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Abstract 

Background:  Emerging evidences show that microRNA (miRNA) plays an important role in many human complex 
diseases. However, considering the inherent time-consuming and expensive of traditional in vitro experiments, more 
and more attention has been paid to the development of efficient and feasible computational methods to predict the 
potential associations between miRNA and disease.

Methods:  In this work, we present a machine learning-based model called MLMDA for predicting the association of 
miRNAs and diseases. More specifically, we first use the k-mer sparse matrix to extract miRNA sequence information, 
and combine it with miRNA functional similarity, disease semantic similarity and Gaussian interaction profile kernel 
similarity information. Then, more representative features are extracted from them through deep auto-encoder neural 
network (AE). Finally, the random forest classifier is used to effectively predict potential miRNA–disease associations.

Results:  The experimental results show that the MLMDA model achieves promising performance under fivefold 
cross validations with AUC values of 0.9172, which is higher than the methods using different classifiers or different 
feature combination methods mentioned in this paper. In addition, to further evaluate the prediction performance of 
MLMDA model, case studies are carried out with three Human complex diseases including Lymphoma, Lung Neo-
plasm, and Esophageal Neoplasms. As a result, 39, 37 and 36 out of the top 40 predicted miRNAs are confirmed by 
other miRNA–disease association databases.

Conclusions:  These prominent experimental results suggest that the MLMDA model could serve as a useful tool 
guiding the future experimental validation for those promising miRNA biomarker candidates. The source code and 
datasets explored in this work are available at http://220.171.34.3:81/.
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Background
MicroRNAs (miRNAs) are a large number of endogenous 
non-coding RNAs which transcribed as short hairpin 
precursors (~ 70 nt) [1, 2]. Recently, miRNA genes were 
discovered expressed in some types of diseases including 
Arthritis, Adenoid Cystic, Arteriosclerosis Obliterans, 
Immune Thrombocytopenic Purpura, and Idiopathic 
Pulmonary Hypertension exceptionally [3–10]. There-
fore, more and more researchers believe that miRNAs 
could associate with sorts of disease. With the progres-
sion of biotechnology and accumulate of theories, a great 
quantity of miRNA–disease associations have been found 
and confirmed [11–14].

Although making use of the association between 
miRNAs and diseases could improve prognosis of 
the patients, the cost of confirming the relationship 
between miRNAs and diseases by experimental method 
is extremely high. Therefore, more and more compu-
tational methods have been developed in recent years 
[15–25]. Jiang et al. proposed a network-based approach 
to predict disease-miRNA associations [26]. Mork et  al. 
built a model named miRPD which can definitely infer 
miRNA–protein-disease associations [27]. In order 
to further utilize miRNA-target interaction informa-
tion, Xuan et al. built a prediction model named human 
disease-related miRNA Prediction (HDMP) according 
to weighted k most semblable node [28]. A prediction 
method named MIDP using random walk on the network 
was constructed by Xuan et al. [29]. This method reduced 
the negative impact of noisy data through restarting the 
walking. Chen et al. developed a prediction model named 
heterogeneous graph inference for miRNA–disease asso-
ciation prediction (HGIMDA) by mapping confirmed 
miRNA–disease associations into a heterogeneous graph 
[30]. Chen et al. developed regularized least squares for 
miRNA–disease association (RLSMDA) which can only 
use diseases without confirmed miRNAs to discover the 
association between diseases and miRNAs [31]. A model 
named ranking-based KNN for miRNA–disease associa-
tion prediction (RKNNMDA) can predict unconfirmed 
miRNA without utilizing confirmed miRNAs, built by 
Chen et al. [32].

In this study, we propose a novel computational 
method, called MLMDA, based on the machine learn-
ing algorithm to predict miRNA–disease associations. 
MLMDA integrates different classes of information, 
including miRNA sequence information, disease seman-
tic information, miRNA–disease association information 
and miRNA function information. An improvement to 
this approach is the introduction of sequence information 
to predict potential associations. Specifically, miRNA 
and disease similarity matrixes can be first computed 
respectively according to miRNA–disease association, 

the miRNA functional similarity and disease seman-
tic similarity information. Second, MLMDA combines 
the matrixes of disease as a gathered similarity matrix. 
Third, auto-encoder is used to reduce the dimensional-
ity of feature vectors for distinguishing miRNA–disease 
associations. Finally, the abstract feature is fed into ran-
dom forest classifier to predict potential disease-related 
miRNA. For assessing the performance of MLMDA, we 
implement the fivefold cross validation method in the 
human microRNA disease database and get the AUCs 
of 91.72 ± 0.73%. Besides, to further evaluate the predic-
tion performance of MLMDA model, three case studies 
are carried out with Human complex diseases including 
Lymphoma, Lung Neoplasm, and Esophageal Neoplasms. 
As a result, 97.5%, 92.5% and 90% of the top 40 predicted 
miRNAs are confirmed by two other miRNA–disease 
association databases, respectively. The above experi-
mental results demonstrated that MLMDA is a powerful 
and efficacious method for predicting potential miRNA–
disease associations.

