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Abstract 

Background: Pooled testing, in which biological specimens from multiple subjects are combined into a testing pool 
and tested via a single test, is a common testing method for both surveillance and screening activities. The sensitiv-
ity of pooled testing for various pool sizes is an essential input for surveillance and screening optimization, including 
testing pool design. However, clinical data on test sensitivity values for different pool sizes are limited, and do not 
provide a functional relationship between test sensitivity and pool size. We develop a novel methodology to accu-
rately compute the sensitivity of pooled testing, while accounting for viral load progression and pooling dilution. We 
demonstrate our methodology on the nucleic acid amplification testing (NAT) technology for the human immunode-
ficiency virus (HIV).

Methods: Our methodology integrates mathematical models of viral load progression and pooling dilution to derive 
test sensitivity values for various pool sizes. This methodology derives the conditional test sensitivity, conditioned 
on the number of infected specimens in a pool, and uses the law of total probability, along with higher dimensional 
integrals, to derive pooled test sensitivity values. We also develop a highly accurate and easy-to-compute approxima-
tion function for pooled test sensitivity of the HIV ULTRIO Plus NAT Assay. We calibrate model parameters using pub-
lished efficacy data for the HIV ULTRIO Plus NAT Assay, and clinical data on viral RNA load progression in HIV-infected 
patients, and use this methodology to derive and validate the sensitivity of the HIV ULTRIO Plus Assay for various pool 
sizes.

Results: We demonstrate the value of this methodology through optimal testing pool design for HIV prevalence 
estimation in Sub-Saharan Africa. This case study indicates that the optimal testing pool design is highly efficient, and 
outperforms a benchmark pool design.

Conclusions: The proposed methodology accounts for both viral load progression and pooling dilution, and is com-
putationally tractable. We calibrate this model for the HIV ULTRIO Plus NAT Assay, show that it provides highly accurate 
sensitivity estimates for various pool sizes, and, thus, yields efficient testing pool design for HIV prevalence estimation. 
Our model is generic, and can be calibrated for other infections.
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Background
Pooled testing, in which biological specimens (e.g., blood, 
urine, tissue swabs) from multiple subjects are combined 
into a testing pool and tested via a single test, can sub-
stantially improve the efficiency of public health screen-
ing and population-level surveillance of diseases; and 
enables the use of expensive testing technologies, such as 
the nucleic acid amplification testing (NAT) technology 
[2]. Ever since its introduction in the 1940’s [9], pooled 
testing has been commonly used for both surveillance 
and screening purposes, including donated blood screen-
ing for transfusion-transmittable infections, e.g., the 
human immunodeficiency virus (HIV), or regional HIV 
surveillance [1, 7].

In general, biomarker tests have less than perfect sensi-
tivity (true positive probability), mainly because the pro-
gression of the load (concentration) of a disease-related 
biomarker (e.g., the HIV viral RNA, measured by the 
NAT) in the infected host follows various phases post-
exposure, with varying growth rates, e.g., pre ramp-up 
phase, ramp-up phase with accelerating growth rates, 
and post ramp-up phase, with the biomarker load tend-
ing to a plateau or significantly diminishing due to a 
resolved infection (e.g., [10, 20]). A majority of false neg-
ative testing errors occur during those earlier phases of 
the infection (pre ramp-up and early ramp-up phases), 
also known as the window period, the length of which 
depends on the specific infection and the biomarker 
being measured by the test (e.g., [27]). Pooled testing 
may further reduce the test’s sensitivity due to pooling 
dilution, where the biomarker load of an infected speci-
men is diluted by infection-free specimens in the pool so 
that the infected specimen may no longer be detectable 
by the pooled test. Pooled testing sensitivity at various 
pool sizes is an essential input to key decisions in surveil-
lance and screening efforts, including testing pool design. 
However, clinical data on test sensitivity values for differ-
ent pool sizes are limited, and the extant literature that 
analytically derives the sensitivity of a pooled test does 
so under restrictive assumptions, including that the test 
is perfectly reliable outside of the window period, i.e., all 
infected specimens that are outside of the window period 
are detected with probability 1 regardless of the pool size 
(e.g., [4, 27, 28]). There are commonly adopted math-
ematical models of viral load progression in infected sub-
jects, but these models consider only the window period 
(e.g., [6]).

