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Abstract 

Objective:  Mesenchymal stromal cells (MSCs) expanded in vitro have been proposed as a potential therapy for con-
genital or acquired skin defects in pediatrics. The aim of this pre-clinical study was to investigate the effects of intra-
dermal injections of MSC in experimental cutaneous wound repair comparing allogeneic and autologous adipose 
stem cells (ASCs) and autologous bone marrow-mesenchymal stromal cells (BM-MSCs).

Methods:  Mesenchymal stromal cells were in vitro expanded from adipose and BM tissues of young female New 
Zealand rabbits. MSCs were characterized for plastic adhesion, surface markers, proliferation and differentiation capac-
ity. When an adequate number of cells (ASCs 10 × 106 and BM-MSCs 3 × 106, because of their low rate of prolifera-
tion) was reached, two skin wounds were surgically induced in each animal. The first was topically treated with cell 
infusions, the second was used as a control. The intradermal inoculation included autologous or allogeneic ASCs or 
autologous BM-MSCs. For histological examination, animals were sacrificed and wounds were harvested after 11 and 
21 days of treatment.

Results:  Rabbit ASCs were isolated and expanded in vitro with relative abundance, cells expressed typical surface 
markers (CD49e, CD90 and CD29). Topically, ASC inoculation provided more rapid wound healing than BM-MSCs 
and controls. Improved re-epithelization, reduced inflammatory infiltration and increased collagen deposition 
were observed in biopsies from wounds treated with ASCs, with the best result in the autologous setting. ASCs also 
improved restoration of skin architecture during wound healing.

Conclusion:  The use of ASCs may offer a promising solution to treat extended wounds. Pre-clinical studies are how-
ever necessary to validate the best skin regeneration technique, which could be used in pediatric surgical transla-
tional research.
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Background
Renewal and maintenance of normal skin depend on 
a pool of endogenous progenitors. After skin injury, 
a series of coordinated events occur, including bleed-
ing and coagulation, acute inflammation, cell migration, 
proliferation, differentiation, angiogenesis, re-epithe-
lialization, and synthesis as well as remodelling of the 
extracellular matrix. These complex events involve three 
overlapping phases: inflammation, proliferation and 
remodelling [1–4]. In the normal healing process, all of 
the above stages function sequentially and for a specific 
amount of time. However, interference during the wound 
healing process may prolong one or more of these phases 
leading to delayed or incomplete wound healing.

Recent advances in stem cell therapy for tissue engi-
neering approaches have provided promising data on 
wound repair and tissue regeneration. Mesenchymal 
stromal cells (MSCs) expanded in  vitro have been pro-
posed as a potential therapy to enhance cutaneous 
wound healing [5–11]. It has been described that MSCs 
may attenuate the inflammatory response by influencing 
the wound’s ability to progress beyond the inflammatory 
phase and not regress to a chronic wound state [12, 13]. 
MSCs are multipotent cells that can differentiate into 
multiple tissue-forming cell lineages, such as osteoblasts, 
adipocytes, chondrocytes, tenocytes, and myocytes. 
In addition, MSCs regulate immune and inflamma-
tory responses. These multipotent cells with innate self-
renewal capacity can be in vitro expanded without losing 
their differentiation potential. MSCs have been isolated 
from various tissues such as bone marrow (BM), umbili-
cal cord blood, skeletal muscle and brain. Addition-
ally, they can be easily obtained in large quantities with 
minimal invasiveness from adipose tissue, the so called 
adipose stem cells (ASCs) [14, 15]. Although BM-MSCs 
and ASCs share many biological features, there are some 
differences between these distinct MSC populations. 
For instance ASCs show a higher proliferative capacity 
and retain differentiation potential for a longer period 
in culture compared with human BM-MSCs. Moreo-
ver it has been demonstrated that human ASCs support 
hematopoiesis both in vitro and in vivo more efficiently 
than human BM-MSCs, on the other hand it has been 
suggested that BM-MSCs evoke less inflammation and 
thrombogenesis than ASC [16].

The therapeutic effects of MSCs have already been 
demonstrated in preclinical and clinical studies in 
adults [6]. Their strong capacity to proliferate and dif-
ferentiate and their immunomodulatory effects sup-
port their potential use in safe regenerative medicine 
approaches also in pediatric patients [17]. In the pres-
ence of extensive and disfiguring congenital pathologies, 
impaired wound healing remains a challenge and causes 

debilitating effects with tremendous suffering. This is 
the case with giant congenital melanocytic nevi, where 
complete surgical removal is difficult to achieve because 
of the lack of available skin to graft over the resultant 
defects [18, 19] or following acquired skin lesions such as 
burn wounds or tissue destruction following surgery or 
trauma in which skin damage usually never fully recovers 
[20, 21].