Results
Performance evaluation 

Prediction of miRNA–disease association
We make use of fivefold cross validation according to 
the marked miRNA–disease associations in HMDD v3.0 
to estimate the performance of MLMDA. The MLMDA 
gain a mean area under the receiver operation curve 
(AUC) of 91.72 ± 0.73% which is the average of AUCs of 
90.84%, 91.73%, 92.11%, 91.12% and 92.91% in fivefold 
cross validation as showed in Fig. 1 and the yielded aver-
ages of accuracy, recall, precision and f1-score come to be 
83.77%, 78.61%, 87.68% and 82.90% as showed in Table 1.

Comparison with different classifier models
In order to test the performance of MLMDA model 
using the Random Forest classifier, we compare it with 
different classifier models. Here, two models consist-
ing of the state-of-the-art support vector machine 
(SVM) classifier and decision tree (DT) classifier are 
constructed to compare with the MLMDA model. In 
particular, all three models use the same training set 
and test set. In the experiment, SVM model achieves 
AUC of 87.01 ± 1.07% in the average of AUCs of 
85.61%, 87.54%, 87.35%, 86.19% and 88.65% under five-
fold cross validation, as shown in Fig. 2. Decision tree 
achieves AUC of 78.17 ± 0.27% in the average of AUCs 
of 77.66%, 78.39%, 78.18%, 78.43% and 78.21% under 
fivefold cross validation, as shown in Fig. 3. The yielded 
averages of accuracy, recall, precision and f1-score 
come to be 81.47%, 79.50%, 81.88% and 80.66% as show 
in Table  2 and 78.17%, 84.75%, 74.91% and 79.52% as 
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in show Table  3. For a more intuitive comparison of 
performance, the evaluation parameters for the three 
models are summarized in Table  4. The experimental 
results show that MLMDA has achieved the best results 
among the evaluation criteria of accuracy, Precision, 
F1 and AUC. In summary, MLMDA has better per-
formance and robustness than the other two models, 
especially in the accuracy, AUC and F1 values that can 
quantify the performance of the entire model, although 
MLMDA model is not as good as SVM model are in 
recall. Based on the above results, the random forest is 
the most suitable classifier for the model.    

Comparison with different feature descriptors
In order to verify that the proposed descriptor repre-
sents the validity of the feature information, differ-
ent descriptors are constructed to be compared to the 
proposed descriptor. In detail, the proposed descrip-
tor MLMDA is composed of miRNA similarity infor-
mation, disease similarity information and miRNA 
sequence information; the descriptor “MLMDA_ds” is 
composed of disease similarity information and miRNA 
sequence information; the descriptor “MLMDA_sim” is 
composed of disease similarity information and miRNA 
similarity information. The descriptor “MLMDA_sim” 
model gains a mean AUC of 89.69 ± 0.0026% which is 
the average of AUCs of 89.80%, 89.63%, 89.99%, 89.25% 
and 89.43% in fivefold cross validation (Fig.  4). The 
yielded averages of accuracy, sensitivity, precision and 
f1-score come to be 79.38%, 85.61%, 76.15% and 80.59% 
as show in Table 5. The descriptor “MLMDA_ds” model 
gets a mean AUC of 0.8250 ± 0.0051 which is the aver-
age of AUCs of 83.11%, 85.70%, 85.61%, 85.61% and 
85.56% in fivefold cross validation (Fig. 5). The yielded 
averages of accuracy, recall, precision and f1-score 
come to be 78.58%, 78.30%, 78.76% and 78.51% as show 
in Table  6. It is noteworthy that the performances of 
AUCs in MLMDA were greater than that of the above 

Fig. 1  ROC curves performed by MLMDA on HMDD v3.0 dataset

Table 1  Five-fold cross-validation results performed 
by MLMDA on HMDD v3.0 dataset

Testing set Accuracy (%) Recall (%) Precision (%) F1-score (%)

1 82.24 77.47 85.64 81.35

2 84.29 79.01 88.35 83.42

3 83.74 77.35 88.69 82.64

4 83.43 78.68 86.95 82.61

5 85.19 80.57 88.78 84.48

Average 83.77 ± 1.08 78.82 ± 1.31 87.68 ± 1.35 82.90 ± 1.15
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Fig. 2  ROC curves performed by SVM model on HMDD v3.0 dataset

Fig. 3  ROC curves performed by DT model on HMDD v3.0 dataset
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experimental methods in fivefold cross validation, 
which shows that our method has obvious prediction 
performance. By comparing the combination methods 
of multi-source data, we find that introducing sequence 
information can improve the accuracy and AUC.