Therefore, our objective in this paper is to develop a 
generic methodology for analytically deriving the sen-
sitivity of pooled testing at various pool sizes, based 
on models that account for viral load progression and 
pooling dilution; and by relaxing various restrictive 
assumptions adopted in the literature. In particular, our 

methodology integrates the following components within 
a probabilistic framework: (1) the “doubling time” model 
[6], which we expand to model the host’s viral load pro-
gression throughout the infection’s life-time; and (2) the 
probit function [27], which we expand to model pool-
ing dilution to consider the number of infected speci-
mens in a pool. The proposed methodology derives the 
conditional test sensitivity, conditioned on the number 
of infected specimens in a pool; and uses the law of total 
probability to derive overall (unconditional) test sensi-
tivity values for a wide range of pool sizes. We validate 
this methodology via published test sensitivity data and 
show that it is highly accurate. This methodology uti-
lizes higher dimensional integrals, which may be com-
putationally expensive for large pools. As a result, we 
also propose an easy-to-compute, and a highly accurate, 
approximation function that is based on establishing a 
functional relationship between the sensitivity of pooled 
testing and the number of infected specimens in a pool. 
Our methodology can be used to provide important 
inputs for surveillance and screening activities, includ-
ing testing pool design, which has received consider-
able attention in the literature, (e.g., [16–18, 25, 26, 30, 
31]). Further, our methodology is generic, and can be 
calibrated for various infections; and we demonstrate 
its application for the HIV and HIV ULTRIO Plus NAT 
Assay. For this purpose, we calibrate model parameters 
using published test efficacy data for the HIV ULTRIO 
Plus Assay [20, 22], and clinical data on viral RNA load 
progression in HIV-infected patients [6, 27]; and use this 
methodology to derive and validate the sensitivity of the 
HIV ULTRIO Plus Assay for various pool sizes. We also 
demonstrate the value of this methodology through opti-
mal testing pool design for HIV prevalence estimation 
in Sub-Saharan Africa. This case study indicates that the 
optimal testing pool design is highly efficient, and out-
performs a benchmark pool design.

Methods
Our methodology is based on the integration of viral load 
progression and pooling dilution models. A summary 
of all the notation used in our study is provided in the 
Appendix.

Pooled sensitivity estimation methodology
Viral load progression model
We first describe the viral load progression model, which 
expands the widely adopted doubling time model pro-
posed by Busch et  al.  [6]. The original doubling time 
model [6] considers viral load progression only through 
the window period of an infection, and we expand it to 
model the infection’s life-time. This is needed to relax a 
common assumption used in test sensitivity calculations, 
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that all infected specimens outside of their window 
period are detected with probability 1, regardless of the 
pool size (e.g., [27, 28]). According to numerous stud-
ies, the viral load in infected subjects progresses through 
various phases of growth rates post-exposure: pre ramp-
up phase, ramp-up phase with accelerating growth rates, 
and post ramp-up phase during which growth rate slows 
down, eventually reaching a plateau or resolution of the 
infection (e.g., [5, 6, 10, 12, 20, 27, 28]). To model this 
phenomenon, we let tw , tp , and ts respectively denote the 
time at which the window period ends, viral load peaks, 
and viral load reaches steady state; and let VL(t) denote 
the infected subject’s viral load at time t post-exposure. 
Based on clinical data for HIV and hepatitis B and C 
infections [5, 6, 10, 12], we model the infected subject’s 
viral load beyond the window period and up to the steady 
state as follows:

For tw ≤ t ≤ ts:

where Cw , a, and b are infection-specific calibration 
parameters. In this study, we assume that the viral load 
reaches steady state at time ts , beyond which it remains 
constant at a level of VL(ts) (i.e., VL(t) = VL(ts) , ∀t > ts ); 
this assumption can be easily relaxed. We note that the 
steady state viral load, denoted by VL(ts) , can equal zero 
for acute infections, or can remain at some positive level 
for chronic infections. Consequently, the complete viral 
load model follows:

where the window period component, C02
t/� , is the dou-

bling time model in Busch et al. [6], with infection-spe-
cific calibration parameters C0 and � , where � represents 
the viral load doubling time within the window period. 
For demonstration, Fig. 1 plots the base 10 logarithm of 
the HIV viral RNA load, obtained by Eq. (1), versus post-
exposure time in HIV-infected subjects, calibrated as dis-
cussed in "Viral load progression model" section.

