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Abstract 

Background:  Human tissues are invaluable resources for researchers worldwide. Biobanks are repositories of such 
human tissues and can have a strategic importance for genetic research, clinical care, and future discoveries and 
treatments. One of the aims of Qatar Biobank is to improve the understanding and treatment of common diseases 
afflicting Qatari population such as obesity and diabetes.

Methods:  In this study we apply a panorama of state-of-the-art statistical methods and machine learning algorithms 
to investigate associations and risk factors for diabetes and obesity on a sample of 1000 Qatari population.

Results:  Regarding diabetes, we identified pronounced associations and risk factors in Qatari population including 
magnesium, chloride, c-peptide of insulin, insulin, and uric acid. Similarly, for obesity, significant associations and risk 
factors include insulin, c-peptide of insulin, albumin, and uric acid. Moreover, our study has revealed interactions of 
hypomagnesemia with HDL-C, triglycerides, and free thyroxine.

Conclusions:  Our study strongly confirms known associations and risk factors associated with diabetes and obesity 
in Qatari population as previously found in other population studies in different parts of the world. Moreover, interac‑
tions of hypomagnesemia with other associations and risk factors merit further investigations.
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Background
Chronic diseases such as diabetes, obesity and cancer 
are caused by the complex interaction between environ-
mental factors (such as diet, lifestyle, and the built envi-
ronment) and genetic factors [1–3]. To understand the 
ultimate role of environmental, behavioral, and genetic 
factors along with their interactions, large-scale popu-
lation cohorts have been established, mainly in Europe, 
North America, China, Japan, and Korea [4]. No such 
large population-based studies currently exist in the Gulf 
Region [5].

Two large biobank projects were launched, one in 
Saudi Arabia by the King Abdullah International Medical 

Research Center’s (KAIMRC) and the second in Qatar, 
by the Qatar Foundation and the Supreme Council of 
Health. The Qatar Biobank is a Qatar national popula-
tion based prospective cohort study which includes the 
collection of biological samples, with long-term storage 
of data and samples for future research. The ultimate goal 
is to allow physicians and researchers to use the data col-
lected from the biobank to conduct a large-scale study of 
the combined effects of genes, environment, and lifestyle 
on these diseases, to educate people on risk factors for 
these common diseases and to study disease incidence 
patterns and develop new diagnostic and therapeutic 
approaches. Using this pilot data, we had access to 60 
features measured on 1000 Qatari citizens. The variables 
summarize physical, clinical and biochemical measure-
ments such as age, gender, ethnicity, albumin, transami-
nase time, calcium, cholesterol, and uric acid.
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The aim of this study is to use state-of-the-art statisti-
cal and machine learning methods to identify biomarkers 
for medical conditions; diabetes and obesity in this case, 
to identify the associated risk factors in Qatari popula-
tion compared to those previously found in other stud-
ies. To the best of our knowledge, this is the first study 
that has been done on Qatari biobank few months after 
its release.

Methods
Ethical approval
The study was conducted according to the policies, reg-
ulations and guidelines for Research Involving Human 
of the Qatar Ministry of Public Health. All procedures 
involving human subjects were approved by the Institu-
tional Review Board of Hamad Medical Corporation in 
Doha, Qatar. Written informed consent was obtained 
from all participants prior to their enrollment in the 
study.

Study population
The Qatar Biobank project is a population based cohort, 
aiming to prospectively examine 60,000 Qataris and 
long term residents (≥ 15 years living in Qatar) aged 18 
years or more. Details are available in [6]. Briefly, poten-
tial participants were contacted via word of mouth or 
via Qatar Biobank’s website www.qatarbiobank.org.qa. 
Consented participants visited Qatar Biobank facility at 
Hamad Medical City Building 17, Doha, Qatar, where 
they underwent a 5-stage interview, physical and clinic 
measurement sequence, with an average duration of 3 h. 
Extensive questionnaires (i.e. health behaviors, medical 
history, lifestyle characteristics, physical activity, men-
tal health, environmental exposures etc.) and clinical 
examination (i.e. anthropometric measurements, blood 
pressure, electrocardiogram, bone density etc.) were 
administered by trained research personnel at enroll-
ment. Participants were asked to provide biological sam-
ples (blood, urine and saliva). Biological samples were 
sent for analysis at the diagnostic laboratories at Hamad 
Medical Corporation, Doha, Qatar. All lab equipment 
was calibrated to ensure precision of results. The meas-
ured features comprise of routinely measured clinical 
biomarkers, for details see [6]. Qatar Biobank is recruit-
ing more participants after completion of the pilot study 
to be as representative as possible of the eligible Qatari 
population, with a target of 60,000 study participants [6].