Table  7 summarizes the results of five cross-valida-
tions of three descriptors using random forest classifier 
on HMDD v3.0, namely MLMDA, MLMDA_sim, and 
MLMDA_ds. Our descriptors have achieved the best 
results in all evaluation criteria except recall, which indi-
cates that the proposed descriptor can improve the pre-
diction effect. In particular, adding feature information 
can also cause noise to affect predictive performance. 
Our descriptors improve the performance of the predic-
tion model while adding information, indicating that the 
proposed descriptor is more suitable for our model than 
the other two.

Comparison with related works
To evaluate the effectiveness of our approach, we use the 
HMDD dataset to compare the performance of MLMDA 
with the 6 state-of-the-art methods which are BNPMDA, 
miRGOFS, MDHGI, DRMDA, SPM, LMTRDA and 
NNMDA, as shown in Table  8 [22, 33–37]. Since the 
version of HMDD used in the state-of-the-art methods 
is different, and some methods do not report detailed 
evaluation indicators, here we only compare the reported 
AUC values to verify the effectiveness of our method. As 
can be seen from Table 8, the proposed method is only 
1.9% worse than the highest NNMDA of AUC, the second 
highest in all methods and 1.35% higher than the average 
AUC. This is due to the fact that sequence information 
can describe miRNAs more comprehensively and deeply, 
and can be used as an excellent source of knowledge for 
predicting potential miRNA–disease associations.

Case studies
We prove the degree of MLMDA which could forecast 
potential miRNA–disease associations and confirm a 
high percentage of the possible disease-related miR-
NAs by carrying out three case studies. This means that 
MLMDA makes dependable predictions. Lymphoma, 
Lung Neoplasm, and Esophageal Neoplasms are chosen 
to construct the three cases studies and training samples 

Table 2  Five-fold cross-validation results performed 
by SVM model on HMDD v3.0 dataset

Testing set Accuracy (%) Recall (%) Precision (%) F1-score (%)

1 81.00 76.54 83.04 79.66

2 81.59 79.84 81.86 80.83

3 81.20 79.01 81.70 80.33

4 81.20 80.66 80.66 80.66

5 82.39 81.48 82.16 81.82

Average 81.47 ± 0.55 79.50 ± 1.89 81.88 ± 0.85 80.66 ± 0.78

Table 3  Five-fold cross-validation results performed by DT 
model on HMDD v3.0 dataset

Testing set Accuracy (%) Recall (%) Precision (%) F1-score (%)

1 77.66 84.56 74.31 79.11

2 78.38 83.67 75.67 79.47

3 78.18 84.91 74.84 79.56

4 78.43 83.97 75.60 79.56

5 78.21 86.65 74.13 79.91

Average 78.17 ± 0.30 84.75 ± 1.16 74.91 ± 0.71 79.52 ± 0.28

Table 4  The comparison results of  MLMDA model, SVM 
model and DT model on HMDD v3.0 dataset

MLMDA obtains the highest value in the evaluation criteria (italics)

Model Accuracy 
(%)

Recall (%) Precision 
(%)

F1-score 
(%)

AUC (%)

SVM 81.47 79.50 81.88 80.66 87.01

DT 78.17 84.75 74.91 79.52 78.17

MLMDA 83.77 78.82 87.68 82.90 91.72

Table 5  The comparison results of MLMDA model and Fsim 
feature model based on fivefold cross validation

Testing set Accuracy (%) Recall (%) Precision (%) F1-score (%)

1 79.81 83.73 77.66 80.58

2 79.19 85.92 75.74 80.51

3 79.42 87.81 75.20 81.01

4 79.03 84.82 76.03 80.18

5 79.45 85.80 76.13 80.68

Average 79.38 ± 0.29 85.61 ± 1.51 76.15 ± 0.91 80.59 ± 0.58

Table 6  The comparison results of  MLMDA model 
and  SD(d(a)) with  Fseq feature model based on  fivefold 
cross validation

Testing set Accuracy (%) Recall (%) Precision (%) F1-score (%)

1 78.07 77.59 78.35 77.97

2 78.59 76.17 80.05 78.06

3 78.57 77.89 78.98 78.43

4 79.15 80.45 78.42 79.42

5 78.52 79.42 78.02 78.71

Average 78.58 ± 0.38 78.30 ± 1.66 78.76 ± 0.79 78.51 ± 0.58
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for the method are constructed by miRNA–disease pairs 
from HMDD v3.0. Whereafter, we use the top 20 and 
40 candidates as the prediction lists and validate in two 
notable miRNA–disease association databases dbDEMC 
v2.0 and miR2Database [38, 39]. There is no repeat of 
the training samples and the prediction lists, because of 
arranging and authenticating candidate miRNAs.