Pooling dilution model
Pooled testing may reduce the test’s sensitivity due 
to pooling dilution, that is, the biomarker load of an 
infected specimen is diluted by infection-free speci-
mens in the pool so that the infected specimen may no 
longer be detectable by the pooled test [22]. In this sec-
tion, we model the test sensitivity considering pooling 
dilution. For this purpose, we first describe the probit 
function, proposed in the literature to model pooling 

VL(t) = VL(tw)+
Cw

t
exp

(
−
(ln(t − tw)− a)2

b

)
,

(1)

VL(t) =





C02
t/�, if t ≤ tw

VL(tw)+
Cw
t exp

�
− (ln(t−tw)−a)2

b

�
, if tw < t ≤ ts

VL(ts), if t > ts,

.

dilution, and discuss how it is expanded to consider the 
number of infected specimens in a pool.

Towards this end, let τ ∈ R
+ denote the life-time of 

a certain infection, and n ∈ Z+ denote the testing pool 
size. We also let T+(n) denote the event that the test 
outcome is positive for a pool of size n, indicating the 
presence of at least one infected specimen in the pool; 
and let NI (n) denote the number of infected specimens 
in the pool, which is a random variable with possible 
values {1, . . . , n} . Therefore, the test sensitivity for pool 
size n (Sens(n)), that is, the probability that the test out-
come is positive given that the pool contains at least 
one infected specimen, follows:

where the “;” notation denotes probabilistic condition-
ing. Weusten et al. [27, 28] propose the following probit 
model to derive the sensitivity of pooled testing, under 
the assumptions that the test is perfectly reliable outside 
of the infection’s window period (i.e., τ = tw ), and the 
pool contains at most one infected specimen, regardless 
of the pool size (i.e., NI (n) = 1 with probability 1):

where following [28], �(.) is the cumulative distribution 
function (CDF) of the standard normal distribution; z is 
a constant such that �(z) = 0.95 , i.e., z = 1.6449 ; χ is the 
number of nucleic acid copies per viral particle, and x50 
and x95 respectively denote the viral load measurement 
at which the probability of a pool testing positive is 50% 
and 95% [28].

(2)Sens(n) = P(T+(n);NI (n) ≥ 1),

(3)

Sens(n) =
1

tw

� tw

0
�


z

log
�
χC02

t/�

nx50

�

log(x95/x50)


dt, (from [28])
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Fig. 1 HIV viral RNA load progression spanning the infection’s 
life-time, covering the window period, peak viremia phase, and 
chronic phase (based on the data in Table 1)
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We expand the probit model in Eq.  (3) to consider 
the performance of a pooled test during the infection’s 
life-time, and to account for the possibility of multiple 
infected specimens in a testing pool. In particular, we 
first derive the test’s conditional sensitivity for a pool 
size of n, given that the pool contains i infected speci-
mens, denoted by Sens(n; i) = P(T+(n);NI (n) = i) , 
∀i ∈ {1, . . . , n}, n ∈ Z

+:

where tj denotes the (random) post-exposure time for 
infected specimen j, j = 1 . . . , i , in the pool, and VL(tj) 
can be derived from Eq.  (1). Observe that the probit 
model in Eq. (3) follows as a special case of Eq. (4), with 
τ = tw and NI (n) = 1 . Then, using the common binomial 
model for the number of infected specimens in a pool, 
and the law of total probability, the overall sensitivity of 
the pooled test, for pool size of n and infection preva-
lence rate of p, follows:

On the other hand, the test’s specificity (true negative 
probability), given by:

is independent of the pool size, because in the absence of 
infected specimens in the pool ( NI (n) = 0 ), pooling dilu-
tion does not apply.

In summary, the proposed sensitivity estimation model 
in Eqs. (4)–(5) can be used in conjunction with Eq. (1) to 
determine the sensitivity of pooled testing for any pool 
size.