Out of the participants, data of 1305 randomly selected 
participants was used for the present pilot project. The 
participants consisted of 661 males (50.65%) and 644 
females (49.35%), of which 99% were Qataris and remain-
ing 1% were non-Qatari long term residents. The vari-
ables having more than 50% missing values and subjects 

having more than 9 missing values were removed. The 
dataset was used for two studies: diabetes and obesity. 
We denote the samples as dataset Dt2d for diabetes analy-
sis. The samples were divided into two groups: cases (n 
= 312 subjects having HbA1C% ≥6.5) and controls (n = 
898 subjects having HbA1C% < 6.5). For obesity analysis, 
the dataset Dobs was divided into two groups: cases (n = 
508 subjects with BMI ≥ 25 kg/m2) and controls (n = 224 
subjects with 18 ≤ BMI < 25 kg/m2).

Missing value imputation
We identified that 2.81% values of the diabetes data-
set and 2.64% values of the obesity dataset were miss-
ing. Instead of removing the missing values we decided 
to approximate missing values using the well-known 
technique multivariate imputation by chained equations 
(MICE) implemented in the R package mice [7].

Baseline statistics
The baseline statistics for the two groups of samples were 
computed using R [8]. First, normality of the variables 
was tested using Anderson–Darling test in nortest pack-
age of R [9]. For a normally distributed variable in both 
groups, Student’s t-test was used to determine signifi-
cance of difference in the group means. In this case, the 
group variance of the variable was calculated using F test. 
For remaining variables, Mann–Whitney test was used to 
determine significance of difference in the group means. 
A reported P value lower than 0.05 indicates the corre-
sponding variable is statistically different in the groups.

Regularization models
In this paper, we have used the elastic net, the glinternet, 
the lasso projection and hdi methods for linear regres-
sion models.

The elastic net
The elastic net is a lasso based statistical method that 
combines L2 penalty with L1 penalty [10]. The elastic net 
is a better method compared to lasso as the lasso selects 
only one variable (randomly) out of a group of variables 
having high pairwise correlation. We used R package 
glmnet [11] for computation of coefficients with 10-fold 
cross validation for training the elastic net model.

One of the drawbacks of the elastic net is that it does 
not calculate statistical significance of the variables (P 
values), which motivated us to use methods other than 
the elastic net as well.

Glinternet
The glinternet is a group-lasso based method devel-
oped by Lim and Hastie [12]. The method learns pair-
wise interactions of variables in linear regression models 
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satisfying strong hierarchy. An interesting feature of this 
method is its ability to incorporate both continuous and 
categorical variables at the same time in the model mak-
ing it a unique method to analyze mixed data. We used 
R package glinternet [13] for computation of coefficients 
with tenfold cross validation for training the glinternet 
interaction model.

The lasso projection
The lasso projection (lasso proj) or de-sparsified lasso 
is a regularization based method that performs statisti-
cal inference of low dimensional parameters with high 
dimensional data [14]. The method uses low dimension 
projection approach to construct confidence intervals for 
the estimated regression parameters. Bühlmann and van 
de Geer improved the de-sparsified lasso by incorporat-
ing misspecifications in linear regression models [15]. We 
used R package hdi [16] for P value calculations for the 
lasso projection method.

High‑dimensional inference
In case of high-dimensional data p > n , standard covari-
ance tests cannot be used without an estimate of the 
error standard deviation ( �2 ). Meinshausen et  al. intro-
duced a method for computation of P values and confi-
dence intervals in high-dimensional data [17]. In their 
approach, the data is split into two groups. Variables are 
selected in one group using the lasso regularization (the 
elastic net with tenfold cross validation). The selected 
variables are then used as predictors in an ordinary least 
squared regression on the other group to obtain associ-
ated P values. We used R package hdi [16] for P value 
calculation.

