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Abstract 

Background: In view of the limited knowledge of plasma biomarkers relating to cancer resistance to radiotherapy, 
we have set up screening, training and testing stages to investigate the microRNAs (miRNAs) expression profile in 
plasma to predict between the poor responsive and responsive groups after 6 months of radiotherapy.

Methods: Plasma was collected prior to and after radiotherapy, and the microRNA profiles were analyzed by quan‑
titative reverse transcription polymerase chain reaction (qRT‑PCR) arrays. Candidate miRNAs were validated by single 
qRT‑PCR assays from the training and testing set. The classifier for ancillary prognosis was developed by multiple 
logistic regression analysis to correlate the ratios of miRNAs expression levels with clinical data.

Results: We revealed that eight miRNAs expressions had significant changes after radiotherapy and the expression 
levels of miR‑374a‑5p, miR‑342‑5p and miR‑519d‑3p showed significant differences between the responsive and 
poor responsive groups in the pre‑radiotherapy samples. The Kaplan–Meier curve analysis also showed that low miR‑
342‑5p and miR‑519d‑3p expressions were associated with worse prognosis. Our results revealed two miRNA classi‑
fiers from the pre‑ and post‑radiotherapy samples to predict radiotherapy response with area under curve values of 
0.8923 and 0.9405.

Conclusions: The expression levels of miR‑374a‑5p, miR‑342‑5p and miR‑519d‑3p in plasma are associated with 
radiotherapy responses. Two miRNA classifiers could be developed as a potential non‑invasive ancillary tool for pre‑
dicting patient response to radiotherapy.
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Background
With more than half of the cancer patients will receive 
radiation therapy as part of treatment in head and neck 
and rectal cancer, recurrence is still a major cause of 
treatment failure despite the advances of combina-
tion chemo-irradiation and preoperative radiotherapy 
[1]. Hence many studies have investigated the tumor 

radioresistance and signaling pathway [2–4]. Interest-
ingly, it has been reported that the IGF1R, MAPK, PI3K 
and DNA repair signaling pathways are associated with 
radioresistance in several cancers [5–8]. However, the 
lack of a sensitive biomarker for radiotherapy and an 
understanding of mechanisms of related radioresistance 
hinder the success of radiation as a treatment for many 
patients [9–12].

The circulating miRNA profile is believed to be a 
molecular tool as disease biomarkers to predict or 
differentiate different types of disease [13–15]. The 
expression level of circulating miRNAs was related to 
the progression and development of cancers [13, 16]. 
In addition, circulating miRNA can be packaged in 
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exosomes, the microvasculature or innate structures, 
enhancing its stability and avoiding degradation in bio-
fluids [17, 18].

A large number of studies have examined the general 
and specific effects of miRNA perturbation in radiation-
exposed cells [19–25]. However, cell line-based studies 
do not always correlate well with the results from clinical 
studies and no reliable and predictive biomarker could be 
applied in clinical for radiotherapy. Therefore, investiga-
tions on the non-invasive way to assess miRNA expres-
sion patterns to predict radiotherapy response are our 
primary interest. In the present work, we aimed to study 
the effects of radiotherapy on the expression levels of 
miRNAs in plasma. We further used these miRNA signa-
tures to develop prediction classifiers for samples with an 
unknown radiotherapy status.

Materials and methods
Patients and samples
A total of 62 patients, including 26 and 36 patients with 
non-metastatic rectal cancer and head and neck cancers, 
respectively, were enrolled from December 2012–2015 
(LSH-IRB-12-15). All patients were treated with radia-
tion as part of curative treatment using a linear accelera-
tor (6 MV, 10 MV) with standard dose fraction (2 Gy per 
day). Treatment response was evaluated 3 to 6  months 
after treatment including computed tomography (CT) 
imaging, magnetic resonance (MR) imaging and posi-
tron emission tomography (PET) imaging. Primary 
tumor with complete and partial response was defined 
as responsive group and the other as poor responsive. 
Response assessed with the use of response evaluation 
criteria in solid tumors (RECIST), version 1.1 [26]. In all, 
15 poor responsive and 47 responsive patients were com-
pared in this study.

Peripheral blood samples were collected from patients 
after obtaining informed consent. The samples were col-
lected within 5 days before and after conclusion of radio-
therapy. Samples were centrifuged and separated into 
plasma and carefully stored at − 80 °C.

