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Abstract 

Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast can-
cer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment 
from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors 
such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling 
pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-
resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations 
to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strate-
gies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mecha-
nisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire 
from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced 
by pathological changes in various spatial structures during breast cancer development are also discussed. Addition-
ally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. 
Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin 
being the most functionally comprehensive.
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Introduction
The World Health Organization’s International Agency 
for Research on Cancer (IARC) posted the latest data 
on global cancer burden in 2020. Revealing a rapid 
increase in breast cancer (BC) cases to 2.26 million. 
This accounted for approximately 11.7% of all new can-
cer patients, establishing BC as the most prevalent can-
cer worldwide [1]. BC exhibits significant heterogeneity, 
with some cases presenting slow growth and favorable 
prognosis, while others are highly aggressive and rapidly 
metastasize to other organs [2].

Molecular subtypes of BC include Luminal A, 
Luminal B, human epidermal growth factor recep-
tor2 (HER2) overexpression, normal breast-like, and 
Basal-like or Triple Negative cancer (TNBC) [3]. This 
molecular sub-classification could improve BC treat-
ment techniques to a large extent, including guiding the 
delivery of targeted therapies such as hormone therapy 
(e.g., Toremifene) and HER2-targeted therapy (e.g., 
Pertuzumab) [4]. Intrinsic subtypes of BC have been 
used in research settings for more than two decades [5], 
with ongoing efforts to refine differentiation among BC 
subtypes [6]. Evidence suggests that BC cells may inter-
convert between different disease subtypes, indicat-
ing the potential coexistence of multiple BC subtypes 
within a single tumor [7]. Regardless of the subtypes, 
metastasis significantly reduces patients’ survival rate 
[8]. A statistical analysis of all BC patients diagnosed in 
the US between 2009 and 2015 showed 5-year survival 
rates of 98% for stage I, 92% for stage II, 75% for stage 
III and 27% for stage IV [9].

Metastasis initiation occurs when local tumor cells 
detach from the extracellular matrix(ECM) at the site 
of origin [10]. Loss of contact with the ECM or other 
cells induces anoikis, a specific form of programmed 
cell death and a subtype of apoptosis [11]. Anoikis is 
a pivotal mechanism to inhibit cell colonization and 
growth in the new stromal environment [12]. Tumor 
cells develop a survival phenotype that allows them 
to bypass anoikis upon ECM detachment, migrate to 
other organs, and repopulate to form metastatic tumors 
(Fig. 1) [13]. Anoikis resistance is a prerequisite and a 
significant indicator of tumor cell metastatic potential. 
Preserving anoikis functional integrity is an essential 
means of preventing metastasis, necessitating a deeper 
understanding of tumor cell resistance mechanisms to 
anoikis [14].

Studying anoikis resistance mechanisms in BC is 
important because mammary gland epithelial cells 
adhere to laminin-rich basement membranes via integ-
rins, rather than interacting with collagen I(COLI) [15]. 
Catheter space filling is a feature of many early BC lesions 
[16], and anoikis resistance facilitates vitro 3D ductal 

filling in breast follicular epithelial structures [17], which 
is a critical process in BC distant metastasis.

Overall, anoikis is a specific form of programmed cell 
death induced by the loss of cell contact with the extra-
cellular matrix and other cells, and a subtype of apoptosis 
that still induces cell death via the traditional apoptotic 
pathway. This review examines the activation of anoikis 
by adhesion-initiating signals in both normal and meta-
static tumor cells, which trigger a series of changes 
in intracellular pathways, proteins, cytoskeleton, and 
genetic material. A comprehensive understanding of 
anoikis resistance mechanisms in BC cells may provide 
potential opportunities for the prevention and treatment 
of metastatic cancer.

Main text
Physiological anoikis (Fig. 2)

ECM‑The cradle of cell growth
ECM provides adhesion support for cells and regulates 
cellular physiological behavior through signaling [18]. 
ECM detachment causes a range of metabolic changes, 
including glucose uptake defective, the pentose phos-
phate pathway(PPP) flux decreases, cellular ATP lev-
els lower, and reactive oxygen species (ROS) increases 
[19]. Proteolytic cleavage, integral proteins, or changes 
in microenvironment can also activate potential TGF-β 
[20], activating classical Smad signaling [21], and non-
Smad signaling pathways including MAP/Erk, TβRI 
induced Shc phosphorylation, as well as Ras, Rho, Rac, 
and CDC42 small GTases, further promote anoikis devel-
opment [22].

Cell membrane alterations
Cells express various cell adhesion molecules (CAM) 
that mediate cell–cell or cell-ECM contacts (Fig. 3) [23]. 
The cell-ECM linkage is a focal adhesion, which relies on 
integral protein-actin interactions [24]. The adhesion belt 
is responsible for cell–cell contacts, with the main pro-
teins involved in adhesion band junctions being cadherin 
and actin [25]. These CAMs are typically transmembrane 
proteins consisting of three structural domains: an extra-
cellular structural domain responsible for ligand binding, 
a transmembrane structural domain, and a cytoplasmic 
tail attached to the actin cytoskeleton by a protein com-
plex such as an enzyme or kinase [26]. Many transmem-
brane proteins, such as growth factor receptor (GFR), 
are also present in the cell membrane and are subject to 
changes in cell-ECM or cell–cell contact status [27].

Integrin‑messengers of cell and ECM
Integrins are transmembrane αβ heterodimers [28]. 
These cell surface glycoproteins mediate cell-ECM 
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interactions and dynamic adhesion [29]. The α and β 
subunits of integrins typically include a large extracellular 
structural domain, a transmembrane helix, and a short 
cytoplasmic tail [30].