In these cases, ASCs or BM-MSCs represent tools 
which could potentially provide mechanical and humoral 
support for skin regeneration for better functional and 
cosmetic results. However, the use of MSC therapy to 
improve wound healing is limited as a widely used and 
proven cell source is not rapidly available after injury. 
In fact, the time necessary to ex  vivo expand sufficient 
autologous cell numbers is extensive. The alternative is to 
use allogeneic cells that can be pre-expanded and char-
acterised, and thus ready for use in the initial stages of 
injury.

The aim of this pre-clinical study was to investigate the 
advantage of using autologous ASCs over BM-MSCs, 
evaluating the effects of intradermal injections in experi-
mental cutaneous wounds. Our purpose was to obtain a 
model which could be translated to the pediatric surgical 
setting. Considering the technical difficulties in obtaining 
adipose tissue in the pediatric age compared to the adult 
age and knowledge that age negatively impacts the bio-
logic features of MSCs [22], we used young animals. Allo-
genic ASCs were also considered as an alternative source 
when autologous ASC isolation would be difficult, such 
as in neonates or young infants.

Methods
Adipose tissue and bone marrow harvest
Healthy young female New Zealand rabbits (n  =  27, 
3 months old, median 3.5 kg weight) [23], were used as an 
animal model. The experimental protocol was approved 
by the National Animal Care and Ethics Committee and 
conducted in accordance with Italian and European legis-
lation (D.lgs. 116/92, European Directives 86/609/EE and 
2010-63UE for the protection of animals used in scien-
tific and experimental studies).

After overnight fasting, experimental animals were pre-
medicated with an intramuscular midazolam injection 
(1 mg/kg). Under general anesthesia using Zoletil 0.4 ml/
kg (Virbac, Milano, Italy), and after local anesthesia 
with levo-bupivacaine 0.25% or ropivacaine 0.2% (2  ml/
cm wound), a 2 cm longitudinal incision was performed 
in the inguinal area in order to harvest adipose panicle 
(lipectomy), while BM was harvested by aspiration from 
the femoral medullary cavities.

Local anesthesia with levo-bupivacaine 0.25% or ropi-
vacaine 0.2% (2  ml/cm wound) were repeated for pain 
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management. Subcutaneous Enrofloxacin (0.1  ml/2  kg/
day for 3  days—Bayer, Milano, Italy) and Meloxicam 
(0.3  mg/kg/day for 3  days—Boehringer Ingelheim, 
Milano, Italy) were subsequently administered.

Isolation and culture of ASCs and BM‑MSCs
Inguinal fat pads were placed in sterile phosphate-buff-
ered saline (PBS, Euroclone, Milan, Italy) with gen-
tamicin, minced manually and digested with 0.0075% 
type II collagenase (3  mg/ml, Sigma-Aldrich, St Louis, 
MO, USA) in Dulbecco’s modified Eagle Medium 
(DMEM, Gibco, Invitrogen, Monza, Italy) for 20 min at 
37°C with gentle agitation. The stromal vascular fraction 
(SVF), containing ASCs, was suspended in DMEM +10% 
Fetal Bovine Serum (FBS, Euroclone), in order to inhibit 
enzyme activity. The specimen was then filtered through 
a 100 mm sterile nylon mesh filter (Millipore, Darmstadt, 
Germany), and centrifuged at 1,200 rpm for 10 min. The 
resultant pellet was suspended and counted with 0.4% 
Trypan blue (Sigma-Aldrich). Cells were subsequently 
plated in culture flasks (Corning Costar, Amsterdam, 
The Netherlands) at a density of 160,000/cm2 in αMEM 
(Gibco, Invitrogen) containing 10% FBS (Euroclone) and 
1% antibiotic–antimycotic (Sigma-Aldrich) at 37°C, 5% 
CO2 in a humidified atmosphere.

Mononuclear cells (MNC) were isolated from 1  ml of 
BM aspirate, by density gradient centrifugation (Ficoll 
1.077  g/ml; Lympholyte, Cedarlane Laboratories Ltd., 
The Netherlands) counted and plated in 75 or 175  cm2 
tissue culture flasks at a density of 160,000/cm2 in αMEM 
supplemented with 10% FBS (Euroclone) and 1% antibi-
otic–antimycotic (Sigma-Aldrich). Cultures were main-
tained at 37°C, 5% CO2 in a humidified atmosphere. 
After 48-h, non-adherent cells were removed and cul-
ture medium was replaced twice a week. After reaching 
≥80% confluence, MSCs were harvested using Trypsin–
EDTA (Lonza, Copenhagen, Denmark), and propagated 
at 4,000 cells/cm2.