Machine learning models
In this section, we briefly summarize the modelling tech-
niques used to generate predictive models and unsuper-
vised clustering methods for the datasets Dt2d and Dobs . 
Our goal is to identify variables, which helps to differ-
entiate cases from controls in the two datasets. For this 
purpose we used two predictive modelling techniques 
namely random-forests and gradient boosting machines 
(GBM), which can capture non-linear interactions and 
produce models which are interpretable. These models 
not only provide the importance of each variable w.r.t. 
the phenotype but also classify unseen samples to cases 
and controls. We have reported the importance of vari-
ables in the predictive models computed by R package 
caret [18]. The importance of variables was ranked and 
scaled to a maximum importance of 100 for comparison 
between different methods. The details of machine learn-
ing methods is available in Additional file 1.

Random forests
Random forest belongs to the class of ensemble based 
supervised learning techniques [19]. Random forest algo-
rithm applies the general technique of bagging or boot-
strapped aggregating [20] to decision tree learners. By 
performing this bootstrapping procedure, we obtain bet-
ter model performance as it decreases the variance of the 
model, without increasing bias. This means that though 
each tree is a weak learner and sensitive to noise within 
its respective data, the average/majority of many trees 
is not, as long as the trees are not correlated. Thus, this 
bootstrap sampling is used to de-correlate the trees by 
showing them different parts of the dataset. Random for-
ests automatically rank the importance of variables in a 
classification problem by considering the average Infor-
mation Gain [19] corresponding to each variable for all 
the trees. We used R package caret [18] to generate ran-
dom forest models.

Gradient boosting machine
We used gradient boosting machine another ensemble 
technique for building a predictive model [21–23]. The 
principle idea behind this algorithm is to construct the 
new base-learners to be maximally correlated with the 
negative gradient of the loss function, associated with the 
whole ensemble. We used R package caret [18] for build-
ing a GBM predictive model. Detailed description of the 
method is provided in [22] and Additional file 1.

Unsupervised learning
We used principal component analysis to perform 
exploratory analysis to identify variables that contribute 
to the maximum variance in the data. Such variables can 
be used as potential biomarkers to classify a new sample 
as case or control. We have used pca biplots [24] to pro-
vide visualization of the variables along with the samples. 
We used R package stats for building pca biplots [24]. We 
performed principal component analysis (PCA) using 
top ten discriminative variables from machine learn-
ing methods mentioned above. The plots represent con-
tribution of each variable in the PCs in form of labeled 
vectors. The angle between two vectors indicates the cor-
relation of the variables. In these plots the colored ellip-
ses represent the density of the two classes.

Survival and risk analysis
Survival analysis
We have applied survival analysis on the prognosis of 
diabetes in the Qatari population. Survival analysis [25, 
26] examines and models the time it takes for events to 
occur, diabetes in our case. Survival analysis focuses on 
the distribution of event times. In our analysis, we used it 
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to estimate the distribution of time of diabetes develop-
ment. The time in the model is considered with reference 
to the time of birth as shown in Fig. 1. For controls, since 
diabetes is not developed to the current age, the time is 
considered to be equal to the current age TC and the data 
is considered to be right censored as the future time of 
diabetes development is not known. For cases, the time 
is considered to be equal to the time of event TD, which 
is the diagnosis of diabetes. We have used the Kaplan–
Meier estimator [27] implemented in the R package sur-
vival [28] to estimate the distribution of time of diabetes 
development.

Risk analysis
We have also analyzed event times using Cox propor-
tional hazard model [29], a regression based model, in 
our study. The model assumes covariates to be linear in 
the log space. Moreover, the model assumes exponen-
tial hazard distribution [30] or constant hazard func-
tion i.e. the survival function changes proportionally 
with each variable. We have performed cox proportional 
hazard regression analysis for each of the predictor vari-
able independent of the other and also in a multivariate 
regression. We have used the R package survival [28] for 
cox proportional hazard regression analysis.

Results
We have applied the aforementioned methods on the 
study population considering all the participants. We 
have also performed gender stratified analysis to inves-
tigate the impact of gender (see Additional file  2 for 
details).