The extracellular structural domain of integrins binds 
to specific ECM proteins, such as collagen, vitronectin, 
fibronectin, and other proteins [29]. Disassociation of 
cells from ECM can lead to the activation of integrins, 
resulting in a shift of integrin legs from an inactive 

Fig. 1  When normal breast cells are detached from their natural environment, this triggers changes in the corresponding structures in the cell 
membrane, which, by inhibiting intracellular pro-survival signalling pathways and triggering changes in the cytoskeleton, eventually causes 
the cells to undergo physiological anoikis. When breast cancer cells are detached from tumour tissue, the cells are altered from receptors on the cell 
membrane, resulting in significant activation of the pro-survival pathway and changes to the cytoskeleton, allowing the tumour cells to develop 
anoikis resistance after detachment from their native environment, thus allowing them to metastasise and continue to grow elsewhere
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leaning-together state to an active elongated detached 
state [31]. Long-range conformational changes in extra-
cellular structural domains cause intracellular protein 
reactions that trigger the reorganization of ligand bind-
ing sites [32]. Through the recruitment and aggrega-
tion of integrins, intracellular proteins bind directly or 
indirectly to integrin tails, forming a specific structure 
of focal adhesion [33]. Integrin tails do not have intrin-
sic enzymatic activity. However, adherent spots con-
tain many protein kinases and scaffolding proteins, and 
some adherent spot proteins (e.g., talin) can bind actin 
and thus have specific effects [34].

The intracellular signaling pathway triggered by inte-
gral proteins has two main functions: to organize the 
actin cytoskeleton and to regulate cellular behavior [35]. 
Integrins regulate the cytoskeleton by directly binding 
actin proteins, including synuclein, nuclein and filament 
proteins [36]. Integrins activate their regulated signal-
ing pathways by phosphorylating integrin-related kinase 

(ILK), proto-oncogene tyrosine protein kinase (Src) and 
focal adhesion kinase (FAK), thereby regulating cellular 
behavior [37].

Cadherin‑messengers of cells and cells
Cadherins are responsible for cell–cell adhesion and 
include type I, II, and III/atypical cadherins, all of 
which are expressed in the mammary gland [38]. The 
most important E-cadherin is a type I cadherin, a 
membrane glycoprotein located at the cell adhesion 
junctions, which anchors epithelial cells to each other 
and is essential for the adhesion of adjacent epithelial 
cells [39]. In normal breasts, monolayer epithelial cap 
cells of terminal buds also express P-cadherin, which 
is important to the branching process of breast ducts 
[40]. At the adhesion junctions, the cadherin cytoplas-
mic tail provides binding sites for p120-, α-, γ-, and 
β-catenin, facilitating connections between the sign-
aling pathways and actin cytoskeleton [41]. Anoikis is 
induced by cadherin when cell–cell adhesion is broken.

Fig. 2  Detachment of normal breast cells from their native environment triggers activation of adhesion mediators on the cell membrane, inhibition 
of survival pathways (e.g., PI3K-AKT, MEK-ERK), and simultaneous alteration of the cytoskeletal structure, triggering a BCL2 family protein response, 
activation of the mitochondrial pathway of apoptosis, and ultimately the release of caspases, triggering anpikis
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Epidermal Growth Factor Receptor (EGFR)
In human mammary epithelial cells, ECM exposure is 
the main factor in EGFR expression and downstream 
signaling activation [42]. Activated EGFRs implicate 
downstream molecules in the response, such as Janus-
activated kinase (JAK), Ras, phospholipase Cγ (PLCγ) 
and phosphatidylinositol 3-kinase (PI3K) [43]. EGFR 
and integrins are functionally coupled [44]. Loss of 
integrin-ECM adhesion leads to downregulation of 
EGFR expression and inhibition of downstream EGFR 
molecules, [42], which synergically induced anoikis.

Cytoplasm
ECM detachment in mammary epithelial cells promotes 
changes in CAM and protein receptors on the cell mem-
brane, resulting in reduced intracellular EGFR, PI3K/
Akt and Mek/Erk signals, which are transmitted to the 
mitochondria and affect cell survival [45]. The mitochon-
dria play a critical role in anoikis [46]. The mitochondrial 
intermembrane space (IMS) contains many key pro-
apoptotic factors, such as cytochrome c. When incoming 
survival signals to the mitochondria are reduced, pro-
apoptotic factors are released into the cytoplasm, thereby 
triggering anoikis [47].

Cytoplasmic plaque
The cytoplasmic region contains several cytoplasmic 
patches, which are multimolecular protein complexes. 
Cytoplasmic plaques are involved in building membrane 
protein scaffolds and cytoskeletons, regulating polarity, 

and transmitting signals [48]. Cytoplasmic plaque com-
ponents of the cell-ECM and cell–cell are each distinct.

Focal adhesion‑cytoplasmic plaque
Focal adhesion is the cytoplasmic part of integrins and 
the site of proteoglycan-mediated adhesion to the actin 
cytoskeleton [34]. It contains various kinases, such as 
focal adhesion kinase(FAK) and Src, and serine/threo-
nine kinase ILK [49]. FAK is a multifunctional protein 
that integrates signals sensed by integrin or growth fac-
tor receptors, which are then transduced into the cel 
[50]. Src interacts with FAK and facilitates FAK phos-
phorylation and activation [51]. ILK connects integ-
rins to the actin cytoskeleton by interacting with pilings 
and parvins [52]. It also binds to phosphatidylinositol 
3,4,5-triphosphate(PIP3) and affects the downstream 
signaling pathway [53].

Adhesion belt‑cytoplasmic plaque
The intracellular structural domain of cadherin is linked 
to actin fibers through protein-mediated connection 
in the cytoplasmic plaque, which contains β-catenin, 
α-catenin, p120-catenin, etc. [54]. P120-catenin is a sub-
strate for Src and several receptor tyrosine kinases, and 
interacts with the proximal membrane domain of cad-
herin to direct cadherin aggregation and cell motility 
[55]. β-catenin binds to α-catenin, which connects cad-
herin to actin cytoskeleton [56]. The cadherin protein 
linker complex enhances adhesion by linking α-catenin 
to actin cytoskeleton. α-catenin in its monomeric form 

Fig. 3  CAMs associated with anoikis are described here, where integrins mediate cell-ECM adhesion, E-cadherin and P-cadherin mediate cell–cell 
adhesion, and some cell membrane receptors such as TβR I/II and EGFR also affect anoikis when cells lose their adhesion
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binds to calmodulin-linkerin complex via β-catenin, 
while the homodimeric form of α-catenin binds to 
F-actin [57]. Cadherin regulates the expression of GFR, 
PI3K and ERBB4 through catenins [58].