Calibration and validation
Calibration: We calibrate the sensitivity estimation 
model based on Stramer et  al. [22], which provides 
the test sensitivity of an infected window period blood 
specimen diluted 16-fold (i.e., tested within a pool of 
size 16) as 88%. Therefore, C0 is calibrated such that Eq. 
(3) equals 0.88 with n = 16 . Further, according to vari-
ous studies, the HIV viral RNA load in blood peaks typ-
ically around day 17, with an average load of 6.8 log10 

(4)

Sens(n; i) = P(T+(n);NI (n) = i) =
1

τ i

� τ

0

� τ

0

· · ·

� τ

0� �� �
i-fold

×�


z

log

�
χ
�i

j=1(VL(tj)

nx50

�

log(x95/x50)


dt1dt2 . . . dti,

(5)

Sens(n) =

n∑

i=1

Sens(n; i)P(NI (n) = i)

=

n∑

i=1

Sens(n; i)

(
n
i

)
pi(1− p)n−i

.

Spec = 1− P(T+(n);NI (n) = 0), ∀n ∈ Z
+,

copies/ml, and reaches steady state around day 61, with 
an average load of 5.1 log10 copies/ml; the HIV dou-
bling time ( � ) is 0.85 days, and the number of nucleic 
acid copies per viral particle ( χ ) for HIV is 2 [10, 20, 
28]. Therefore, we calibrate the remaining parameters 
of our model, namely Cw , a, and b, in Eq. (1), based on 
these values; see Table 1 for the clinical data used and 
the calibrated parameter values. We note that this cali-
bration is for demonstration purposes, and our model 
parameters can be calibrated for any given set of data.

Validation: We validate our sensitivity estimation 
model using the overall (life-time) efficacy data for the 
HIV ULTRIO Plus NAT Assay, in terms of the 95% con-
fidence interval (CI), published by the Food and Drug 
Administration (FDA); see Table  1. We use our model 
[Eqs.  (1), (4), and (5)], with calibrated parameters 
reported in Table 1, to derive the conditional sensitivity 
values for the HIV ULTRIO Plus Assay for various pool 
sizes; see Table 2, which reports the derived conditional 
test sensitivity values as a function of the pool size and 
the number of infected specimens in a pool. Accord-
ing to Table  2, both Sens(n = 1;NI (1) = 1) = 99.98% 
and Sens(n = 16;NI (16) = 1) = 99.26% values are con-
tained within the 95% confidence intervals reported by 
the FDA (see Table 1).

As discussed above, the overall test sensitivity at any 
prevalence rate, p, can then be derived from the con-
ditional sensitivity values in Table  2 via the law of total 

Table 1 Calibration and  validation data for  the  HIV 
and HIV ULTRIO Plus NAT Assay

Calibration data

 HIV viral RNA load data

  tw 11 days [20]

  tp 17 days [20]

  ts 61 days [20]

  VL(tp) 6.8 log10 copies/ml [20]

  VL(ts) 5.1 log10 copies/ml [20]

  � 0.85 days [10]

  χ 2 copies/particle [28]

 Test sensitivity data

  P(T+(16);NI(16) = 1, τ = tw) 0.88 [22]

Calibrated model parameters

 C0 9.000

 Cw 1.096× 108

 a 1.980

 b 1.730

Validation data

 Sens(n = 1;NI(1) = 1) (99.7–100%) [11]

 Sens(n = 16;NI(16) = 1) (98.2–99.5%)) [11]
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probability; see Eq. (5). As expected, conditional test sensi-
tivity decreases with pool size, and increases with the num-
ber of infected specimens in a pool. Moreover, we observe 
that test sensitivity rapidly approaches 1 as NI (n) , the num-
ber of infected specimens in a pool of size n, increases, and 
for NI (n) ≥ 4 , test sensitivity becomes almost perfect.

We also derive P(T+(n);NI (n) = 0) = 0.07% = 1− Spec , 
i.e., Spec = 99.93% , which is also consistent with the effi-
cacy data for the HIV ULTRIO Plus NAT Assay, published 
by the FDA [11].