Baseline characteristics of the study population
Based on the baseline statistics, age was found very sig-
nificantly associated with diabetes and obesity. There-
fore, age was removed from the dataset and phenotype 
was age adjusted for rest of the analysis. The baseline 

characteristics of ten most significant variables differ-
entiating the study population for diabetes and obesity 
are listed in Table  1. Complete list of baseline charac-
teristics is available in Additional file  3. Triglycerides, 
BMI, and vitamin D were significantly higher (P values 
2.03× 10−11 , 8.00× 10−09 , and 1.93× 10−08 respec-
tively) whereas chloride, magnesium, albumin, free 
triiodothyronine, sodium and high density lipopro-
tein were significantly lower (P values 4.51× 10−24 , 
3.50× 10−23 , 1.07× 10−10 , 1.50× 10−08 , 2.17× 10−08, 
and 5.25× 10−08 respectively) in cases compared to con-
trols in the diabetes dataset. Similarly, c-peptide of insu-
lin, triglycerides, HBA1C%, insulin, and uric acid were 
significantly higher (P-values 1.95× 10−28 , 6.94 × 10−25 , 
1.43× 10−20 , 5.19× 10−15 , 6.87× 10−13 , 1.54 × 10−10 , 
and 4.25× 10−08 respectively) whereas albumin, high 
density lipoprotein, magnesium, and total bilirubin were 
significantly lower (P values 3.24 × 10−10 , 3.61× 10−08 , 
and 7.18× 10−08 respectively) in cases compared to con-
trols in the obesity dataset.

Regularization models
Results of the elastic net, the glinternet, the lasso proj 
and hdi are listed in Table 2 for diabetes and obesity stud-
ies. Coefficients ( β ) are reported for the elastic net and 
glinternet whereas P values are reported for the lasso 
proj and hdi. A positive coefficient indicates correlation 
whereas a negative coefficient indicates inverse correla-
tion of the variable with the phenotype.

We identified magnesium, calcium, high density lipo-
protein (HDL-C), phosphorus, chloride, free triiodo-
thyronine, albumin, insulin, and uric acid significant in 
diabetic subjects using the elastic net and glinternet. We 
identified magnesium, high density lipoprotein (HDL-
C), chloride, free triiodothyronine, insulin, and uric 
acid (P values 3.35× 10−10 , 3.73× 10−03 , 2.99× 10−09 , 
2.58× 10−03 , 1.88× 10−04 , and 1.31× 10−05 respec-
tively) as significant variables using the lasso proj. 
We identified magnesium, high density lipoprotein 
(HDL-C), chloride, insulin, and uric acid (P values 
2.34 × 10−09 , 6.96× 10−04 , 7.43× 10−11 , 9.36× 10−02 , 
and 4.05× 10−04 respectively) as significant variables 
using hdi.

Similarly, we identified magnesium, high density lipo-
protein, albumin, calcium, c-peptide of insulin, choles-
terol, total bilirubin, vitamin D, triglycerides, uric acid, 
and vitamin B12 significant in obese subjects using the 
elastic net and glinternet. We identified high density 
lipoprotein, albumin, cholesterol, vitamin D, uric acid, 
and vitamin B (P values 7.46× 10−03 , 1.11× 10−05 , 
1.03× 10−03 , 1.22× 10−07 , and 1.64 × 10−02 respec-
tively) as significant variables using the lasso proj. We 
identified albumin and uric acid (P values 2.40× 10−09 Fig. 1  Prognosis of diabetes in controls and cases
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and 1.52× 10−03 respectively) as significant variables 
using hdi.

Machine learning models
Results of machine learning models are summarized in 
Fig. 2. For diabetes study, both random forest and GBM 
have identified magnesium, chloride, c-peptide of insu-
lin, insulin, and uric acid as important variables for pre-
dicting diabetes. Similarly, insulin, c-peptide of insulin, 
albumin, uric acid, and vitamin D were identified as main 
variables for predicting obesity.