Signaling pathway
PI3K‑AKT signaling pathway
FAK, cadherin and EGFR are all upstream activation 
conditions of PI3K [59]. PI3K phosphorylates the plasma 
membrane lipid substrate PIP2, generating PIP3 [60]. 
PIP3 then recruits AKT and 3-phosphatidylinositol-
dependent protein kinase 1 (PDK1) to the plasma mem-
brane via the PH structural domain, phosphorylating 
AKT and PDK1 at Ser and Thr, respectively [61]. Acti-
vated AKT phosphorylates target proteins on the cell 
membrane, which then lose their attachment to the cell 
membrane and enter the cytoplasm [62]. It further impli-
cates the downstream response of the Bcl2 protein fam-
ily, which regulates anoikis by controlling mitochondrial 
permeability [63].

NF‑κB signaling pathway
Akt can undergo proteasome-mediated degradation and 
release NF-κB through IkB kinase (IKK) phosphorylation 
and inhibition of IκB [64]. IKK supports the translocation 
of NF-κB to the nucleus by phosphorylating IκB-α, and 
enhances relA transcriptional activation by phosphoryl-
ating the relA activation domain, ultimately upregulating 
NF-κB target genes Bcl2 and bcl-xl expression, and fur-
ther triggering anoikis [65].

Mek/Erk signaling pathway
ECM-cell junctions elevate intracellular ROS levels via 
integrins, subsequently activating tyrosine kinase Src. 
Redox regulation of Src mediates integration independ-
ent EGFR trans-phosphorylation [66]. Activated Src 
elicits EGFR downstream signaling (AKT and ERK) in a 
ligand-independent manner, ultimately leading to Bim 
downregulation [67]. RAF was identified as the first 
direct effector of Ras and an upstream kinase of MEK 
[68]. Ras binds to Raf, and Raf is further phosphorylated 
to activate ERK1 and ERK2 mitogen-activated protein 
kinases [69]. Activated ERK1/2 can target mitochon-
dria, enhance ATP synthase activity, maintain mitochon-
drial membrane potential, inactivate Bad, and reduce 
cytochrome c release [42]. The second best Ras effector is 
PI3K, further enhancing the pro-anoikis effect [70].

Cytoskeleton
Focal adhesion (FA) proteins, which contribute to the 
establishment and maintenance of integrin-cytoskel-
eton junctions, can be divided into four categories: (I) 

integrin-binding proteins that directly bind to actin, 
such as α-actinin, talin, and fine filament proteins; (II) 
integrin-binding proteins indirectly associated with 
the cytoskeleton, including kindlin, core scaffold ILK, 
plectin, and FAK [71]; (III) non-integrin-binding actin-
binding proteins such as nucleoporins; (IV) modulators 
and signaling molecules that regulate various protein 
interactions [72]. FA sequesters the BH3 structural 
domain proteins Bim and Bmf near the membrane. 
Bmf interacts with dynein light chain 2 (DLC2) of the 
MYO5/myosin V complex, attaching to actin filaments. 
Integrin-mediated cell detachment disrupts the actin 
state, causing Bmf to be released from the cytoskeleton 
and promoting anoikis [73].

Protein
Bcl‑2 protein family
The Bcl-2 protein family includes both pro- and anti-
apoptotic members. The BH3-only proteins Bim, tBid and 
Puma activate Bax and promote anoikis, whereas Bcl-2, 
Bcl-XL and Mcl-1 suppress Bax activation and anoikis 
[74]. Mcl-1 is known to prevent anoikis by isolating BH3-
only proteins(e.g., Bim and tBid) in mitochondria [75]. 
Anoikis is highly dependent on the mitochondrial path-
way, with Bax serving as a crucial effector of this process 
[76]. The structure of Bax determines its active state and 
significantly impacts the intrinsic anoikis pathway [77]. 
Anti-anoikis agents BCL-2 and BCL-XL sequester BH3 
structural domain-only molecules in a stable mitochon-
drial complex, preventing the activation of Bax and Bak 
[78]. However, Bad can counteract the anti-anoikis func-
tion of Bcl-2 by competing for its BH3 binding domain, 
indirectly inducing Bax/Bak activation [79]. Bid and Bim 
directly promote the formation of Bax/Bak oligomers, 
and the activation of Bax/Bak increases outer mitochon-
drial membrane permeability, leading to the release of 
soluble proteins, including cytochrome c, from the inter-
membrane space into the cytoplasm [80].

Caspases
Cytochrome c forms apoptosomes by complexing with 
procaspase-9, apoptotic protease-activating factor-1 
(Apaf-1) and dATP [12, 81]. Apaf-1 binding and free cas-
pase-9 maintain a homeostatic equilibrium and activate 
caspase-9 [82]. Further activation of effector caspases 
(such as caspase-3, -6 and -7 in mammals) results in the 
cleavage of specific substrates and promotes cell disas-
sembly [83].

Anoikis resistance in BC (Fig. 4)
Tumor cells resist anoikis through multiple mechanisms 
(Fig.  5): extracellular factors such as degradation and 
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remodeling of ECM, significant expression of ECM, and 
transforming growth factor β; cytosolic factors includ-
ing continuous alteration of integrins, calmodulin, and 
altered expression profiles of EGFR and ERBB2; intracel-
lular factors involving the alteration of intracytoplasmic 
components (e.g., FAK, Src, connexins), abnormal activa-
tion of pathways (e.g., PI3K-Akt, Mek/Erk, NF-κB), and 
expression profiles of anoikis-related proteins (BCL2 
family, P53, zinc catalase, ferritin). Additionally, constant 
changes in the cytoskeleton, miRNA, and reactive oxygen 
species (ROS) are crucial for tumor cells to counteract 
anoikis.