In the first case study, Lymphoma is chosen as the 
example and we predict Lymphomas-related miRNAs by 
MLMDA. Lymphoma is a cancer that begins in infection-
fighting cells of the immune system, called lymphocytes 
[40, 41]. As a result, 20 out of the top 20 and 39 out of 
the top 40 potentially miRNAs which associate with 
Lymphoma are verified by either dbDEMC and miR2 dis-
ease or other experimental studies, shown as Table 9. A 

malignant tumor is usually diagnosed at advanced stage 
and has a poor prognosis named Lung neoplasms. It is 
selected as the second case study and we use MLMDA 
to predict the potential associated miRNAs by ranked 
771 miRNAs according to predicted scores. The results 
are shown in Table 10, 18 out of the top 20 and 37 out of 
the top 40 predicted miRNAs are verified in the experi-
mental data. We choose Esophageal Neoplasms as the 
third investigated disease [42–45]. Esophageal cancer is 
a malignant tumor, the most common type of which is 
esophageal squamous cell carcinoma and adenocarci-
noma. As shown in Table 11, the predicted scores of the 
candidate miRNAs are ranked and 36 were verified in the 
first 40 potential miRNAs associated with Esophageal 
Neoplasms.

Fig. 4  ROC curves performed by MLMDA_sim model on HMDD v3.0 dataset

Table 7  The comparison results of  MLMDA model, descriptor MLMDA_ds model and  descriptor MLMDA _sim model 
by Random forest classifier

MLMDA obtains the highest value in the evaluation criteria (italics)

Descriptor Accuracy (%) Recall (%) Precision (%) F1-score (%) AUC (%)

MLMDA _ds 78.58 78.30 78.76 78.51 82.50

MLMDA _sim 79.38 85.61 76.15 80.59 89.60

MLMDA 83.77 78.82 87.68 82.90 91.72
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Materials and methods
Human miRNA–disease associations database
In the experiment, we use Human microRNA Disease 
Database (HMDD) established by Li et al. as the bench-
mark dataset [46], which can be downloaded at http://
www.cuila​b.cn/hmdd. This dataset includes 32,281 con-
firmed miRNA–disease pairs with 1102 miRNAs and 850 
diseases. In pretreatment, we remove some pairs which 
cannot be confirmed by the miRBase. So, we choose all 
marked miRNA–disease associations that each miRNA 
can match its own sequence as positive set. Besides, the 
same amount of the unconfirmed miRNA–disease asso-
ciations is selected as negative set. After screening, an 

adjacency matrix is established on this basis. The element 
((),()) is assigned to 1, otherwise it is assigned to 0, if dis-
ease () and miRNA () are confirmed that they have a rela-
tionship in the HMDD v3.0 database [47].

MiRNA functional similarity
The miRNA functional similarity information we use 
in the experiment was provided by Wang et  al., which 
according to the assumption that miRNAs which have 
same function are more likely to relate with similar dis-
ease, vice versa [48–50]. The miRNA functional simi-
larity information can be described as a matrix FS , 
which contains 495 rows and 495 columns. The element 
FS(m(a),m(b)) of FS represents the similarity value 
between miRNA m(a) and miRNA m(b) . It can be down-
loaded from http://www.cuila​b.cn/files​/image​s/cuila​
b/misim​.zip. This part of the data is only used in case 
studies.

Disease semantic similarity
Medical Subject Headings (MeSH) diseases descrip-
tors offer a strict system for classing disease and we use 
it to abstract disease semantic similarity. In this data-
base, the nodes are diseases and the edges connecting 
two nodes from parent node to child node could describe 
a Directed Acyclic Graph (DAG) for each disease. In this 

Fig. 5  ROC curves performed by MLMDA_ds model on HMDD v3.0 dataset

Table 8  The comparison results of  MLMDA model 
and related works

Method AUC (%)

BNPMDA 89.80

miRGOFS 87.70

MDHGI 87.94

DRMDA 91.56

SPM 91.40

LMTRDA 90.54

NNMDA 93.60

MLMDA 91.72

http://www.cuilab.cn/hmdd
http://www.cuilab.cn/hmdd
http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.cuilab.cn/files/images/cuilab/misim.zip
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Table 9  Prediction of the top 40 predicted miRNAs associated with Lymphoma based on known associations in dbDEMC 
v2.0 and miR2Databas