ASC were expanded until passage (P)4, while BM-
MSC were expanded until P3 because of their low rate of 
proliferation. At each passage, viable cells were counted 
using 0.1% eosin and culture supernatants were tested for 
sterility.

Immunophenotype
Rabbit ASCs and BM-MSCs were characterized by flow-
cytometry. Fluorescein isothiocyanate (FITC)- or phy-
coerythrin (PE)-conjugated monoclonal antibodies (BD 
PharMingen, San Diego, CA, USA) anti-human CD29, 
anti-rat CD45, anti-human CD49e, anti-human CD10 
and anti-rat CD90 cross-reactive against rabbit were 
used as described [24]. Appropriate, isotype-matched, 

irrelevant fluorochrome-conjugated antibodies were 
used as controls.

Differentiation assays
ASCs and BM-MSCs were evaluated for their ability to 
differentiate into osteoblasts and adipocytes, as previ-
ously described [25].

The osteogenic differentiation capacity of ASCs and 
BM-MSCs was assessed at P2–4 by incubating cells with 
αMEM, 10% FBS, 1% gentamicin, supplemented with 
10−7  M dexamethasone (Sigma-Aldrich St Louis, MO, 
USA), 50 mg/ml l-ascorbic acid (Sigma-Aldrich). Start-
ing from day +7 of culture, 5 mM β-glycerol phosphate 
(Sigma-Aldrich) was added to the medium. Adipogenic 
differentiation was evaluated at P2–4 by incubating cells 
with αMEM, 10% FBS, 1% gentamicin supplemented 
with 10−7 M dexamethasone, 50 mg/ml l-ascorbic acid, 
100  mg/ml insulin, 50  mM isobutyl methylxanthine 
(Sigma-Aldrich), 0.5  mM indomethacin (MP Biomed-
ica, Illkirch, France) and 5  mM β-glycerol phosphate. 
Both osteogenic and adipogenic cultures were incubated 
for 21  days before evaluating differentiation. To detect 
osteogenic differentiation, cells were stained for alka-
line phosphatase (AP) activity using Fast Blue (Sigma-
Aldrich) and, for calcium deposition, by Alizarin Red 
S staining (Sigma-Aldrich). Adipogenic differentiation 
was evaluated through the morphological appearance of 
fat droplets stained with Oil Red O (Bio Optica, Milan, 
Italy).

Semi‑solid clonogenic assay
A suspension of 200,000 cells in D-MEM low glucose 
(Gibco), 0.9% methylcellulose (StemCell Technologies, 
Milan, Italy), 30% (vol/vol) FBS (StemCell Technologies) 
was plated in six-well plates. After 4 weeks incubation at 
37°C in a humidified atmosphere with 5% CO2, the plates 
were examined with contrast phase microscopy (4×) for 
the formation of colonies with an inverted microscope 
(Leitz, Wetzlar, Germany). A malignant transformed rat 
MSC line, obtained in our laboratory, was used as a posi-
tive control.

Senescence assay
Rabbit ASCs and BM-MSCs were maintained in culture 
until reaching senescence. They were closely monitored 
during senescence for up to 8–12 weeks before interrupt-
ing the cultures, in order to reveal any change in mor-
phology and/or proliferation rate. MSC senescence was 
assessed by staining with the β-galactosidase (SA-β-gal) 
staining kit (Cell Signaling Technology, Danvers, MA, 
USA), according to the manufacturer’s instructions, and 
evaluated by direct-light microscopy.
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Rabbit cutaneous wound model
When an adequate number of cells was reached, the 
skin wounds were surgically induced. After over-
night fasting, experimental animals was premedicated 
with intramuscular midazolam (1  mg/kg). Under gen-
eral anesthesia using Zoletil 0.4  ml/kg, and after local 
anesthesia with levo-bupivacaine 0.25% or ropivacaine 
0.2% (2  ml/cm wound), two identical full thickness 
2 × 2 cm wounds were created on the back of each rab-
bit, at a distance of more than 2  cm from each other. 
One lesion was used as a control. After creation of the 
wounds, local anesthesia with levo-bupivacaine 0.25% 
or ropivacaine 0.2% (2  ml/cm wound) was repeated. 
Subcutaneous Enrofloxacin (0.1 ml/2 kg/day for 3 days) 
and Meloxicam (0.3 mg/kg/day for 3 days) were subse-
quently administered.