Extracellular
ECM: An important tissue barrier for tumor metastasis
ECM is a major component of the tumor microenviron-
ment, regulating numerous pathways in cancer cells, 
including PI3K/AKT, ERK, Src-FAK, and Rho-GTPases 
[84]. BC progression necessitates extensive degradation 
and remodeling of ECM [85]. During tumor progression, 
stromal EMT deposition increases, altering the chemical 

composition and mechanical properties of ECM [86]. 
Cancer cells’ invasive capabilities are further enhanced 
by the mechanical stretching of the collagen matrix or 
increased matrix stiffness [87].

Invasive BC cells confer anoikis resistance to myofibro-
blasts during tissue remodeling [88]. Downregulation of 
tropomyosin-1 (TM1) in BC promotes stress fiber assem-
bly [89], which may disrupt the microfilament structure, 
thereby enhancing BC cell resistance to anoikis [90].

Abnormal matrix metalloproteinase (MMP) activity 
is frequently observed in tumors. MMP activation cor-
relates with BC survival signals, with higher MMP activ-
ity associated with greater cell migration and metastatic 
capacity [91]. For example, MMP-11 is overexpressed in 
many lobular carcinoma cells [92]; MMP-2 is activated 
on the αvβ3 integrin and its downstream ERK signaling 
pathway [93]; MMP-7 restores insulin-like growth factor-
I (IGF-I) mediated phosphorylation of IGF-IR and acti-
vation of Akt [94]; MMP-9 is overexpressed in BC and 
activates TGF-β/SMAD signaling [95].

Fig. 4  Breast cancer cells detached from tumor tissue have an anoikis-resistant phenotype with multiple mechanisms of altered activation 
of survival pathways, cytoskeletal remodeling, cellular deformation, and inhibition of mitochondrial apoptotic pathways, resulting 
in a anoikis-resistant phenotype (red indicates high expression in breast cancer, blue indicates low expression in breast cancer)
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Epithelial‑mesenchymal transition (EMT)
EMT enhances metastasis in epithelial carcinomas and 
leads to cytoskeletal changes that are a prerequisite for 
the development of anoikis resistance [96]. EMT results 
in the downregulation of proteins that maintain polarized 
epithelium, such as occludin, E-cadherin, and claudins, 
and an increase in mesenchymal proteins (e.g., vimentin, 
N-cadherin, and smooth muscle actin) [97]. ECM medi-
ates EMT effects through various cell signaling mole-
cules, with Wnt, TGFβ, and Notch ligands playing central 
roles [98]. Zinc finger E-box binding homeobox 1 (ZEB1) 
is the master regulator of EMT program [99]. Grainy-
head-like2 (GRHL2) and Thyroid Hormone Receptor 
Interacting Protein 12 (TRIP12) inhibit ZEB1 expression 
by repressing the ZEB1 promoter and ZEB1 gene, respec-
tively, thereby suppressing TGF-β or Twist-induced or 
spontaneous EMT [100]. ZEB1 depletion rescues EMT 
behavior. Loss of CCN6, which is widely found in BC, 
increases IGF-1 levels in the ECM and activates IGF-
1R signaling, leading to EMT [101]. EMT-induced loss 
of cell polarity in metastatic cancer cells leads to down-
regulation of the Hippo pathway [102]. The ubiquitin-
like modifier-activating enzyme 6 (UBA6) in the human 
genome initiates ubiquitination through ATP-depend-
ent activation of ubiquitin and inhibits EMT [103]. The 
tumor protein P53-inducible protein 11 (TP53I11) also 
inhibites EMT in vitro [104].

TGF‑β is upregulated in BC and promotes a malignant 
phenotype
TGF-β superfamily members promote advanced can-
cers while suppressing early events that may lead to can-
cer [105]. Elevated local or systemic TGF-β levels are 
typical indicators of metastatic BC and are associated 
with reduced tumor cell responsiveness to its suppres-
sive function [106]. TGF-β and EGF can synergistically 
promote malignant phenotypes, such as EMT, anoikis 
resistance and metastasis, and TGF-β also increases the 
expression of EGFR [107]. TGF-β is shown to increase 
the expression of EGFR by stimulating the expression and 
secretion of multiple ECM components, such as collagen 
I (COL1A1) and fibronectin (FN1) in stromal fibroblasts, 
and ECM cross-linking enzymes such as lysyl oxidase 
(LOX) in BC cells, enhancing the anoikis resistance effect 
of BC [108].

Cytomembrane
Integrin‑ECM interactions promote breast cancer cell survival 
following matrix stripping
Integrin expression profiles change during cell transfor-
mation from normal cells to tumor cells and subsequently 
to tumor progression [109]. To circumvent anoikis and 
initiate proliferation, tumor cells must maintain con-
tinuous interactions with the extracellular matrix (ECM) 
through surface receptors such as integrins [110]. Inte-
grin function is influenced by various factors, including 

Fig. 5  The various factors that contribute to the development of anoikis resistance in BC are outlined
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the ECM, cell membrane surface receptors, intracellular 
proteins, and the cytoskeleton.

Collagen XIII, which is highly expressed in breast 
cancer(BC), induces β1 integrin activation in the ECM 
[111]. The Rho GTPase regulator D4-GDI, exhibiting 
increased expression in BC, inhibits β1 expression upon 
silencing [112]. This leads to Rac1 activation and trans-
location from cytoplasmic lysates to the cell membrane 
region, which in turn positively regulates cancer cell 
migration [113]. α5 is a key signal for Src and ErbB2 con-
duction in the low-adhesion state and is also an essen-
tial mediator for blocking Bim-promoted anoikis [17]. 
GPI-anchored glycoprotein CEA and carcinoembryonic 
antigen-related cell adhesion molecule 6 (CEACAM6) 
are overexpressed in BC [114], mediating their biologi-
cal effects through enhanced integrin α5β1-fibronectin 
interactions [115]. The α5β3 integrin specifically rec-
ognizes the arginine-glycine-aspartate (RGD) motif in 
the ECM and is antagonized by the RGD peptide, which 
holds promise as a drug carrier for targeted therapy in 
metastatic BC due to its specific recognition of integrins 
[93]. Loss of Ferritin (FER) on the cell membrane surface 
increases α6β1 integral protein expression and adhe-
sion of BC cells to collagen I and laminin [116]. Elevated 
Semaphorin-7a (SEMA7A) protein is observed in BC, 
promoting anoikis resistance through activating α6β1 
integrin and pAKT [117].