The PCA biplots of first two principal components 
(PCs) are shown in Fig.  3. The plots indicate that there 
are overlapping clusters of cases and controls detected 
by the first two principal components, which is expected 
especially in case of diabetes indicating presence of 
pre-diabetic subjects. For diabetes study, there is a high 
correlation between magnesium and chloride; free trii-
odothyronine and LDLC; and c-peptide of insulin and 
insulin (Fig. 3a). Similarly, for the obesity study there is a 
high correlation between c-peptide of insulin and insulin; 

total bilirubin and albumin; and hemoglobin, serum cre-
atinine and uric acid (Fig. 3b).

Survival and risk analysis
Survival analysis
Figure  4a shows the probability of being non-diabetic 
(y-axis) in Qatari population at a given age (x-axis). In the 
plot, the solid line indicates the probability of being non-
diabetic (solid line) along with the 95% confidence inter-
vals (dotted lines). Variation in the probability increases 
with age due to a large number of uncensored observa-
tions thus widening the 95% confidence interval associ-
ated with the probability. The analysis reveals that at the 
age of 40, there are 15% chances of developing diabetes in 
Qatari population and the chances increase to 50% at the 
age of 63. We have also analyzed the data by stratifying 
on the basis of gender. Figure  4b shows the probability 
of being non-diabetic (y-axis) in Qatari population at a 
given age (x-axis) for males and females. The results indi-
cate that females are slightly at more risk to diabetes than 
males before the age of 40 but later on males have more 
chances to develop diabetes.

Table 1  Baseline characteristics for diabetes and obesity study

Rows are sorted by significance, ten most significant variables are reported

Case (n = 312) Control (n = 898) P value

Diabetes study

 Age (years) 50.99 ± 10.33 39.01 ± 12.13 8.60 × 10−55

 Chloride (mmol/L) 99.44 ± 2.61 101.18 ± 1.99 8.60 × 10−24

 Magnesium (mmol/L) 0.79 ± 0.08 0.84 ± 0.66 3.50 × 10−23

 Triglycerides (mmol/L) 1.83 ± 0.96 1.39 ±1.00 2.03 × 10−11

 Albumin (g/L) 44.25 ± 2.85 45.47 ± 2.86 1.07 × 10−10

 BMI 31.39 ± 5.87 29.11 ± 6.00 8.00 × 10−09

 Free triiodothyronine (pmol/L) 4.31 ± 0.69 4.57 ± 0.62 1.50 × 10−08

 Vitamin D (ng/L) 21.69 ± 9.65 18.17 ± 9.40 1.93 × 10−08

 Sodium (mmol/L) 139.38 ± 2.54 140.30 ± 2.25 2.17 × 10−08

 High density lipoprotein (mmol/L) 1.21 ± 0.33 1.34 ± 0.36 5.25 × 10−08

Case (n = 508) Control (n = 224) P value

Obesity study

 Albumin (g/L) 44.07 ± 2.76 46.58 ± 2.61 1.95 × 10−28

 Age (years) 45.36 ± 11.77 35.02 ± 12.68 6.94 × 10−25

 C-peptide of insulin (ng/L) 3.43 ± 2.07 2.17 ± 1.39 1.43 × 10−25

 Triglycerides (mmol/L) 1.61 ± 1.10 1.10 ± 0.62 5.19 × 10−15

 HBA1C% 6.53 ± 1.65 5.71 ± 1.26 6.87 × 10−13

 Insulin (mcunit/mL) 22.77 ± 38.35 10.59 ± 10.95 1.54 × 10−10

 High density lipoprotein (mmol/L) 1.27 ± 0.33 1.45 ± 0.36 3.24 × 10−08

 Magnesium (mmol/L) 0.81 ± 0.07 0.84 ± 0.06 3.61 × 10−08

 Uric acid (umol/L) 304.39 ± 80.52 272.01 ± 68.71 4.25 × 10−08

 Total blirubin (umol/L) 6.19 ± 3.76 8.23 ± 4.94 7.18 × 10−08
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Risk analysis
We have performed cox proportional hazard regression 
analysis for each of the predictor variable independent 
of the other. The results are summarized in Table 3. Here 
lower p-values, high magnitude of β , and high value of 
Wald test means a variable is playing an important role in 

the risk of disease. In this case, variables such as calcium, 
magnesium, hemoglobin, triglycerides, and free-triio-
dothrymine play a very significant role in determining 
risk of the disease. The proportionality assumption of 
each variable must be validated in the model for correct 
modeling of the data. We have used scaled Schoenfeld 