Intradermal injection of ASCs and BM‑MSCs
Within 5  min from the wound lesion establishment, 
autologous or allogeneic ASCs or autologous BM-MSCs 
in 3 ml of saline, 2% rabbit albumin (Sigma-Aldrich) were 
directly injected into the wound bed of the first lesion. 
The protocol called for infusions of 10 × 106 cells into the 
wound bed. An injection of 3 ml of saline, 2% rabbit albu-
min solution was used as a control in the second lesion. 
Rabbits did not receive any immune suppression. General 
conditions of the animals and wound healing were moni-
tored daily. Wounds were photographed using a digital 
camera.

For the experimental outline see Figure 1.

Histological and immunohistochemical analyses
Rabbits were euthanized with a bolus of Pentobarbital 
100  mg/kg I.V. For histological examination, wounds 
were harvested after 11 (12 rabbits) and 21 days (15 rab-
bits) of treatment. The regenerated tissue biopsies were 
collected using dermal biopsy punches. The samples 
were bisected along the length of the wound, fixed in 
4% neutral buffered formalin for 48 h, dehydrated with a 
gradient alcohol series, cleared in xylene and eventually 
embedded in paraffin. Sections  (8  μm) were obtained 
using a Leitz microtome and prepared for histology. All 
stained slides were examined under a Axiophot Zeiss 
light microscope (Oberkochen, Germany) equipped with 
a digital camera.

To compare the re-epithelization rate and the amount 
of inflammatory infiltration, tissue sections were stained 
with haematoxylin and eosin (H&E). To assess the degree 
of collagen synthesis, Mallory’s trichrome stain was 
used, while immunohistochemical evaluation of prolif-
eration was performed by anti-Proliferating Cell Nuclear 
Antigen (PCNA) antibody (Dako, Glostrup, Denmark). 
In this latter case, tissue sections were deparaffinized, 

hydrated and pretreated for antigen retrieval using a 
pressure cooker in 10  mM citrate buffer. Endogenous 
peroxidases were quenched with 3% hydrogen peroxide 
for 15  min. Nonspecific antibody binding was blocked 
by incubation with a protein blocker (Dako). The sec-
tions were incubated with 1:400 anti-PCNA antibody or 
bovine serum albumin as a negative control for 30 min 
at 45°C, then incubated with horseradish peroxidase 
conjugated anti-mouse immunoglobulin (Dako) for 
15  min at 45°C, followed by a 5  min incubation with 

Figure 1  Experimental design. Rabbit ASCs and BM-MSCs were 
collected, isolated and expanded. As soon as an adequate number 
of in vitro expanded MSCs was reached, two wound lesions (wound 
1 and wound 2) were created. Within 5 min from the wound lesion 
establishment, autologous or allogeneic ASCs or autologous BM-
MSCs were directly injected into the wound bed 1. Into wound bed 
2, 3 ml of saline 2% rabbit albumin solution was injected as a control. 
Wound healing was monitored daily. After rabbit euthanasia, biopsies 
of the regenerated tissues were collected, using dermal biopsy 
punches, for histological examination.
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3,3′-diaminobenzidine (DAB; Dako). Finally, the sections 
were mounted and examined under a light microscope 
[26].

The re-epithelization rate defined as the presence of 
differentiated multi-layered epithelium, the amount 
of inflammatory infiltration defined as the presence of 
inflammatory cells [27], the degree of collagen defined 
as collagen content in granulation tissue and cellu-
lar proliferation, defined as PCNA positive nuclei/mm 
of epidermis or /mm2 of dermis were assessed using a 
semi-quantitative scale, with scores ranging from 0 to 3 
as reported in Table 1. The 39 biopsies were examined by 
two independent operators.

Statistical analysis
Quantitative data and the histological score were 
described as the median and interquartile range (IQR: 
25th–75th centile) and compared by fitting multivariable 
ordinal logistic regression models with robust standard 
errors to take into account the clustered structure of the 
data. Groups (using controls as a reference) and times 
(using 11 days as a reference) were included in the mod-
els as independent variables.

Statistical significance was defined as a p value <0.05. 
Since no time effect was observed we reported only the 
p values (obtained in the multivariable ordinal logis-
tic regression models i.e. corrected for time) relative to 
group comparisons. Data analysis was performed with 
the STATA statistical package (release 13.1.2012, Stata 
Corporation, College Station, TX, USA).