cadherin
E‑cadherin inhibits tumor metastasis and exhibits 
downregulated expression in BC
Nearly 90% of infiltrating BC cases demonstrate down-
regulated or lost E-cadherin expression [118]. Loss 
of E-cadherin triggers EMT and is accompanied by 
increased cell motility, invasiveness and resistance 
to anoikis [119]. Protein tyrosine kinase 6 (PTK6) is 
expressed in approximately 70% of TNBCs, and its 
downregulation restores E-cadherin levels [120]. Pax-
5, a member of the Paired Box x (Pax) gene family, is 
commonly expressed in 97% of breast samples. It binds 
and induces E-cadherin gene expression, inhibiting and 
reversing EMT in BC [121]. Zinc finger transcription fac-
tor (SLUG) is consistently overexpressed in invasive basal 
BC [122], and also inhibits E-cadherin [123]. E-cadherin 
cytoplasmic tail protein p120-, α-, γ- and β-linked pro-
teins link cadherins to actin filaments, establishing strong 
cell–cell adhesion Mutations in these genes often occur 
in cancer cells, promoting the progression of anoikis 
resistance [124].

P‑cadherin promotes the progression of BC
P-cadherin is frequently expressed in BC near oxygen-
ated, vascular and hypoxic zones. Its overexpression leads 

to the activation of FAK, AKT and Src kinases, as well as 
reduced oxidative stress in stromal isolated BC cells by 
upregulating carbon flux through the pentose phosphate 
pathway [125]. P-cadherin activates the heterodimeric 
α6β4 integrin [125]. Moreover, p-cadherin expression 
diminishes the invasion inhibitory function of E-cadherin 
by disrupting the cell membrane E-cadherin/p120-linked 
protein complexes [126].

EGFR Overexpression in BC promotes anoikis resistance
EGFR overexpression is observed across all BC subtypes 
and is higher in the more aggressive TNBC and inflam-
matory breast cancer (IBC) [127]. EGFR overexpression 
signals the Mek-Erk pathway and inhibits anoikis by 
blocking Bim expression [42, 128]. It also indirectly acti-
vates Src and EGFR-induced survival signaling due to 
the dramatically increased ROS levels resulting from the 
loss of adhesion [129]. Depletion of pre-mRNA process-
ing factor 4 kinase (PRP4K) leads to diminished degrada-
tion of EGFR [130]. Recombinant human tyrosine kinase 
ErbB-2 (also known as HER2 or Neu) stabilizes EGFR 
in ECM isolated cells by activating the ERK/Sprouty2 
(Spry2) pathway [128]. Cells overexpressing EGFR can 
escape the adjustment of integrin deficiency [131].

ERBB2 is a member of the EGFR family and ampli-
fied in 20–30% of human BC [132]. Overexpression of 
ERBB2 promotes anoikis resistance [42], leading to the 
filling of the ductal lumen of BC and polar disruption 
of vesicle-like structures in the breast epithelium [133]. 
It also simultaneously maintains EGFR expression and 
EGF-induced signaling allowing cell survival after ECM 
detachment [17, 42, 134]. Hypoxia-inducible factor-1 
(HIF-1) is one mechanism by which cancer cells over-
expressing ERBB2 achieve three-dimensional culture 
growth, anchorage independence and anoikis resist-
ance [135]. ErbB2 driven interferon regulatory factor 6 
(Irf6) is downregulated in highly invasive BC cell lines 
but upregulated in less invasive cell lines, and ErbB2 
can downregulate the pro-apoptotic protein Irf6 [136]. 
Mucin4 (MUC4) interacts directly with the extracellular 
structural domain of ErbB2 [137], and phosphorylation 
of ErbB2 is induced by tyrosine residues 1139 and 1248 to 
isolate ErbB2 and other ErbB receptors, initiating down-
stream signaling cascades in polarized epithelial cells 
[138]. PDK1 overexpression significantly enhances the 
ability of ERBB2 to form tumors [139].

Intracellular
Cytoplasmic plaque
Focal adhesion‑cytoplasmic plaque
Elevated FAK expression in early breast carcinogenesis 
correlates with poorer OS in BC [140]. Integral protein 
or FAK activation impedes the ability of death-associated 
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protein kinase (DAPK) to increase p53 levels, which are 
frequently hypermethylated in DNA and lost in various 
tumor types [141]. Tumor necrosis factor (TNF) and 
TNF receptor-associated factor 2 (TRAF2) synergistically 
function with focal adhesion (FA) signaling, and TRAF2 
upregulation in BC [142], promoting cellular resistance 
to anoikis [143]. Peptidyl-tRNA hydrolase 2 (PTRH2; Bit-
1; Bit1) exhibits significant downregulation in advanced 
BC tissues compared to normal breast epithelial and 
ductal carcinoma in  situ (DCIS) tissues [144]. PTRH2 
complexes with FAK at the cytosol to promote PI3K 
expression, it complexes with AES/TLE to induce anoikis 
and inhibit EMT [145].

Proto-oncogene c-Src is widely overexpressed in 
BC [146], promoting anoikis resistance in HER2 + BC 
cells in an integrin-dependent manner [17]. Protein 
tyrosine phosphatase 1B (PTP1B) levels increase sig-
nificantly in BC tissues [147], and PTP1B is the pri-
mary phosphatase that dephosphorylates c-Src, thereby 
controlling its kinase activity in BC cell lines [148]. The 
metabolic enzyme 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase 4 (PFKFB4) is overexpressed in BC 
[149], and activates src-3, which in turn activates the 
estrogen receptor (ER) [150].