miRNA dbDEMC miR2D miRNA dbDEMC miR2D

hsa-mir-191 Confirmed Unconfirmed hsa-mir-1 Confirmed Unconfirmed

hsa-mir-195 Confirmed Unconfirmed hsa-mir-206 Confirmed Unconfirmed

hsa-mir-30a Confirmed Confirmed hsa-let-7c Confirmed Confirmed

hsa-let-7a Confirmed Confirmed hsa-mir-106a Confirmed Confirmed

hsa-mir-183 Confirmed Unconfirmed hsa-mir-146b Confirmed Unconfirmed

hsa-mir-101 Confirmed Unconfirmed hsa-mir-132 Confirmed Unconfirmed

hsa-mir-141 Confirmed Unconfirmed hsa-mir-29a Confirmed Unconfirmed

hsa-mir-145 Confirmed Confirmed hsa-mir-181b Confirmed Unconfirmed

hsa-mir-34a Confirmed Unconfirmed hsa-mir-378 Confirmed Unconfirmed

hsa-mir-223 Confirmed Unconfirmed hsa-mir-151a Confirmed Unconfirmed

hsa-mir-451 Confirmed Unconfirmed hsa-mir-181c Confirmed Unconfirmed

hsa-let-7e Confirmed Confirmed hsa-mir-574 Confirmed Unconfirmed

hsa-mir-125b Confirmed Unconfirmed hsa-mir-214 Confirmed Unconfirmed

hsa-mir-99a Confirmed Confirmed hsa-mir-106b Confirmed Unconfirmed

hsa-mir-24 Confirmed Unconfirmed hsa-mir-137 Confirmed Unconfirmed

hsa-mir-144 Confirmed Unconfirmed hsa-mir-30c-2 Confirmed Unconfirmed

hsa-mir-449a Confirmed Unconfirmed hsa-mir-590 Confirmed Unconfirmed

hsa-let-7i Confirmed Unconfirmed hsa-mir-7 Confirmed Unconfirmed

hsa-mir-34c Confirmed Unconfirmed hsa-mir-30 Unconfirmed Unconfirmed

hsa-let-7 g Confirmed Unconfirmed hsa-mir-196b Confirmed Unconfirmed

Table 10  Prediction of  the  top 40 predicted miRNAs associated with  Lung Neoplasm based on  known associations 
in dbDEMC v2.0 and miR2Database

miRNA dbDEMC miR2D miRNA dbDEMC miR2D

hsa-mir-320b-1 Confirmed Unconfirmed hsa-mir-449b Confirmed Unconfirmed

hsa-mir-1266 Confirmed Unconfirmed hsa-mir-128 Confirmed Unconfirmed

hsa-mir-616 Confirmed Unconfirmed hsa-mir-19b-2 Confirmed Unconfirmed

hsa-mir-1228 Confirmed Unconfirmed hsa-mir-190a Confirmed Unconfirmed

hsa-mir-1307 Confirmed Unconfirmed hsa-mir-190b Confirmed Unconfirmed

hsa-mir-573 Confirmed Unconfirmed hsa-mir-634 Unconfirmed Unconfirmed

hsa-mir-376 Unconfirmed Unconfirmed hsa-mir-512-2 Confirmed Unconfirmed

hsa-mir-2110 Confirmed Unconfirmed hsa-mir-369 Confirmed Unconfirmed

hsa-mir-455 Confirmed Unconfirmed hsa-mir-320b-2 Confirmed Unconfirmed

hsa-mir-646 Confirmed Unconfirmed hsa-mir-320c-1 Confirmed Unconfirmed

hsa-mir-655 Confirmed Unconfirmed hsa-mir-193 Confirmed Unconfirmed

hsa-mir-516a-2 Confirmed Unconfirmed hsa-mir-618 Confirmed Unconfirmed

hsa-mir-526a-1 Unconfirmed Unconfirmed hsa-mir-320d-1 Confirmed Unconfirmed

hsa-mir-133 Confirmed Unconfirmed hsa-mir-339 Confirmed Confirmed

hsa-mir-526a-2 Unconfirmed Unconfirmed hsa-mir-576 Confirmed Unconfirmed

hsa-mir-384 Unconfirmed Unconfirmed hsa-mir-106b Confirmed Unconfirmed

hsa-mir-544a Confirmed Unconfirmed hsa-mir-492 Confirmed Unconfirmed

hsa-mir-1285 Confirmed Unconfirmed hsa-mir-513c Confirmed Unconfirmed

hsa-mir-15b Confirmed Confirmed hsa-mir-193b Confirmed Unconfirmed

hsa-mir-92a-2 Confirmed Unconfirmed hsa-mir-519c Confirmed Unconfirmed
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work, the relations between miRNA-related diseases are 
constructed by disease MeSH descriptors. We download 
MeSH descriptors form the National Library of Medicine 
(http://www.nlm.nih.gov/). Disease D can be described as 
DAGd = D,Td ,Ed , where Td is a node set containing dis-
ease D and its ancestor diseases Ed is an edge set containing 
the corresponding edges [48]. Here, we use the previous 
method that according to MeSH diseases descriptors to 
compute disease semantic similarity [28]. Particularly, the 
semantic value of disease D is described as the effect of dis-
ease t, as follows:

where � is the semantic contribution decay factor and if t 
is unlike to D , it will cut down the contribution of disease 
t . On the contrary, the contribution of disease D is equal 
to 1.