Results
ASC and BM‑MSC expansion rate and intradermal 
inoculation
ASCs were isolated from all rabbits and expanded to P4, 
while BM-MSCs were isolated and expanded to P3 in 4 
out of 27 rabbits. The expansion rate, defined as the cal-
culated cell count (ccc), for BM-MSC was significantly 

lower (p =  0.028) than ASCs, with a mean ccc value of 
6.59 × 106 ± 4.85 × 106 at P3 and 199 × 106 ± 263 × 106 
at P4, respectively. Moreover the time to reach conflu-
ence was longer for BM-MSC than ASC (median 13 days, 
range 8–21  day; median 6.5  days, range 3–11  day, 
respectively).

Due to this low rate of in vitro expansion and restric-
tions on the length of time to ethically and legally house 
the rabbits, we were only able to expand a lower number 
of BM-MSC. Even though, the original protocol called 
for infusions of 10 ×  106 cells into the wound bed, we 
decided to proceed with 3 × 106 of BM-MSCs only in the 
autologous setting.

In order to compare results between ASC and BM-
MSCs infusion, four rabbits were treated with a compara-
ble number of ASCs.

ASC and BM‑MSC characterization
ASCs and BM-MSCs showed the typical spindle shape 
morphology (Figure 2, Panel A) and they resulted positive 
for CD49e, CD90 and CD29, while they were negative for 
CD45 and CD10 (Figure 2, Panel B for in vitro-expanded 
ASCs) as reported by Piccinno et al. [21].

Both ASCs and BM-MSCs exhibited the capacity to dif-
ferentiate in  vitro to osteoblasts and adipocytes as con-
firmed by histological staining. Microscopic examination 
of stained cells demonstrated the presence of minerali-
zation nodules and fat droplets (Figure 2, Panel C). Both 
types of mesenchymal progenitors ceased their growth at 
variable passages and entered into the senescence phase 
(data not shown), moreover the three lots tested were not 
capable of anchorage independent growth when cultured 
in a semisolid medium, indirectly confirming the lack of 
oncogenic transformation.

Macroscopic aspect of the wound healing
All wounds healed without severe infection and typi-
cal scars formed at the site of each wound. With the 

Table 1  Semi-quantitative scale for the histological parameters

Score 0 1 2 3

Re-epithelization rate Early signs of re-epitheli-
zation

Regenerated mono-layered 
epithelium

Regenerated multi-layered 
epithelium

Differentiated multi-layered 
epithelium (stratum 
corneum)

Inflammatory infiltrate 
(white cells)

None Few Fair Rich

Collagen content in granula-
tion tissue

None Poor Moderate High

PCNA in epidermis and 
dermis (positive nuclei/
mm of epidermis or mm2 
of dermis)

0 1–9 10–30 >30
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Figure 2  Characterization of rabbit MSCs. A Morphology of bone marrow and adipose-derived mesenchymal stromal cells obtained from one rab-
bit. MSCs from both sources display the characteristic spindle-shaped morphology. Magnification ×4. B Immunophenotype of culture-expanded 
ASCs obtained from one representative rabbit. ASCs were positive for CD90, CD29 and CD49e and negative for CD45 and CD10, as reported [20]. 
The immunophenotype of BM-MSCs was superimposable. C Osteogenic and adipogenic differentiation capacity of BM-MSCs and ASC. Differen-
tiation into osteoblasts was demonstrated by the histological detection of Alkaline phosphatase activity (a) and calcium depositions positive for 
Alizarin Red (b); magnification ×20. Differentiation into adipocytes was revealed by the formation of lipid droplets stained with Oil Red O (c); magni-
fication ×20. Non differentiated cells (negative ctrl) are reported.
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macroscopic analysis, autologous ASC inoculation 
induced a more rapid and more complete wound heal-
ing process when compared with the other experimental 
conditions (Figure 3).

Histological results
Semi‑quantitative analysis of histological parameters
Semi-quantitative assessment of the regenerated epithe-
lial layer features, inflammatory infiltrate extent, collagen 
deposition and PCNA-positive nuclei in treated and con-
trol wounds, at 11 and 21 days, is reported in Table 2. In 
our study, the best and worst re-epithelization rates were 
noted after autologous ASC and autologous BM-MSC 
inoculation, respectively. Since no time effect was noted, 
we only reported the p values (obtained in the multivari-
able ordinal logistic regression models i.e. corrected for 
time) relative to group comparisons (Table 2).