ILK expression is upregulated in human tumors and 
tumor cell lines [151], and its function is required for 
TGFβ-1-induced EMT in mammary epithelial cells [152]. 
β-parvin specifically binds ILK [153], is down-regulated 
in BC [154], and its overexpression inhibits ILK kinase 
activity [154]. Rictor, a component of the mTORC2 com-
plex, regulates ILK’s ability to promote Akt phosphoryla-
tion [155]. DOC-2/hDab2 (DOC-2) inhibits ILK activity 
through an Akt-independent pathway [156].

Adhesion belt‑cytoplasmic plaque
In over 50% of BC, β-catenin signaling is upregulated 
through multiple pathways [157]. Stable β-catenin 
induces mammary tumorigenesis in mice, functioning 
as a crucial part of classical Wnt signaling and binding 
to the cytoplasmic tail of E-cadherin, thereby negatively 
regulating E-cadherin [158]. β-catenin directly interacts 
with c-erbB-2 protein and EGFR, playing a crucial role 
in the tumor signaling pathway [159]. Cadherin system 
inactivation may increase β-catenin, which activates the 
Wnt signaling pathway [160]. β-Catenin target genes cyc-
lin D1 and c-myc are also upregulated [161].

P120-catenin is reduced or lost in early BC [162], but 
it accumulates in the cytoplasm and nucleus rather than 
being degraded [163]. The transition from a complete 
loss of protein expression to accumulation is a significant 
characteristic of p120-catenin. Loss of E-cadherin leads to 
reduced adhesion and p120-catenin translocation to the 
cytoplasm and nucleus. P120-catenin may function as a 

tumor suppressor or metastasis promoter [164], display-
ing full oncogenic properties in the absence of anchoring 
[165]. p120-catenin can indirectly activate the Rho/Rock 
signaling pathway by binding to the Rho function inhibi-
tor Mrip [58]. It can also directly bind RhoA and act as 
a Rho-GDP dissociation inhibitor (RhoGDI), thereby 
inhibiting stress fiber-mediated contractility and increas-
ing tumor cell motility [166]. Nuclear p120-catenin con-
trols the anchorage-independent upregulation of Wnt11 
by repressing Kaiso-mediated transcription, thereby pro-
moting RhoA activation [167].α-catenin inhibits tumor 
progression [168], and is downregulated in BC with a 
more metastatic phenotype [169]. Its loss can lead to 
lower BC survival rates [170]. α-catenin controls formic 
acid-dependent radial actin filament formation [171] 
and also competes with the Arp2/3 complex to bind 
actin, thereby inhibiting actin branching [172]. Addition-
ally, α-catenin enhances the binding of p120-catenin to 
E-cadherin, making the connection more stable. The loss 
of α-catenin leads to mislocalization and aggregation of 
E-cadherin, which predominantly remains in the plasma 
membrane [173]. Deletion of α-catenin activates both 
Rho- and Rock-dependent actin contraction [58]. Fur-
thermore, α-catenin inhibits tumorigenesis by interacting 
with IκBα [169].

Signaling pathway
Alterations in the PI3K‑Akt signaling pathway are prevalent 
in BC
Gene amplification encoding PI3K or Akt, or mutations 
in pathway components, may result in constitutive acti-
vation of the PI3K-Akt pathway. Approximately 25% to 
30% of BC cases contain PIK3CA mutations [174].

Cellular Retinol Binding Protein 1 (CRBP-1) suppresses 
the PI3K/Akt survival pathway in a retinoic acid recep-
tor-dependent manner. CRBP-1 downregulation is asso-
ciated with a malignant phenotype in BC, and CRBP-1 
inhibits p85 phosphorylation at Y688 [175]. A series 
of proteins with increased expression in BC, includ-
ing γ-catenin, PDK1, tyrosine protein kinase receptor 
A (TrkA), and Ephrin type-A receptor 2 (EphA2), posi-
tively regulate the PI3K-AKT pathway and impair anoikis 
function in BC [176]. Overexpression of PDK1 protein 
and its mRNA, recruited by PIP3, elevates PDK1 gene 
copy number, and enhances AKT and downstream path-
way activity [139, 177]. TrkA protein is overexpressed in 
a large cohort of clinically relevant BC [177]. TrkA and 
downstream AKT signaling modulate cell growth and 
viability [178]. EphA2, a receptor tyrosine kinase and 
guanine nucleotide exchange factor for GTPase RhoG, 
interacts with Ephexin4 to activate RhoG and PI3K 
downstream of EphA2 [179].
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Phosphatase and tensin homologs (PTEN) absent on 
chromosome 10 are frequently mutated in BC, inhibiting 
Akt activation [180]. PTEN interacts with FAK, reducing 
FAK phosphorylation and activity [181]. Heterozygous 
deletion of PTEN activates the PI3K/Akt and MAPK 
pathways, while pure deletion of PTEN expression results 
in the activation of both, thus conferring BC anoikis 
resistance [182]. WNT5A, a member of the WNT family, 
exhibits down-regulated in BC expression and inhibits 
ERK1/2 activity in BC cells [183].

NF‑κB Signaling expression is significantly upregulated 
in BC
I-κB kinase (IKK), a core regulator of NF-κB signaling, is 
associated with tumorigenesis through its three isoforms 
(α, β, and ε) [184]. The Deleted in Breast Cancer 1 (DBC1) 
protein interacts with IKK-β as a cofactor, stimulating the 
phosphorylation of nuclear relA (serine-536), promot-
ing transcriptional activation of NF-κB target genes, and 
upregulating the expression of target genes that protect 
against anoikis (e.g., c-FLIP and Bcl-xl) [65, 185]. IKKε 
is amplified and overexpressed in approximately 30% of 
BC cases [186], and activates classical NF-kB signaling by 
directly phosphorylating the RelA/p65 subunit [187].