An approximation for sensitivity estimation
Our model in "Pooled sensitivity estimation methodol-
ogy" section derives the conditional test sensitivity values, 
Sens(n; i), and uses the law of total probability, along with 
higher dimensional integrals (up to pool size), to derive 
the overall (unconditional) test sensitivity values for a wide 
range of pool sizes. Thus, it can be computationally expen-
sive, especially for large pool sizes. Therefore, in this sec-
tion, we provide an approximation function for computing 
the pooled test sensitivity,which does not require higher 
dimensional integrals. We do this by fitting a function to 
the sensitivity data derived in Table 2 via linear regression 
so as to minimize the mean squared error (MSE) of the 
proposed approximation.

Consider the following functional form for conditional 
test sensitivity for pool size n, given i infected specimens 
in a pool:

where α , β , and γ are calibration parameters. In par-
ticular, by definition of pooling dilution, the probability 
of detection reduces with pool size, implying that γ ≥ 0 
and α ∈ [0, 1] ; and P(T+(n);NI (n) = 0) = 1− Spec 
(see "Pooling dilution model" section), implying that 
β = Spec . The remaining parameters (i.e., α and γ ) are 
derived so as to minimize the MSE between the fitted 
function and the data in Table 2, that is:

This minimization problem is a non-convex opti-
mization problem, which we solve numerically in 
Python for the HIV ULTRIO Plus Assay, obtaining 
(α∗ = 0.00033, γ ∗ = 0.179) . The goodness of fit, meas-
ured by the coefficient of determination (i.e., R2 ), is 
equal to 0.9995, suggesting that the fit is highly accurate; 
see Fig.  2 for the fitted model versus the data points in 
Table 2.

(6)
S̃ens(n; i) = 1− βα

(
i

nγ

)

, i ∈ {0, 1, . . . , n}, n ∈ Z
+,

(α∗, γ ∗) = arg min α,γ

(
16∑

n=1

n∑

i=0

[
Sens(n; i)− S̃ens(n; i)

]2
)
,

Results
We apply our sensitivity estimation models (both exact and 
approximation models, respectively detailed in "Pooled 
sensitivity estimation methodology" and "An approxima-
tion for sensitivity estimation" sections) to determine an 
optimal testing pool design for HIV prevalence estimation 
in Sub-Saharan Africa. Specifically, we use the methodolo-
gies proposed in Pooled sensitivity estimation methodol-
ogy" and "An approximation for sensitivity estimation" 
sections, along with the calibrated parameters in "Calibra-
tion and validation" section, to derive sensitivity estimates 
for the HIV ULTRIO Plus Assay for various pool sizes; 
and use these sensitivity values as inputs to a testing pool 
design optimization model, studied in the literature [17, 19, 
24, 30].

Testing pool design optimization
The optimization model determines an optimal testing 
pool design for prevalence estimation, in terms of the num-
ber of testing pools to be utilized, s, and the size of each 
testing pool, n, under a testing budget constraint, so as to 
minimize the asymptotic variance of the maximum likeli-
hood estimator (MLE) of the unknown prevalence rate [19]:

where σ 2(n, s; p0) denotes the asymptotic variance of the 
MLE for a pool design (n, s), given an initial estimate of 
the unknown prevalence rate p, which we denote by p0 . 
The testing cost consists of a fixed testing cost per pool 
(e.g., cost of the testing kit), denoted by cf  , and a col-
lection cost per specimen (e.g., cost of drawing blood), 

(7)

minimize
n,s

σ 2(n, s; p0)

subject to cf s + cv sn ≤ B

n ≤ N

n, s ∈ Z
+,
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Fig. 2 Fitted function versus the data points in Table 2



Page 7 of 10Nguyen et al. J Transl Med          (2019) 17:252 

denoted by cv . The tester has a total testing budget of 
B for prevalence estimation. Additionally, the maxi-
mum pool size that can be used may be restricted due, 
for example, to technological constraints, regulations, 
or other considerations, and we denote the maximum 
allowable pool size by N  . The asymptotic variance is a 
commonly used criterion for optimal testing design in 
prevalence estimation and for evaluation of estimators 
in statistical inference, and is also related to the Fisher’s 
information (e.g., [14, 17, 23–25, 30, 31]).