RNA isolation from plasma samples
Total RNA from 0.5 ml of plasma was extracted by using 
 TRIzol® LS Reagent and a mirVana™ miRNA Isolation 
Kit according to the standard protocol. We used Syn-
cel-miR-39 as spiked-in control for some of the technical 
variability of plasma RNA extraction. The median of the 
syn-cel-miR-39 CT value obtained from all the samples 
was calculated. The RNA quality from the plasma was 
detected by a spectrophotometer (BioTek). All the RNA 
samples were carefully stored at − 80 °C.

Reverse transcription
cDNAs were reverse transcribed from miRNAs using 
a TaqMan™ MicroRNA Reverse Transcription Kit 
(Applied Biosystems) with 600  ng of total RNA and 
miRNA specific stem loop primers including miRNA 
PCR array A (Megaplex RT primers for Human Pool 
A) and the miRNA candidate pool. The conditions 
for reverse transcription were in accordance with 
the standard protocol. cDNA was generated using 
 TaqMan® 2× Universal PCR master mix without UNG 
and  TaqMan® Array Human MicroRNA Cards A or 
 TaqMan® miRNA single assays.

MiRNA profiling and individual miRNA quantification 
by RT‑PCR
miRNA PCR profiling in plasma samples were carried 
out using  TaqMan® Array Human MicroRNA Cards 
(Applied Biosystems). To quantify individual miRNA lev-
els, we used  TaqMan® miRNA single assays as the main 
detection method as described before [27]. The expres-
sion of miRNAs was determined using the  2−ΔCT method 
relative to U6. The raw data of miRNA expressions was 
transformed to log10 form since the data with log10 form 
was in accordance with the normal distribution. In our 
analysis, the value of no detection miRNAs expression 
was replaced into − 4.5 value at log10 form.

Survival curve analysis
A public website of a smRNA-seq analysis of the clinical 
specimens was compared to survival status at YM500v3: 
a database for small RNA sequencing in human cancer 
research (http://drive rdb.tms.cmu.edu.tw/ym500 v3/
index .php) [28]. Then, miR-374a-5p, miR-342-5p and 
miR-519d-3p expression values from clinical specimens 
were used to perform Kaplan–Meier survival curve anal-
ysis according to the clinical parameter provided in the 
same dataset. High and low expression groups were cre-
ated by using the quantile and median value, respectively 
as a cutoff.

Data statistical analysis
Clinical characteristics between poor responsive and 
responsive patients were evaluated by using Pearson’s Chi 
squared test for categorical variables. Normality and Stu-
dent’s t test were used for unpaired comparisons of two 
groups. All tests were two-tailed and were assessed by 
Levene’s test. All the statistical analyses were completed 
with GraphPad Prism software. The logistic regression of 
miRNA ratios combination were completed with Sigma-
Plot software.

http://driverdb.tms.cmu.edu.tw/ym500v3/index.php
http://driverdb.tms.cmu.edu.tw/ym500v3/index.php
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Results
Identification of differentially expressed candidate miRNAs 
in plasma between poor responsive and responsive groups 
of radiotherapy
To identify potential miRNA signatures as a prognos-
tic tool for radiotherapy patients, the miRNA profiles of 
plasma screened by high-throughput real-time miRNA 
PCR array were first reviewed. The plasma from patients 
was collected in prior to radiotherapy and after com-
pletion of radiotherapy (Additional file  1: Fig. S1). We 
monitored each patient’s condition at 6  months after 
radiotherapy, and the patients were characterized as poor 
responsive or responsive according to RECIST crite-
ria by medical doctors. The screening set includes eight 
plasma samples collected prior to radiotherapy and seven 
plasma samples collected after radiotherapy (Table  1). 
The miRNA expression profiles in the plasma from poor 
responsive and responsive patients were compared. Total 
22 candidate miRNAs were selected from the screening 
results (Additional file 1: Table S1).

Changes in the miRNA expression levels after radiotherapy
Investigations on the possible influence of radiotherapy 
on miRNA expression patterns were of primary inter-
est. To validate the data from our screen, we checked the 
expression of 22 candidate miRNAs from the training set 
by single qRT-PCR. The training set included 38 different 
plasma samples collected from patients prior to radio-
therapy and 31 different plasma samples collected from 
patients after radiotherapy (Table 1). First, we examined 
whether radiotherapy exerted any changes in these can-
didate miRNA expressions. Our results showed that eight 
miRNAs had significantly different expression levels after 
radiotherapy. miR-494-3p and let-7b-5p expression was 
increased, but the other six miRNAs—miR-130a-3p, 
miR-19b-3p, miR-323a-3p, miR-17-5p, miR-374a-5p, 
and miR-106a-5p—had significantly decreased expres-
sion (Fig.  1). We also assessed miRNA changes among 
the same patients before and after radiotherapy by the 
paired t-test. Nine miRNAs expressions including miR-
299-5p and eight miRNAs above showed significant dif-
ference before and after radiotherapy (Additional file  1: 
Fig.  S2). Interestingly, radiation-triggered deregulation 
of miR-494-3p, let-7b-5p, and miR-106a-5p has also been 
reported in previous studies [5, 13, 24, 25, 29–32].

