative prediction of the risk of LNM 
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in CRC by clinicians, which is in line with the current 
development trend of individualized precision medicine.

In conclusion, we recommend that patients with a 
younger age, distant metastasis, a lower tumor grading, 
a smaller tumor size and higher preoperative CA19-9 
and CEA levels should have regular follow-ups, and the 
progression of the disease should be closely monitored 
in these patients. In addition, we suggest that patients 
with a higher risk of LNM, as screened by the nomo-
gram, should be considered potential surgical candidates 
to extend survival. The clinical application of this nomo-
gram can reduce the cost of subsequent diagnosis, help 
develop more reasonable and effective treatment plans 
and prevent patients from having a poor prognosis.

However, the present study has several limitations. 
First, as a retrospective study, there may be inevitable 
selection bias, hence, prospective and external valida-
tion studies are needed. Second, the result of this study 
was from a single institution, so multicenter validation 
is needed to extend the versatility of the experimental 
results. Third, only one imaging modality was used in 
this study, which leads to a limited number of extracted 
radiomics features. If more imaging modalities (such as 
MRI and PET-CT) are combined, the feature pool will be 
effectively expanded to obtain more valuable radiomics 
information.

Conclusion
In summary, our study established a clinical-radiomics 
nomogram that combined clinical risk factors and radi-
omics features (including radiomics features of the pri-
mary lesion and peripheral LNs), which can be used as an 
individualized preoperative noninvasive tool for predict-
ing LNM in patients with CRC, assisting in clinical treat-
ment decision making and achieving precision treatment.
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