When MSC inoculation numbers were considered, 
histological results were not different in wounds treated 
with 10  ×  106 or 3  ×  106 autologous ASCs (epithelial 
regeneration p = 0.32; inflammatory infiltrate p = 0.34; 
collagen deposition p = 0.38; PCNA-positive nuclei-epi-
dermis p = 0.26, dermis p = 0.68).

When different sources were considered, ASC-treated 
wounds exhibited better regeneration of epithelial lay-
ers (p  <  0.001), collagen deposition (p  <  0.001) and 

PCNA-positive nuclei in epithelial regenerated epidermis 
(p < 0.001) compared to BM-MSC treated lesions.

Re‑epithelization, collagen deposition and cellular 
proliferation
At 11  days, autologous ASC-treated wounds showed a 
more advanced re-epithelization in comparison with 
wounds treated under all other experimental conditions. 
Beneath the necrotic material, the epidermis was entirely 
regenerated and almost completely differentiated, with 
a thin stratum corneum. Only the central area of the 
wound had a single layer of epithelium. The dermis con-
tained a small number of inflammatory cells; some small 
blood vessels, presumably newly formed, were evident, 
with only slight signs of edema (Figure 4, Panel 1). After 
21  days of treatment, the skin was completely regener-
ated, with a perfectly differentiated epidermis (Figure 4, 
Panel 2).

Allogeneic ASC-treated wounds did not develop an 
entirely re-formed skin layer: a continuous mono-layer 
of epithelium was observed in most of the samples (Fig-
ure 4, Panel 3). At 21 days, the epithelium was multi-lay-
ered, but the central area of the wound never developed 
a stratum corneum (Figure 4, Panel 4). Connective tissue 
showed small amounts of inflammatory infiltration, with 
several dilated vessels.

Figure 3  Skin regeneration at day 11 after autologous ASC injection vs control (a), autologous ASCs vs autologous BM-MSCs (b), allogeneic ASCs vs 
control (c), allogeneic ASCs vs autologous ASCs (d).
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The wounds inoculated with BM -MSCs showed, in 
most cases, a small area devoid of epithelium (Figure 4, 
Panels 5 and 6), while the saline-treated wounds never 
developed a continuous epidermis (Figure 4, Panels 7 and 
8).

In the Mallory trichrome-stained sections (Figure  5), 
all MSC-treated wounds showed higher blue stain-
ing density than the saline-treated wounds, revealing 

new collagen deposition. The amount of collagen visibly 
increased in autologous ASC-treated wounds where col-
lagen was arranged in thick bundles of fibres (Figure  5, 
Panels 1 and 2). No differences were observed after 11 or 
21 days of treatment.

Finally, the number of PCNA-positive nuclei in the epi-
dermal basal layers of autologous ASC-treated wounds 
(Figure  6, Panels 1 and 2) was higher than in all other 
groups (Figure  6, Panels 7 and 8). The saline-treated 
wounds, however, displayed  increased positivity for 
fibroblasts and endothelial cells.

Discussion
Skin is the largest organ of the human body and it has 
multiple functions in maintaining homeostasis. It forms 
an important barrier from the outside environment. 
Following skin injury, the damaged tissue is repaired 
through coordinated biological actions that constitute 
the cutaneous healing response. [1–4, 28].

Chronic wounds are an important and growing prob-
lem with an incidence of 5–7 million cases per person/
years in the United States; and, about 50% do not respond 
to current treatment [6, 29, 30]. Moreover, skin grafting 
in children remains a challenge for pediatric surgeons 
and scientists.

The presence of MSCs in normal skin [31], their capac-
ity to differentiate and to regulate immune and inflam-
matory responses suggest their role in wound healing 
[32–34]. For this reason the application of exogenous 
MSCs is a promising approach to treat non healing 
wounds.

Although BM-MSCs have been extensively used for 
cell therapy approaches in seminal experimental and 
clinical studies, adipose tissue has been increasingly 
employed as an abundant source of ASCs, especially in 
the field of reparative medicine [35]. Successful isola-
tion, extensive proliferative capacities ex vivo, and their 
ability to secrete pro-angiogenic growth factors make 
adipose derived stem cells an ideal cell type for the 
treatment of non healing wounds [36–40], also in pedi-
atric patients.

Topically delivered ASC have been shown to enhance 
granulation tissue formation in skin wounds improving 
outcome in wound healing. Skin wounds treated with 
ASC are characterized by an enhanced healing rate and 
less scar formation than control wounds [34].