miRNAs expression levels linked to radiotherapy responses
We further analyzed whether the plasma miRNA expres-
sion levels were associated with prognostic responses 
6 months after radiotherapy. We investigated which can-
didate miRNA expression levels were different between 
the poor responsive and responsive groups (Fig. 2a). High 
expression levels of miR-374a-5p and low expression 

levels of miR-342-5p and miR-519d-3p prior to radio-
therapy were observed in the poor responsive group 
(p < 0.0001, p = 0.044 and p = 0.014, respectively). In 
addition, low expression levels of miR-519d-3p after 
radiation were also shown in the poor responsive group 
(p = 0.0251). These results suggest that higher lev-
els of miR-374a-5p and lower levels of miR-342-5p or 
miR-519d-3p in plasma could be linked to worse prog-
nosis. Interestingly, the previous study reported that 
miR-374b-5p expression is linked to the radiation resist-
ance in HNSCC [13]. Further, we utilized a public website 
of smRNA-seq analysis of the clinical cancer specimens 
[28]. Kaplan–Meier plot was analyzed to check for an 
association between miR-374a-5p, miR-342-5p or miR-
519d-3p expression and 5-year survival. (Fig.  2b and 
Additional file 1: Fig. S3). Interestingly, both of head and 
neck squamous cell carcinoma and rectum adenocarci-
noma patients with low miR-342-5p expression had sig-
nificantly shorter survival than those in higher expression 
group (p = 0.0264 and 0.0428, respectively). Lower miR-
519d-3p expression also had significantly shorter 5-year 
survival (p = 0.0355).

To develop a miRNA signature-based predicative 
model for patients with unknown radiation responses, we 
carried out a ROC analysis for the all candidate miRNAs 
(Additional file 1: Table S2). The AUC values of let-7b-5p 
and miR-342-5p were 0.722 and 0. 762, respectively, in 
the pre-radiotherapy samples (Table  2A). These values 
suggest that plasma let-7b-5p and miR-342-5p levels are 
good potential candidates for radiotherapy biomarkers.

Set up two classifiers to predict radiotherapy responses
There is no strong evidence to indicate which miRNA 
or non-coding RNA is the appropriate internal con-
trol to normalize miRNA expression levels in plasma 
so far. Therefore, we utilized the ratio method, which 
divided two miRNAs expression levels from the same 
sample to eliminate the normalization issue. We calcu-
lated all miRNAs combination ratios and selected the 
miRNAs combination ratios with top five values of AUC 
(Table 2B). In the pre-radiation samples, the ratio levels 
of miR-130a-3p/let-7b-5p, miR-130a-3p/miR-19b-3p, 
and miR-130a-3p/miR-374a-5p were significantly dif-
ferent between poor responsive and responsive patients 
(p = 0.00122, 0.0419, and 0.0087, respectively) (Fig.  3a), 
and their AUC values were 0.788, 0.763, and 0.763, 
respectively. Interestingly, in the post-radiotherapy sam-
ples, the ratio levels of miR-130a-3p/let-7b-5p was also 
significantly different (p = 0.03147) (Fig. 3b), and its AUC 
value to discriminate poor responsive from responsive 
patients was 0.752.

To establish a proper model to further estimate the 
radiotherapy responses, the different ratios of the 
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miRNA data from the training set were combined to 
calculate the formula using multiple logistic regression. 
Therefore, we established two classifiers that could sig-
nificantly distinguish the poor responsive from respon-
sive patients, and these two classifiers could predict 
the radiation responses 6  months after radiotherapy 
(Fig. 4). For the pre-radiotherapy samples (n = 38), the 
classifier including three miRNA ratios—miR-130a-3p/
let-7b-5p, miR-130a-3p/miR-19b-3p and miR-130a-3p/
miR-374a-5p—with tumor stage data, and the AUC 

values was 0.8923 (95% CI 0.7910 to 0.9936) (Fig.  4a). 
For post-radiotherapy samples (n = 31), the AUC of 
the classifier, which included two miRNA ratios—miR-
130a-3p/let-7b-5p and miR-130a-3p/miR-148a-3p—
with tumor stage data, reached 0.9405 (95% CI 0.8591 
to 1.022) (Fig. 4d). We further analyzed the distribution 
of the two signatures (Fig.  4b, e). Moreover, we vali-
dated these two signatures by testing another sample 
set (n = 24). In the pre-radiation samples, the classifier 
could detect poor responsive from responsive patients 