In addition, we define the semantic value DV (D) as 
follows:

If disease d(i) and d
(

j
)

 share larger part of their DAGs, 
two diseases will be more similar and their semantic sim-
ilarity value could be computed based on this conjecture, 
defined as follows:

(1)

{

D1d(t) = 1 if t = D
D1d(t) = max

{

� ∗ Dd

(

t ′
)

|t ′ ∈ children of t
}

if t �= D

(2)DV (D) =
∑

t∈Td

Dd(t)

where Sim1 is a disease semantic similarity matrix. 
Sim1

(

d(i), d
(

j
))

 is the semantic similarity of d(i) and d
(

j
)

.

Disease semantic similarity
We calculate disease semantic similarity with a diseases’ 
DAGs. They are built by MeSH descriptors novel edge-
based method. On the whole, disease terms will have 
a larger contribution if they have higher specificity in 
semantic metric. Thus, preserving the characteristic of 
diseases is the key to the high precision of computation 
model. Firstly, we calculate the semantic characteristic of 
all diseases. We define a disease term t , its semantic char-
acteristic is described as follows [51].

Secondly, calculating the semantic similarity value 
between disease d(i) and d

(

j
)

 is as follows:

(3)

Sim1
(

d(i), d
(

j
))

=

∑

t∈Td(i)∩Td(j)

(

D1d(i)(t)+ D1d(j)(t)
)

DV (d(i))+ DV
(

d
(

j
))

(4)

D2d(t) = log

(

1+
number of DAGs including t

number of disease

)

(5)

Sim2
(

d(i), d
(

j
))

=

∑

t∈Td(i)∩Td(j)

(

D2d(i)(t)+ D2d(j)(t)
)

DV (d(i))+ DV
(

d
(

j
))

Table 11  Prediction of the top 40 predicted miRNAs associated with Esophageal Neoplasms based on known associations 
in dbDEMC v2.0 and miR2Database

miRNA dbDEMC miR2D miRNA dbDEMC miR2D

hsa-mir-204 Confirmed Unconfirmed hsa-mir-199a Confirmed Unconfirmed

hsa-mir-15b Confirmed Unconfirmed hsa-mir-222 Confirmed Unconfirmed

hsa-mir-224 Confirmed Unconfirmed hsa-mir-221 Confirmed Unconfirmed

hsa-mir-335 Confirmed Unconfirmed hsa-mir-1-1 Unconfirmed Unconfirmed

hsa-mir-138 Confirmed Unconfirmed hsa-mir-208 Unconfirmed Unconfirmed

hsa-let-7 g Confirmed Unconfirmed hsa-mir-191 Confirmed Unconfirmed

hsa-let-7i Confirmed Unconfirmed hsa-mir-328 Confirmed Unconfirmed

hsa-mir-139 Confirmed Unconfirmed hsa-mir-200b Unconfirmed Unconfirmed

hsa-mir-140 Confirmed Unconfirmed hsa-mir-16-2 Confirmed Unconfirmed

hsa-let-7 Confirmed Unconfirmed hsa-mir-186 Confirmed Unconfirmed

hsa-mir-212 Unconfirmed Unconfirmed hsa-mir-1 Confirmed Unconfirmed

hsa-mir-144 Confirmed Unconfirmed hsa-mir-20b Confirmed Unconfirmed

hsa-mir-499 Confirmed Unconfirmed hsa-mir-142 Confirmed Unconfirmed

hsa-mir-124-1 Confirmed Unconfirmed hsa-mir-370 Confirmed Unconfirmed

hsa-mir-96 Confirmed Unconfirmed hsa-mir-30a Confirmed Unconfirmed

hsa-mir-181b Confirmed Unconfirmed hsa-mir-497 Confirmed Unconfirmed

hsa-mir-16-1 Confirmed Unconfirmed hsa-mir-29b-2 Confirmed Unconfirmed

hsa-mir-19b-1 Confirmed Unconfirmed hsa-mir-374a Confirmed Unconfirmed

hsa-mir-92-1 Confirmed Unconfirmed hsa-mir-432 Confirmed Unconfirmed

hsa-mir-182 Confirmed Unconfirmed hsa-mir-320a Confirmed Unconfirmed

http://www.nlm.nih.gov/
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By formula (2), we can calculate DV (d(i)) or DV
(

d
(

j
))

 
which is the semantic values of d(i) or d

(

j
)

 similarly.Sim2 
is another disease semantic similarity matrix and the ele-
ment Sim2

(

d(i), d
(

j
))

 is the semantic similarity of d(i) 
and d

(

j
)

 according to disease semantic similarity model 
2.