It has been reported that the reparative effect of MSCs 
is mediated by paracrine signaling with release of bio-
logically active molecules affecting cell migration, prolif-
eration, and survival of the surrounding cells [1, 5, 6, 34]. 
Recent studies have documented that extracellular vesi-
cles are a key component of paracrine secretion in many 
cell types, also including MSC [41–44].

Table 2  Semi-quantitative assessment of  the regenerated 
epithelial layer features, inflammatory infiltrate extent, 
collagen deposition and  PCNA-positive nuclei in  differ-
ently treated wounds at 11 and 21 days

Since no time effect was observed, only the p values (obtained in the 
multivariable ordinal logistic regression models i.e. corrected for time) relative to 
group comparisons are reported. Results are reported as the median and range 
score (Table 1).

ASCs  adipose derived stem cells, BM-MSCs bone marrow derived stem cells.

11 days 21 days p values vs ctrl

Autologous 
ASCs (n = 14)

Epithelial 
regeneration

3 (2–3) 3 (3–3) p < 0.001

Inflammatory 
infiltrate

2 (1–2) 1 (1–2) p < 0.001

Collagen depo-
sition

2 (2–3) 3 (2–3) p < 0.001

PCNA-positive nuclei

 Epidermis 3 (1–3) 3 (2–3) p < 0.001

 Dermis 2 (1–3) 2 (2–3)

Allogeneic ASCs 
(n = 9)

Epithelial 
regeneration

2 (2–2) 1 (1–1) p < 0.001

Inflammatory 
infiltrate

2 (2–3) 2 (2–3) p = 0.039

Collagen  
deposition

2 (2–2) 2 (2–2) p < 0.001

PCNA-positive nuclei

 Epidermis 2 (1–3) 2 (1–2) p < 0.01

 Dermis 2 (2–3) 2(2–3)

BM-MSCs 
(n = 4)

Epithelial 
regeneration

1 (1–2) 1 (1–1) p < 0.001

Inflammatory 
infiltrate

3 (2–3) 3 (3–3) p = 0.99

Collagen  
deposition

1 (0–2) 1 (1–1) p = 0.43

PCNA-positive nuclei

 Epidermis 1 (1–2) 2 (2–2) p < 0.01

 Dermis 2 (2–3) 2 (2–2)

Control wounds 
(n = 27)

Epithelial 
regeneration

0 (0–1) 1 (0–1)

Inflammatory 
infiltrate

3 (3–3) 3 (2–3)

Collagen  
deposition

0 (0–1) 1 (1–2)

PCNA-positive nuclei

 Epidermis 0 (0–1) 3 (2–3)

 Dermis 0 (0–1) 3 (3–3)
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Figure 4  Histological aspect of the skin regeneration after 11 and 21 days of treatment. Panel 1 after 11 days treatment with autologous ASCs, the 
epidermis was entirely regenerated and almost completely differentiated, with a thin stratum corneum (arrow) and some shedding of necrotic mate-
rial (asterisk). The dermis contains a small number of inflammatory cells and some small blood vessels. Panel 2 after 21 days treatment, the skin was 
completely regenerated, with a perfectly differentiated epidermis. Panel 3 allogeneic ASC-treated wounds after 11 days display large areas devoid 
of epithelium or with a mono-layered or thin epidermis. Panel 4 after 21 days the epithelium was multi-layered, but no stratum corneum is evident. 
Connective tissue showed a small amount of inflammatory infiltration, with several dilated vessels. Panels 5, 6 the wounds inoculated with BM-MSCs 
show large areas devoid of epithelium after 11 days, as well as 21 days of treatment. Panels 7, 8 only early signs of re-epithelization are detectable in 
saline-treated samples; in correspondence with the de-epithelized area the connective tissue is infiltrated by numerous inflammatory cells (granula-
tion tissue) and many vessels appear dilated. Haematoxilin and Eosin staining. Scale bar 200 μm; original mag. ×100.
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MSCs contribute to the proliferative phase of wound 
healing and promote granulation and epithelialization 
by expressing growth factors such as VEGF, βFGF, and 
KGF [34]. Nakagawa et  al. [45] suggested that MSCs, 

together with βFGF in a skin defect model, accelerate 
wound healing by showing that human MSCs differen-
tiated into epithelium in a rat model. Shumakov et  al. 
[46] observed that MSC transplantation onto deep burn 

Figure 5  Histological evaluation of collagen deposition at 11 and 21 days after different MSC treatments. Panels 1, 2 blue-stained collagen was 
clearly detectable in autologous ASC-treated areas, where collagen is arranged in thick bundles of fibres. Allogeneic ASC- (Panels 3, 4) and BM-
MSC- treated wounds (Panels 5, 6) show a slightly higher blue staining density than the saline-treated wounds (Panels 7, 8). Eschar (asterisk). Mallory 
trichrome-staining. Scale bar 200 μm; original mag. ×100.
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wound surfaces decreased inflammatory cell infiltration 
and accelerated the formation of new vessels and granu-
lation tissue in rats.