Fig. 1 Significant changes in the miRNAs expression levels in plasma after radiotherapy. miRNA levels from the plasma of patients detected 
by qRT‑PCR using RNU6 as a control. The Y axis presents the expression level  (Log10 2−ΔCT). Rad radiation. Student’s t‑test: *P value < 0.05; **P 
value < 0.01; ***P value < 0.001
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Fig. 2 The difference in the miRNA expression levels between the poor responsive and responsive groups. a Difference in the miRNA expression 
in the poor responsive vs responsive groups before or after radiation. miRNA levels from the plasma of patients detected by qRT‑PCR using RNU6 
as a control. b The Kaplan–Meier survival curve of head and neck patients: low miRNA expression versus high miRNA expression. The statistical 
significance of the difference between the two groups was showed. The Y axis presents the expression level  (Log10 2−ΔCT). Rad radiation. Student’s 
t‑test: *P value < 0.05; **P value < 0.01; ***P value < 0.001
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at a cut-off point of 0.2145 with 100% sensitivity and 
91% specificity (Fig. 4c). In the post-radiation samples, 
the classifier could detect poor responsive from respon-
sive patients at a cut-off point of 2.865 with 100% sen-
sitivity and 86% specificity (Fig.  4f ). Poor responsive 
patients were identified by both classifiers.

Discussion
In this study, we aimed to establish plasma miRNAs as 
ancillary predictive biomarkers for radiotherapy. Fur-
thermore, we compared miRNA expression before and 
after treatment, and revealed that the expression levels of 
eight miRNAs had significant changes after radiotherapy. 

Interestingly, in the pre-radiation samples, we revealed 
that the expression levels of miRNA-374-5p, miR-342-5p 
and miR-519d-3p were significantly different between the 
responsive and poor responsive groups. These data sug-
gested that the expression levels of three miRNAs may 
influence radiation sensitivity.

The let-7 family of miRNAs is a group of well-known 
tumor suppressor miRNAs, and many studies showed 
its levels are affected by radiation in  vitro and in  vivo 
[20]. Among them, let-7b is transcriptionally repressed 
by p53, and this mechanism depends on functional p53 
and radiation-activated ATM signaling [33]. In mice with 
functional p53, a decrease in let-7b levels was observed 
in the more radiosensitive tissues upon radiation. These 
results are consistent with our finding that the let-7b-5p 
levels significantly decreased only in the plasma of the 
radiotherapy responsive group. Previous studies showed 
that the levels of miR-494-3p increased upon radiation 
in glioma cells [30]. Moreover, miR-494-3p could induce 
the radiosensitivity of oral squamous cell carcinoma by 
downregulating Bmi1 [25]. We similarly observed that 
the levels of miR-494-3p are increased after radiotherapy, 
and higher levels of miR-494-3p were expressed in the 
responsive group. Furthermore, it has also been reported 
that levels of miR-19b and miR-17 decreased in lympho-
cytes after radiation [20, 31]. However, changes in the 
miR-106 levels were observed in lung, thyroid MCF-7 
and blood cells after radiation [20, 21, 34, 35]. In addi-
tion, the decrease or increase in these miRNA levels 
may not be consistent between cells and plasma, which 
may be due to tissue-specific or functional differences 
between cells and extracellular conditions.

Our results showed that three initial miRNAs in 
plasma—miR-374a-5p, miR-342-5p and miR-519d-3p—
are involved in the prognosis of radiation responses as 
shown in Fig. 2. Summerer et al. demonstrated that high 
expression of miR-374b-5p in the plasma of individuals 
with HNSCC correlated with worse prognosis. Inter-
estingly, miR-374a-5p and miR-374b-5p are present in 
the same seed region, so both of them may regulate the 
same radiation response-related genes. However, the 
mechanisms of miR-374a-5p and the other two miRNAs, 
miR-342-5p and miR-519d-3p, involved in radiotherapy 
responses were unclear until now, and our results show 
that three miRNAs have low AUC values for predict-
ing radiotherapy outcomes. In addition, previous stud-
ies showed the expression of miR-296-5p and miR-16 
have changed after radiotherapy and proposed that their 