In pooled testing, only one test is used on each pool, 
and the test provides a binary outcome, with a positive 
outcome indicating the presence of at least one infected 
specimen in the pool; and a negative outcome indicating 
that all specimens in the pool are infection-free. Using 
the test outcomes, the tester derives the MLE of the 
unknown prevalence rate ( p̂ ). In particular, for a given 
testing design, (n, s), let SI (s) denote the number of posi-
tive-testing pools among s pools, which is a random vari-
able prior to testing. Then, after the testing is conducted 
and a realization of SI (s) = k is observed, the MLE of the 
prevalence rate corresponds to the value of p that maxi-
mizes the following likelihood function:

The asymptotic variance function, σ 2(n, s; p) , for a pool 
design of (n, s), and with respect to the unknown preva-
lence rate, p, is then given by (e.g., [17]):

Study design and data
Our goal is in this section is to demonstrate the value 
of the sensitivity estimation methodologies developed 
in this paper through a numerical study. We do this by 
designing an optimal testing pool, based on the sensitiv-
ity estimates derived for the HIV ULTRIO Plus Assay for 
various pool sizes using the methodologies described in 
"Methods" section; and comparing the efficiency of the 
optimal testing design with a benchmark design that does 
not consider pooling dilution (hence does not need to 
use our methodology for sensitivity estimation at various 
pool sizes). As discussed above, we consider pool design 
for prevalence estimation of HIV in Sub-Saharan Africa 
using the HIV ULTRIO Plus Assay.

(8)

L(p; SI (s) = k) =

(
s
k

)[
Sens(n; p)− (1− p)n(Sens(n; p)+ Spec − 1)

]k

×
[
1− Sens(n; p)+ (1− p)n(Sens(n; p)+ Spec − 1)

]s−k

⇒ p̂ ≡ argmax
p∈(0,1)

{
L(p; SI (s) = k)

}
.

(9)σ 2(n, s; p) =
{Sens(n; p)− (1− p)n(Sens(n; p)+ Spec − 1)}{1− Sens(n; p)+ (1− p)n(Sens(n; p)+ Spec − 1)}

sn2(1− p)2(n−1)(Sens(n; p)+ Spec − 1)2
.

Model parameters are as follows. We assume that 
the actual prevalence rate is p = 0.044 [29], which is 
unknown to the tester; this prevalence rate is representa-
tive of the HIV prevalence rate in Sub-Saharan Africa. In 
the absence of this information, the tester determines an 
initial estimate of p0 = 0.022 , i.e., we consider the case 
of undershooting. Based on published data, we consider 
a fixed testing cost per pool of $31.5 [15], a collection 
cost per specimen of $8 [8], and a total testing budget of 
$5575 [18], which corresponds to a testing budget of 50 
pools, each of size 10. Finally, we consider a maximum 
allowable pool size, of N = 48 [21]. These parameter val-
ues are for demonstration purposes, and one can conduct 
similar analyses with different parameter values.

As sensitivity inputs, we utilize the sensitivity values 
in Table 2, which are derived by the sensitivity estima-
tion model in "Pooled sensitivity estimation meth-
odology" section, in conjunction with the calibration 
parameters in "Calibration and validation" section. The 
sensitivity values in Table  2 correspond to pool sizes 
of n = {1, 2, . . . , 16} . As discussed above, the sensitivity 

be computationally expensive. Therefore, we use the 
approximation in "An approximation for sensitivity esti-
mation" section to derive the sensitivity values for the 
remaining pool sizes, i.e., n = {17, . . . , 48} . Then, we per-
form a two-dimensional search, over all possible values 
of {(n, s) : n ∈ {1, . . . , 48}, cf s + cv sn ≤ B} , to determine 
the optimal testing pool design, i.e., (n∗, s∗) , for the opti-
mization model in Eq. (7) that minimizes the asymptotic 
variance. To determine the “best” benchmark design, we 
repeat the two-dimensional search, but without consid-
ering pooling dilution, that is, by replacing the param-
eters, Sens(n), ∀n ∈ Z

+ , with 99.98% , i.e., the sensitivity 
of individual testing for the HIV ULTRIO Plus Assay; 
see Table  3 for the resulting optimal design and the 

estimation model in "Pooled sensitivity estimation 
methodology" section requires the computation of 
higher dimensional integrals (up to pool size), and can 
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benchmark design. For each of these designs, we per-
form a Monte Carlo simulation to derive estimates for 
the MLE of p, p̂ (see Eq.(8)); mean squared error (MSE); 
and the relative bias (rBias (%)), given by:

These performance metrics relate to the efficiency of 
prevalence estimation, and are commonly used in the lit-
erature, e.g., [13, 14, 30].