Results from our histological analysis are in agree-
ment with data reported in the literature [47, 48] and 
show differences in the wound healing progress among 

Figure 6  Histological evaluation of proliferative cellular nuclear antigen (PCNA)-positive nuclei at 11 and 21 days after different MSC treatments. 
Panels 1, 2 autologous ASC-treated wounds show a high number of PCNA-positive nuclei in epidermal layers. Panels 3, 4 allogeneic ASC wounds 
display several PCNA-positive cells. Panels 5, 6 in wounds treated with BM-MSCs the number of PCNA-positive cells is low. Panels 7, 8 saline-treated 
wounds show no epithelial cells marked with PCNA, but a considerable immunopositivity for fibroblasts and endothelial cells was detected. Eschar 
(asterisk). Immunostaining of PCNA. Scale bar 200 μm; original mag. ×100.
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experimental groups (different settings and sources). 
Improved re-epithelization, reduced inflammatory infil-
tration and increased collagen deposition were observed 
in biopsies from wounds treated with allogeneic or 
autologous ASCs compared to autologous BM-MSCs 
and control-wounds. In autologous ASC-treated wounds 
increased cellular proliferation was also noted. ASC 
inoculation provided more rapid wound closure than 
BM-MSCs and controls. It is well known that excessive 
collagen accumulation may induce hypertrophic scar-
ring [4]: interestingly, areas treated with autologous ASCs 
displayed a collagen fiber pattern similar to normal skin 
in shape, size and orientation, thus suggesting that ASCs 
improve restoration of skin architecture  during wound 
healing.

The ability of MSCs to promote the transition from 
inflammatory to the proliferative phase is particularly 
critical for treating wounds where high levels of inflam-
mation prevent healing [12].

In the present study, earlier re-epithelialization, 
replacement of the fibrin clot by granulated tissue and 
collagen deposition in autologous ASC-treated wounds 
were observed. The unsatisfactory results observed with 
BM-MSCs does not seem to be related to the lower 
number of inoculated cells. The data confirm that even 
though MSCs from different tissues have similar levels 
of surface antigen expression and differentiation ability, 
their rate of cell proliferation may be different and MSCs 
from various sources may have different therapeutic 
potentials [16].

The possible oncogenic transformation during in vitro 
expansion remains a critical consideration in MSC 
in vivo applications. While human MSCs are apparently 
resistant to transformation, animal MSCs, in particular 
mouse MSCs, are prone to acquire genomic abnormali-
ties [49–51]. In order to exclude this possibility, in the 
present study, we used cells at early passages of in vitro 
expansion. Moreover, cell growth in a semi-solid medium 
and capability to reach senescence were evaluated, show-
ing that ASCs and BM-MSCs expanded from rabbits 
were not transformed.

Wound healing in the pediatric patient is of utmost 
clinical and social importance, since scarring can have 
aesthetic and psychological sequelae, from infancy to late 
adolescence. Despite the extensive data supporting the 
promising use of MSCs in dermal wound healing, clinical 
translation to the pediatric age remains limited [6, 52]. 
These data, from our preclinical study using young ani-
mals, could also be translated to regenerative medicine 
for the treatment of congenital and acquired skin lesions 
occurring in the pediatric age. At certain periods during 
childhood, such as in neonates or young infants, adipose 

tissue harvesting may be difficult or limited. Therefore, 
further studies focusing on the potential efficacy of cell 
therapy approaches in this particular area with the use of 
allogeneic ASCs obtained also from adult donors or cell 
free extracellular vesicles are urgently needed. Moreover, 
pre-clinical studies are necessary to validate the best skin 
regeneration technique, which would be used in transla-
tional pediatric surgery research in infants with disfigur-
ing lesions.

Conclusions
Rabbit ASC can be isolated and expanded in  vitro with 
relative abundance. Topical inoculation of ASCs provides 
restoration of skin architecture during cutaneous wound 
healing. The use of ASCs could be a promising solution 
to treat non healing or extended wounds; and would be 
applicable also in children. Future experimental stud-
ies should provide further perspectives on regenerative 
medicine in pediatric surgery.
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