Table 2 The discriminatory ability of  the  miRNA 
expression profile for the poor responsive and responsive 
groups

The expression of 22 candidate miRNAs were changed to the ratio form to 
eliminate normalization issue in plasma. The top five miRNA ratios were 
statistically calculated their AUC values by ROC analysis form (A) before radiation 
group and (B) after radiation group

A

miRNA AUC 

Before radiation After radiation

miR‑494‑3p 0.552 0.636

let‑7b‑5p 0.722 0.552

miR‑323a‑3p 0.562 0.512

miR‑19b‑3p 0.603 0.547

miR‑342‑5p 0.762 0.527

miR‑374a‑5p 0.568 0.625

miR‑519d 0.658 0.647

B

miRNA ratio AUC 

Before radiation

 130a‑3p/let‑7b‑5p 0.788

 130a‑3p/19b‑3p 0.763

 130a‑3p/374a‑5p 0.763

 130a‑3p/17‑5p 0.745

 106a‑5p/130a‑3p 0.732

After radiation

 130a‑3p/let‑7b‑5p 0.752

 628‑5p/let‑7b‑5p 0.714

 130a‑3p/148a‑3p 0.686

 148a‑3p/494‑3p 0.676

 148a‑3p/628‑5p 0.671
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expressions were related to the patients’ survival [10, 36]. 
However, small sample size or lack of sufficient predictive 
model to assess prognosis of radiotherapy in these stud-
ies limited the application in clinical use.

We applied each candidate miRNAs expression level 
to the combination of the ratio of miRNAs expression 
and tumor stage data, which produced two classifiers 
to predict radiotherapy outcomes 6  months after radio-
therapy. The combination of the expression ratios levels 
of miR-130a-3p/let-7b-5p, miR-130a-3p/miR-19b-3p, 
and miR-130a-3p/miR-374a-5p and the tumor stage were 

up-regulated in poor responsive patients’ pre-radiother-
apy samples. Moreover, the combination of the expres-
sion ratios of miR-130a-3p/let-7b-5p and miR-130a-3p/
miR-148a-3p were up-regulated in poor responsive 
patients’ post-radiotherapy samples. It is noted that both 
classifiers contained miR-130 expression. High miR-130 
expression has been found in radiation-resistant lung 
and prostate cells [5, 37]. We observed that miR-130 
expression levels was significantly decreased in plasma 
but no significant differences were observed between the 
poor responsive and responsive groups after radiation. 

Fig. 3 The scatter plots of miRNAs expression ratio. a The scatter plots of miR‑130a‑3p/let‑7b‑5p, miR‑130a‑3p/miR‑19b‑3p and miR‑130a‑3p/
miR‑374a‑5p were shown to distinguish responsive or poor responsive in the pre‑radiation samples. b The scatter plots of miR‑130a‑3p/let‑7b‑5p 
was shown to distinguish responsive or poor responsive in the post‑radiation samples. The Y axis was presents the ratio  (2−ΔCT/2−ΔCT). Student’s 
t‑test: *P value < 0.05; **P value < 0.01; ***P value < 0.001
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Therefore, we established two miRNA bio-signature 
models that could act as ancillary prognostic tools for 
radiotherapy patients, to predict responses 6  months 
after radiotherapy, which revealed 100% sensitivity in the 
testing set. If poor responsive can be identified before 
or just after initial radiotherapy, the patient may receive 
an alternative radiation process or other active therapy. 
However, any bio-signature requires multiple cohorts to 
validate its reproducibility, and then it can be applied as 
a clinical biomarker. The two classifiers in this study to 
predict radiotherapy outcomes require more validation 
in different cohorts and different types of cancer.

Conclusions
To date, no clinical tools could predict the therapeutic 
effects of radiation therapy. This study applied the miR-
NAs expression in plasma as ancillary predictive bio-
markers for prognosis of radiotherapy. The expressions 
of miR-374a-5p, miR-342-5p and miR-519d-3p were 

observed the significant difference between the radio-
therapy outcomes in prior of radiotherapy. Patients with 
lower miR-342-5p or miR-519d-3p expression had sig-
nificantly shorter 5-year survival. Two classifiers were 
established from pre- and post-radiotherapy samples to 
predict radiotherapy outcome 6 months after radiother-
apy with area under the curve (AUC) values of 0.8923 
and 0.9405.
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