Table 2  Significant results of elastic net, glinternet, lasso proj and hdi

Rows are sorted by the absolute value of elastic net coefficients

Elastic net Glinternet Lasso proj hdi
Coefficient (β) Coefficient (β) P value P value

Diabetes study

 Magnesium − 1.01 ×10−00 − 2.82 ×10−00 3.35 × 10−10 2.34 × 10−09

 Calcium 1.33 × 10−01 − 3.07 × 10−02 5.61 × 10−02

 High density lipoprotein − 1.19 × 10−01 − 5.16 × 10−01 3.73 × 10−03 6.96 × 10−01

 Phosphorus 6.47 × 10 −02 − 8.15 × 10−03 4.71 × 10−01

 Chloride − 3.48 ×10−02 − 1.66 × 10−02 2.99 × 10−09 7.43 × 10−11

 Free triiodothyronine − 3.05 × 10−02 − 1.08 × 10−01 2.58 × 10−03

 Albumin − 1.08 × 10−03 1.29 × 10−03 2.09 × 10−01

 Insulin 9.95 × 10−04 2.93 × 10−04 1.88 × 10−04 9.36 × 10−02

 Uric acid − 5.40 ×10−04 − 3.32 × 10−03 1.31 × 10−05 4.05 × 10−04

Obesity study

 Magnesium − 2.00 × 10−01 − 2.79 × 10−02 6.55 × 10−01

 High density lipoprotein − 8.10 × 10−02 4.49 × 10−01 7.46 × 10−03

 Albumin −3.00 × 10−02 − 7.36 × 10−02 1.11 × 10−05 2.40 × 10−09

 Calcium − 2.65 × 10−02 − 2.06 × 10−01

 C-peptide of insulin 1.74 × 10−02 − 5.30 × 10−02 1.18 × 10−01 3.27 × 10−01

 Cholesterol 1.11 × 10−02 1.59 × 10−02 4.83 × 10−01

 Total bilirubin − 3.30× 10−03 4.52 × 10−02

 Vitamin D − 3.16 × 10−03 − 2.72 × 10−02 1.03 × 10−03 1.09 × 10−01

 Triglycerides 2.51 × 10−03 − 1.01 × 10−01

 Uric acid 5.87 × 10−04 − 4.61 × 10−03 1.22 × 10−07 1.52 × 10−03

 Vitamin B12 − 1.28 × 10−04 −2.14 × 10−02 1.64 × 10−02

Fig. 2  Relative variable importance of top variables of machine learning methods for (a) diabetes and (b) obesity
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Residuals test [31] to check proportionality assumption 
of each variable. Results of the test are summarized in 
Additional file  4. Only triglycirides variable violates the 
proportionality assumption as its p-value is less than the 
0.05 threshold. We have investigated the impact of gender 

and magnesium on the survival as shown in Fig. 5a, b. We 
have also performed the multivariate cox regression on 
all the variables together in a multivariate regression set-
ting. The results are shown in Fig. 5c.

Fig. 3  PCA Biplots for (a) diabetes and (b) obesity studies

Fig. 4  Probability of being non-diabetic (y-axis) in Qatari population (a) at a given age (x-axis), and (b) stratified on gender
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Discussion
A majority of adults in Qatar are obese or overweight, 
which is a main risk factor for developing diabetes and 
between 18.5 and 20% population have been diagnosed 

with diabetes, according to Qatar Diabetes Associa-
tion of Qatar Foundation. Both conditions—which are 
related to each other as well as to heart disease-increased 
significantly in just 6  years, with the prevalence of 

Fig. 5  Impact on survival probability of (a) gender, (b) magnesium, and (c) all variables