Gaussian interaction profile kernel similarity for diseases
According to previous work, the Gaussian interaction 
distribution nuclear similarity of disease can be calcu-
lated [52]. We describe binary vector V (d(a)) to stand 
for the interaction profiles of disease d(a) . The vector 
IP(d(a)) is the a-th row vector of adjacency matrix A for 
the convenient utilization. The vector IP(d(b)) is the b-th 
row vector of adjacency matrix A. We define the similar-
ity between d(a) and d(b) as follow:

where parameter γd is applied to regulate the kernel 
bandwidth. It computes by normalizing original param-
eter γ ′

d:

Gaussian interaction profile kernel similarity for miRNAs
The calculation process of the Gaussian profile kernel 
similarity for miRNAs is same as the process of diseases, 
and it can be described as follows:

where vector IP(m(a)) is the a-th column vector of adja-
cency matrix A for the convenient utilization. The vector 
IP(m(b)) is the b-th column vector of adjacency matrix A.

Integrated similarity for diseases
An integrated disease similarity matrix SD is constructed 
[53]. The element SD(d(a), d(b)) stand for gathered simi-
larity between disease d(a) and d(b) , and its formula is as 
follows:

(6)
KD(d(a), d(b)) = exp

(

−γd ∗
∥

∥IP(d(a))− IP(d(b))
∥

∥

2
)

(7)γd = γ
′

d/

(

1

nd

nd
∑

i=1

∥

∥IP(d(i))
∥

∥

2

)

(8)
KM(m(a),m(b)) = exp

(

−γm ∗
∥

∥IP(m(a))− IP(m(b))
∥

∥

2
)

(9)γm = γ
′

m/

(

1

nm

nm
∑

i=1

�IP(m(i))�2

)

(10)SD(d(a), d(b)) =

{

Sim1(d(a),d(b))+Sim2(d(a),d(b))
2

if d(a), d(b) in Sim1 and Sim2

KD(d(a), d(b)) others

Similarity for miRNAs
We use miRNA Gaussian interaction profile kernel 
similarity and miRNA functional similarity to construct 
miRNA similarity. Thus, the similarity between miRNA 
m(a) and m(b) is calculated as follows:

miRNAs sequence feature
Since miRNAs derive from distinct hairpin precursors 
(pre-miRNAs), we choose the sequences of pre-miR-
NAs to describe the sequence characteristics of miR-
NAs. More specifically, we first downloaded precursor 
sequences of 1057 miRNA needed from the miRBase. 
Secondly, we picked up sequence composition charac-
ters for miRNAs to obtain raw features. We pulled out 
3-mer frequency for miRNA sequence (A, C, G, U), 
which is AAA, AAC … UUU [54]. And then we extract 
conjoint triad (3-mer) from miRNA sequences and get 
sequence feature matrixes as 64× (sequence-2) which 
represent the sequence information of each miRNA. 
After that, sequence feature matrixes are converted 
into new matrixes whose shape is 64 × 5 by Singular 
Value Decomposition (SVD) [55]. Hence, each miRNA 
sequence can be defined by a 320-dimensional vector 
according to reshape the sequence feature matrixes:

Auto‑encoder
Auto-encoder (AE) can avert the labor-intensive and 
feature designed by hand which is an unsupervised fea-
ture leaning methods. This method can conduct scien-
tific experiments on computer vision, natural language 
process, audio processing and so on. The aim of AE is 
to make the input same as the output [56–58]. Substan-
tially, AE is an unsupervised feed-forward neural net-
work with the following structure (Fig. 6).

We choose E = x(1), x(2), . . . , x(n), x(i) ∈ Rd to be the 
unsupervised training examples. a = σ

(

W (1)x + biase
)

 
is the encoding function for mapping the input layer 
x to hidden layer a and h = σ

(

W (2)a+ biasd
)

 is the 
decoding function for reconstituting x from a . W (1) and 
W (2) are the relational parameters between two layers. 
σ(x) = 1/

(

1+ e−x
)

 is a non-linear mapping. biase and 
biasd are vectors of bias parameters.