In BC cells detached from the ECM, NF-κB activity was 
found to be increased sixfold compared to normal breast 
cells. RelA and NF-κB1 are transcription factors respon-
sible for upregulating neurotrophic receptor TrkB and 
its ligand neurotrophic factor 3 (NTF3) [188]. Etoposide 
induced 2.4 (EI24) attenuates NF-κB activity by binding 
to complex I component TRAF2 and inducing its lyso-
some-dependent degradation. EI24 has been identified as 
an oncogene and significantly downregulated in invasive 
cancers [189].

MEK/ERK Signaling pathway is significantly activated in BC
ERK signaling activation is observed in more than 85% 
of cancers and is directly attributable to genetic altera-
tions in its upstream activators, including BRAF, Ras, and 
RTK [190]. Ras-related protein Rab25 activates intracel-
lular signaling pathways, and Rab25 knockdown reduces 
phospho-ERK1/2 levels and promotes BC cell prolifera-
tion [191]. Multiple Ras signaling pathways contribute to 
breast EMT, with the ERK signaling pathway potentially 
being a key component downstream of EGFR activation 
during tumorigenesis [192].

Protein kinase C theta (PRKCQ/PKCθ) activates ERK 
in a kinase activity-dependent manner [193]. Sustained 
ERK signaling activation upregulates T-cell death-asso-
ciated gene 51 (TDAG51), which inhibits ERK-medi-
ated mammary EMT [194]. Reduced phosphoprotein 

expression in astrocytes-15 (PEA15) in metastatic BC 
cells leads to ERK1/2 binding and altered ERK1/2 cellular 
localization and target preference [195]. Caveolin-1 (Cav-
1) expression is downregulated in BC, inhibiting stromal 
invasion and blocking laminin-dependent activation of 
ERK1/2 [196].

Upon ECM attachment loss, p38ERK is activated and 
recruited into the high molecular weight mitochondrial 
complex, a necessary signal for Bax translocation to the 
mitochondria and Bax activation. P38ERK targeting the 
outer mitochondrial membrane (OMM) drives anoikis 
[197]. ECM attachment loss also results in the release of 
PTRH2 from mitochondria into the cytoplasm. Increased 
ERK levels and decreased ERK-directed phosphatase 
activity disrupt mitochondrial Bit1 [144], and loss of Bit1 
expression leads to increased ERK activation [145, 198]. 
Bit1 expression was reduced in higher grade BC with 
positive lymph node metastases, compared to normal 
breast tissue or invasive low BC [145].

AMPK Signaling pathway is actively expressed in BC
Stromal deprivation activates AMPK activity through 
LKB1 and Ca2 + /cadherin-dependent protein kinase 
kinase (CaMKK) [199], and further by upregulating the 
Akt phosphatase pleckstrin-homology (PH)-domain leu-
cine-rich-repeat protein phosphatases (PHLPP2) while 
inhibiting AKT activity. PAMPK high/pAkt low state 
impairs both autophagy and metastasis [200]. AMPK 
directly affects metabolic enzymes (such as G6PD, ACC, 
and HMG-CoA reductase) and plays a key role in regu-
lating growth and metabolism [201]. AMPK contrib-
utes to anti-anoikis by phosphorylating phosphoprotein 
15  kDa (PEA15) and inhibiting mTORC1 [202] as well 
as Acetyl-CoA carboxylase (ACC) to maintain NADPH 
homeostasis [199].

Protein
Bcl‑2 Protein Family Alterations Inhibit Anoikis
Expression of several pro-apoptotic BH3-only proteins 
of the Bcl-2 family is downregulated following ECM 
detachment, resulting in an intrinsic cell death cascade. 
Hypoxia contributes to blocking the expression of pro-
apoptotic BH3 family members, such as Bim and Bmf, 
in epithelial cells [203]. Chemokine receptors CCR7 and 
CXCR4 are highly expressed in BC [204]. Activation of 
CCR4 and CCR7 by their respective chemokine ligands 
CXCL12, CCL19/CCL21 downregulates pro-apoptotic 
Bmf and upregulates pro-survival proteins Bcl-2 and Bcl-
xL, specifically reducing the sensitivity of metastatic BC 
cells to anoikis [205].
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Zinc‑finger protein binds specifically to DNA, RNA, 
and DNA‑RNA sequences to inhibit anoikis
ZNF367 is significantly upregulated in BC, interacts with 
the chromatin remodeling protein Brahma-related gene 1 
(BRG1), and transcriptionally activates Citron (CIT) and 
TP53. It represses the Hippo pathway and activates Yes-
associated protein 1 (YAP1), causing anoikis resistance 
[206]. ZnF protein E4F transcription factor 1 (E4F1) is 
involved in DNA repair, with E4F1 binding to the cata-
lytic subunit BRG1/SMARCA4 and mediating its recruit-
ment to DNA damage together with Poly(ADP-ribose) 
(PAR) polymerase-1 (PARP-1) [207]. ZNF367 is an 
upstream transcription factor of kinesin superfamily pro-
teins 15 (KIF15), highly expressed in BC tissues and regu-
lates mitosis during cellular processes [208]. Additionally, 
the expression of integrin α 3 (ITGA3) is also regulated 
by ZNF367 [209].

Tumor protein p53 (TP53) is significantly altered in BC
TP53 can mediate anoikis by upregulating the transcrip-
tion of pro-apoptotic Bcl-2 family members, including 
PUMA, Noxa and Bax [210]. TP53 is highly mutated 
in BC [211], with mutant p53-R273H inhibiting BMF 
via AKT [212], and mutant p53P151S causes increased 
tumor growth and metastasis [213]. TP53-inducible 
protein 11 (TP53I11) is a transcriptional target of TP53. 
Deletion of TP53I11 promotes AKT/m-TOR and AMPK 
pathways, respectively, subsequently reducing m-TOR 
activation and consequently maintaining energy homeo-
stasis in BC cells [214], promoting cell survival after ECM 
isolation. HIF1α is a key mediator of cellular adaptation 
to hypoxia [215], and TP53I11 overexpression inhibits 
HIF1α expression and affects EMT and metastasis [104]. 
YAP positively regulates p53 family members, YAP pro-
tein is significantly reduced in BC, and knockdown of 
YAP short hairpin RNA inhibits anoikis [216]. Transcrip-
tion factor p73 is a homolog of p53 and can be expressed 
as a pro- or anti-apoptotic isoform. Conversely, p73 is 
stably expressed in cancer and can replace defective p53, 
inducing anoikis [217].