In particular, for each testing design, we perform 
10,000 simulation replications. In each replication, we 
randomly generate the infection status of each of the 
n∗ × s∗ specimens, where each specimen carries an 
infection with probability p; and is infection-free other-
wise; and for each infected specimen, we randomly gen-
erate a post-exposure time from a Uniform distribution 
with support [0, τ ] , and compute the viral load using 
Eq.  (1) and the parameters of "Calibration and valida-
tion" section. Then, we randomly assign the specimens 
into s∗ pools, each of size n∗ , and generate the binary 
test outcomes based on the test sensitivity model given 
in Eq. (4). Finally, we compute the MLE, MSE, and rBias 
for each replication using Eqs. (8) and (10).

Numerical study results
Table 3 reports the average estimation efficiency of the 
optimal design and the benchmark design, over 10,000 
simulation replications. All performance metrics are 
reported in the form of mean ± half-width of 95% con-
fidence interval (CI).

As indicated by Table  3, the optimal design outper-
forms the benchmark design, and the differences are 
statistically significant. The benchmark design yields 
especially high bias in comparison to the optimal pool 
design, mainly due to the assumption of no pooling 
dilution, leading to biased estimates of the unknown 
prevalence rate.

(10)

MSE = (p̂− p)2, and rBias(%) = 100×

∣∣∣∣
p̂− p

p

∣∣∣∣.

Discussion
Pooled testing is commonly used in public health settings, 
for both screening and surveillance of diseases and infec-
tions. An accurate and tractable method to compute the 
sensitivity of a pooled test is extremely important in design-
ing the optimal pooled testing scheme for these efforts. As 
pooled NAT assays are widely used to screen for diseases, 
several approaches are proposed in the literature to com-
pute the sensitivity of pooled NAT assays. However, these 
approaches only account for the window period of the infec-
tion, and assume perfect sensitivity past the window period, 
which is a restrictive assumption, especially as pooling dilu-
tion plays an important role in the sensitivity of pooled tests. 
Further, these studies compute the sensitivity of the pooled 
test based on the assumption of having at most one infected 
specimen in any testing pool, when the probability of having 
multiple infected specimens in a pool is, in fact, a function 
of both the pool size and the prevalence of the disease.

In this paper, we relax the restricting assumptions in the 
aforementioned studies and propose both exact and approxi-
mate models for computing the sensitivity of a pooled test. 
We expand the doubling time viral load model [6] to math-
ematically model the various growth phases of an infection; 
and propose an exact method to compute the conditional 
sensitivity of a pooled test as a function of the number of 
infected specimens in the pool and the pool size, by expand-
ing the probit model in [27, 28]. Then, we can use a binomial 
model for the number of infected specimens in a pool, along 
with the law of total probability, to calculate the overall sensi-
tivity of the pooled test given the pool size and the prevalence 
rate of the disease. We calibrate and validate our exact model 
using published data on the HIV ULTRIO Plus Assay. Finally, 
we propose an alternative approximation model to derive the 
sensitivity of pooled testing that is highly accurate and more 
analytically tractable than the exact method. We demonstrate 
the value of our exact and approximate models of pooled test-
ing sensitivity in a case study on HIV prevalence estimation. 
In particular, we incorporate the proposed models into our 
testing pool design procedure for prevalence estimation of 
HIV in Sub-Saharan Africa. Our results show that the sensi-
tivity model is very accurate for the HIV ULTRIO Plus Assay, 
enabling the design procedure to yield efficient testing pool 
designs that significantly minimize the estimation error, in 
comparison to a pool design procedure that utilizes less accu-
rate sensitivity values (i.e., assuming no pooling dilution).