(11)

SM(m(a),m(b)) =

{

FS(m(a),m(b)) if m(a),m(b) in FS
KM(m(a),m(b)) others

(12)Fseq =
(

f1, f2, f3, . . . f319, f320
)
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MLMDA model
We describe a method named machine learning for 
miRNA–disease association prediction (MLMDA) 
based on machine learning. Functionally similar dis-
eases are allied to similar miRNAs more likely, it is an 
assumption used to analyze data and also used in figur-
ing target protein-drug association. There are four main 
steps of MLMDA: First, constructing positive set and 
negative set; second, combining miRNA and disease 
information matrixes to build feature vectors; third, 
reducing the number of feature’s dimensions; finally, 
constructing the forecast model to analyze potential 
miRNA–disease pairs. Next, we will discuss the details 
of each step.

Firstly, constructing positive set and negative set. We 
choose HMDD v3.0 as basic information and elected the 
confirmed miRNA–disease pairs as positive set. After 
that, we built negative set and it has three main pro-
cess: (1) We chose a disease form all the 850 diseases; 
(2) We discretionarily choose one of the 1057 miRNAs; 
(3) A negative sample is constituted by the disease and 
the miRNA if the miRNA–disease association does not 
appear in the known miRNA–disease pairs. This process 
is repeated until we acquired negative samples.

Secondly, we constitute a miRNA–disease association 
as a feature vector and compute the Gaussian interaction 
profile kernel similarity, semantic similarity 1 and seman-
tic similarity 2 between each disease. We define feature 
vector of disease d(a) as follow:

where the a-th row vector of matrix SD is defined as 
SD(d(a)) and the combined similarity value of disease 
d(a) and d(b) is described as vb.

We obtain miRNA similarity matrix through Gaussian 
interaction kernel profile similarity in the same way. m(a) 
can be defined as follow:

where the a-th column vector of matrix SM is described 
as SM(m(a)) . The combined similarity value between 
miRNAs is defined as wb . Then, reducing SM and SD 
to 16 dimensions respectively. We can describe each 
miRNA–disease sample as a 32-dimensional vector 
according to combined disease similarity matrix and 
combined miRNA similarity matrix as follow:

(13)SD(d(a)) = (v1, v2, v3, . . . v849, v850)

(14)SM(m(a)) = (w1,w2,w3, . . .w1056,w1057)

(15)Fsim = (SD(d(a)), SM(m(a)))

Fig. 6  The structure of an auto-encoder model
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where Fsim =
(

f1, f2, . . . , f16
)

 , 
(

f1, f2, . . . f16
)

 represents 
the 16 combined similarity values of the disease and 
(

f17, f18, . . . f32
)

 is the 16 values of the miRNAs. After that, 
the sequence feature matrixes Fseq are resized from 320 
to 32 in same way. We can describe each miRNA–disease 
sample as a 64-dimensional vector based on combined 
resized Fsim and combined resized Fseq as follow:

(16)F =
(

Fsim
′
, Fseq

′
)

Finally, we use random forest classifier to build the 
prediction model. To be specific, the training sample is 
described as a 64-dimensional vector. We give a label of 1 
if it is in the positive set and given a label of 0 if it is not in 
the negative set. And then, put the data of training sam-
ples into random forest classifier. After that, the model 
which can deduce potential miRNA–disease pairs can 
be gained. If the miRNA disease sample to be validated 

Fig. 7  Flowchart of MLMDA model to predict unconfirmed miRNA–diseases associations
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is higher, then the disease will be more likely to be associ-
ated with the miRNA (Fig. 7).

Discussion
In this paper, functional similarities between miRNAs 
are quantified based on miRNA sequence information. 
The base of each nucleotide in the RNA is usually ade-
nine (A), cytosine (C), guanine (G) or uracil (U). In gen-
eral, the miRNA sequence may vary in length. To solve 
this problem, we first convert the sequence into a k-mer 
sparse matrix and then use the SVD alignment features. 
However, in previous experiments, we find that the tra-
ditional machine learning-based methods have huge 
feature vectors, and the data processing process is time 
consuming and resource intensive. So, we reduce the 
disease similarity information, miRNA similarity infor-
mation and sequence information and use the combined 
feature vector, i.e., 64-D feature vector report result. We 
find that combining sequence information can success-
fully improve accuracy.

Conclusion
The improvements of this method are effectively reduc-
ing the complexity of data processing while retaining 
most of the information of the feature and introduc-
ing the sequence information to improve the prediction 
accuracy. In comparison with other classifiers and other 
multi-source combination model, MLMDA have gained 
good performance. Besides, to further evaluate the pre-
diction performance of MLMDA model, we have car-
ried out case studies with three Human complex diseases 
including Lymphoma, Lung Neoplasm, and Esophageal 
Neoplasms. In this experiment MLMDA also have gained 
good performance. It is anticipated that the MLMDA 
model is a useful tool for the selection of miRNA bio-
marker candidates. In the future work, we will use 
more effective miRNA sequence information extraction 
method to build prediction models in the hope of achiev-
ing better results.
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