Table 3  Multivariate Cox regression results for diabetes

Rows are sorted by the P values

Variable β HR (95% CI for HR) Wald test P value

Hemoglobin 1.7 × 10−1 1.2 (1.1–1.3) 20.0 9.0 × 10−6

Albumin 9.9 × 10−2 1.1 (1.1–1.2) 18.0 1.9 × 10−5

ALT (GPT) 1.5 × 10−02 1.0 (1.0–1.0) 15.0 8.7 × 10−5

HDLC − 7.2 × 10−1 0.48 (0.33–0.71) 14.0 2.1 × 10−4

Gender − 4.5 × 10−1 0.64 (0.5–0.81) 13.0 3.5 × 10−4

Total bilirubin 5.8 × 10−02 1.1 (1.0–1.1) 8.7 3.2 × 10−3

GGT​ 4.0 × 10−03 1.0 (1.0−1.0) 7.2 7.3 × 10−3

Free triiodothyronine 1.9 × 10−01 1.2 (1.0–1.4) 6.9 8.6 × 10−3

AST (GOT) 1.6 × 10−01 1.0 (1.0−1.3) 6.2 1.3 × 10−2

LDLC 1.6 × 10−01 1.2 (1.0–1.3) 6.0 1.4 × 10−2

Triglycerides 1.5× 10−01 1.2 (1.0–1.3) 5.3 2.1 × 10−2

Calcium 1.4 × 10+0 4.1 (1.1–16.0) 4.2 4.1 × 10−2

ALP − 5.9 × 10−03 0.99 (0.99–1.0) 3.9 4.7 × 10−2

Magnesium 1.5 × 10+0 4.3 (1.0–18.0) 3.9 4.8 × 10−2
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diabetes alone jumping nearly 20% between 2012 and 
2016. Although there are a number of factors associ-
ated with diabetes and obesity, ranging from genetics to 
individual behaviors, the metabolomics and other fac-
tors have been increasingly implicated in these epidem-
ics. Our study is based on a new data from the 2015 to 
2016 Biobank Health Interview Survey, the nation’s larg-
est health survey.

The study proposes use of state of the art statistical and 
machine learning methods to identify biomarkers for 
medical conditions; diabetes and obesity in this case. The 
statistical methods rely on lasso and group-lasso based 
techniques that can even use mixed continuous and cat-
egorical variables. The machine learning methods rely on 
tree based models that provide importance of variables 
in predictions. In contrast to relying solely on the widely 
used baseline statistics, which perform marginal analysis 
considering a single variable at a time, these methods are 
based on multivariate analysis of the medical conditions. 
Moreover, we recommend using an ensemble of methods 
complementing their findings. This is because some vari-
ables are either identified by only some methods such as 
calcium, phosphorus, triglycerides (as shown in Table 2), 
or variable significance could vary between the methods 
such as magnesium, chloride, insulin (as shown in Table 2 
and Fig. 2). From gender stratified analysis, we found that 
some variables have higher significance in gender spe-
cific groups compared to the whole dataset. In diabetes 
study, uric acid has high significance in males and tri-
glycerides have high significance in females. Similarly in 
obesity study, insulin has high significance in males and 
HBA1C% has high significance in females.

According to world health organization, drinking water 
accounts for 29−38% of the estimated average require-
ment of magnesium [32]. Nriagu et al. have found asso-
ciation of low mineral desalinated water with cancer 
[33]. Their findings of low magnesium water in 99% port-
able water supply can be one of the contributing fac-
tors in hypomagnesia shown in both cases and controls. 
Recently, Gommers et al. have also found hypomagnesia 
to be one of the causes of type 2 diabetes [34].

Although hypomagnesemia have been reported low 
in diabetes, to the best of our knowledge chloride is not 
reported low in diabetic subjects. Low levels of magne-
sium and chloride may be an indicator of renal impair-
ment [35]. Moreover, our study has revealed interactions 
of hypomagnesemia with HDL-C, triglycerides, and free 
thyroxine. These findings need further investigations. In 
next study, we will have available genomics and proteom-
ics data and we intend to use a more advanced integrative 
analysis tools to associate these two diseases with genet-
ics and other factors.

Conclusion
Our study strongly confirms known associations and risk 
factors associated with diabetes and obesity in Qatari 
population as previously found in other population stud-
ies. For diabetes, biomarkers in Qatari population (as 
identified by different methods) include magnesium, 
calcium, HDL-C, chloride, insulin, c-peptide of insulin 
which have been previously reported by [36–40] to list a 
few. Similarly, for obesity, significant biomarkers (as iden-
tified by different methods) include insulin, c-peptide of 
insulin, albumin, and uric acid which have been previ-
ously reported by [41–44].
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