Conclusions
In summary, we develop exact and approximate models 
for computing the sensitivity of a pooled test by expand-
ing upon the commonly used probit model in [27, 28], and 
relaxing various restricting assumptions, as we previously 
discuss. Our methodologies are computationally tractable 

Table 3 Estimation efficiency (mean ± half-width of 95% 
CI) of  the  optimal design and  the  benchmark design 
for  HIV prevalence estimation (with an  actual prevalence 
rate of p = 0.044)

Performance metric Optimal design Benchmark design

Pool design n∗ = 37, s∗ = 17 n∗ = 17, s∗ = 33

p̂ (MLE) 0.05204 ± 0.00036 0.03041 ± 0.00029

MSE (×104) 3.95 ± 0.11 4.00 ± 0.08

rBias (%) 18.26 ± 0.52 30.88 ± 0.48
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and highly accurate, and can significantly improve the effi-
ciency of testing pool design for prevalence estimation, 
as demonstrated by our case study, and for public health 
screening. We further note that the proposed sensitivity 
estimation methodology is not infection-specific, and can 
be calibrated with clinical and published data for any infec-
tion or disease, e.g., hepatitis B and C viruses. In addition to 
its application in prevalence estimation, this methodology 
can be used in conjunction with other optimization mod-
els to make optimal decisions for classification efforts (e.g., 
[3]), and can also be used for setting a classification thresh-
old, i.e., for classifying a subject as infected versus infection-
free for the disease in question. Further, as the expanded 
viral load model considers the life-time of the infection, in 
regard to the biomarker load in infected subjects, it allows 
for more precise sensitivity estimation if information is 
available about the population of interest, e.g., repeat blood 
donors have lower overall HIV prevalence rates, and, due 
to their donation history, one can infer which stage of the 
infection the donor would be in, if infected. Therefore, inte-
grating the sensitivity estimation methodology proposed in 
this paper with such optimization models would be worth-
while extensions of this research.
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Appendix
See Tables 4 and 5.

Table 4 Summary of notation

Notation used in viral load and sensitivity models

 VL(t) Viral load of an infected subject at time t post-exposure

 tw The time at which the window period ends

 tp The time at which the viral load peaks

 ts The time at which the viral load reaches steady state

 � Doubling time of the viral load during the window period

 τ The life-time of the infection

 C0, Cw , a, b Infection-specific calibration parameters

 T+(n) The event that the test outcome is positive for pool size n, 
n ∈ Z

+

 NI(n) Number of infected specimens in a pool of size n, n ∈ Z
+

 Spec Specificity of a test (constant for any pool size)

 Sens(n) Sensitivity of a pooled test, with pool size n, n ∈ Z
+

 Sens(n; i) Conditional sensitivity of a pooled test, with pool size n, 
given that the pool

Contains i infected specimens, i ∈ {0, 1, . . . , n} , n ∈ Z
+

 �(.) The cumulative distribution function (CDF) of the standard 
normal distribution

 z A constant such that �(z) = 0.95 , i.e., z = 1.6449

 χ The number of nucleic acid copies per viral particle

 x50, x95 Viral load measurement at which the probability of testing 
positive is 50% and 95%, respectively

 S̃ens(n; i) Approximate conditional sensitivity of a pooled test, with 
pool size n, given that the pool contains i infected speci-
mens, i ∈ {0, 1, . . . , n} , n ∈ Z

+

 β , α , γ Calibration parameters for the approximation model

 MSE Mean squared error

Notation used in the case study (prevalence estimation)

 s Number of testing pools

 n Pool size

 p0 An initial estimate of p

 cf Fixed testing cost per pool

 cv Collection cost per specimen

 B Total testing budget

 N The maximum pool size that can be used

 p̂ The maximum likelihood estimator (MLE) of p

 σ 2(n, s; p) The asymptotic variance of the MLE for a pool design (n, s),

Given a prevalence rate of p

 SI(s) Number of positive-testing pools among s pools

 rBias Relative bias of the MLE with respect to p

Table 5 Summary of abbreviations

HIV Human immunodeficiency virus

NAT Nucleic acid amplification testing

CDF Cumulative distribution function

FDA Food and Drug Administration

MSE Mean squared error

MLE Maximum likelihood estimator

CI Confidence interval
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