Ferritin (FER) promotes BC cell migration
FER protein is significantly elevated in metastatic BC 
cells and is closely associated with the development of 
anoikis resistance mechanisms [116]. FER promotes BC 
cell migration and inhibits anchorage-dependence, lead-
ing to increased formation of distant metastases [218]. 
The primary mechanism of action involves inhibiting 
cellular morphological changes, including the regula-
tion of actin stress fiber and focal adhesion formation 
[219]. FER deficiency increases α6β1 integrin expression 
and collagen I(COL1) adhesion and laminin in BC cells 
[220]. Consequently, FER controls the recirculation of 

α6-integrins in metastatic BC cells [116], and downregu-
lates the synthesis of laminin-binding glycans, reducing 
cell adhesion to laminin [221].

Abnormal actin presence as a main feature of malignant 
tumors
Cytoskeletal proteins induce anoikis in BC cells. Res-
toration of stress fiber networks can be achieved by 
enhancing the expression of key cytoskeletal proteins, 
thereby regulating focal adhesion activity and sensitiz-
ing tumor cells to anoikis [89]. Osteopontin (OPN) is 
highly expressed in various cancers and increases the 
potential for cell invasion. Bone bridging proteins have 
two forms corresponding to two functions: the solu-
ble form favors invasiveness, and the aggregated form 
favors adhesion [222]. KIAA0100 protein is upregu-
lated in BC and acts as a microtubule binding protein 
to stabilize the MT structure [223]. KIF18A is overex-
pressed in human BC. The inhibition of Kif18A stabi-
lizes MT at the leading edge, inducing inactivation of 
the PI3K-Akt signaling pathway, reducing cancer cell 
migration and proliferation [224]. High expression of 
ubiquitin-binding enzyme E2S (UBE2S) in BC disrupts 
the actin cytoskeleton [225]. BC metastasis suppressor 
1 (BRMS1) decreases cytoskeletal reorganization and 
cell adhesion protrusion formation [226]. Histone dea-
cetylase 6 (HDAC6) is located in the cytoplasm, upreg-
ulated in multiple cancers, binds to MT and the actin 
cytoskeleton, and regulates cell adhesion [227].

Gene localization analysis
The major structures and components of BC anoikis 
resistance were targeted, with a focus on studying 
their loci on chromosomes (Fig.  6). We aimed to find 
out if there are genes at similar loci undergo cascad-
ing alterations and therefore affect BC anoikis resist-
ance. This analysis was conducted by accessing the 
NCBI (National Center for Biotechnology Informa-
tion; https://​www.​ncbi.​nlm.​nih.​gov/) database, obtain-
ing gene locus information, including chromosome 
numbers and the starting and ending points of the 
genes on the chromosomes, and using the "RIdeogram" 
R package to map the loci for presentation. Accord-
ing to our results, E-cadherin and P-cadherin were 
located at 16q22.1, and P-cadherin was located in the 
upstream of E-cadherin [228]. Long-arm heterozygous 
deletion (LOH) of chromosome 16 occurs in at least 
half of breast tumors, and the smallest region of over-
lap (SRO) is found in the region of 16q22.1 [229], sug-
gesting the presence of tumor suppressor genes (TSG) 
in this region of the BC. E-cadherin fits this profile 
[230], while P-cadherin is associated with poor survival 
[231]. Further exploration is warranted to determine 

https://www.ncbi.nlm.nih.gov/
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if cascade alterations occur at the genetic level. Simi-
larly, MMP-11 (22q11.23) and ERK (22q11.22), both 
located on chromosome 22q11, are highly expressed 
in BC. Copy number gains on BC chromosome 22q11 
were more frequent in the Chinese cohort than in the 
Cancer Genome Atlas [232], and gains in the 22q11.2 
region were shown to contribute to triggering EMT. 

The summary of genetic loci associated with BC anoikis 
resistance provided here is intended to inform studies 
of metastatic BC at the chromosomal level.

Micro RNA (miRNA)
MicroRNAs (miRNAs) are small non-protein-coding 
RNAs, approximately 18 to 25 nucleotides in length, 

Fig. 6  Chromosomal location of the major associated proteins of anoikis resistance in BC. Blue indicates low density of gene distribution, red 
indicates high density of gene distribution
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Table 2  Targeted agents associated with anoikis in breast cancer

Drugs/Compounds Type Functions References

Ouabain T47D Activating the mitochondrial cystathionase pathway trig-
gers anoikis

 [249]

TAK-242 MDA-MB-231, MCF-7, SKBR3, BT-474 Increasing anoikis by altering NF-кB and p53 related apop-
tosis genes in BC cells

 [250]

SAHA and TRAIL MDA-MB-231, MCF-7 Activating caspase-3, phosphorylation of EGFR, reduction 
of phosphorylated ERK1/2, induction of reduction of Phos-
phorylated BimEL, and increase of BimEL dephosphoryl-
ated form, promoting anoikis

 [251]

Berberine MDA-MB-231, MCF-7 Inducing cell cycle arrest to promote anoikis resistance  [252]

4-methylumbelliferone (4-MU) MDA-MB-231, MCF-7 Regulating hyaluronic acid/HAS2/CD44 and specific matrix 
effectors, increasing anoikis

 [253]

Curcumol MDA-MB-231, IV2 Regulating the YAP1/Skp2 molecular pathway, promoting 
anoikis

 [254]

isoliquiritigenin MDA-MB-231, BT-549 Down–regulating COX-2 and CYP4A signaling; decreasing 
the expression levels of phospho-PI3K (Tyr(458)), phospho-
PDK (Ser(241)) and phospho-Akt (Thr(308)), promoting 
anoikis

 [255]

archazolid MDA-MB-231, 4T1, T24, 5637 Reducing expression of c-FLIP, activation of caspase-8, 
and early increase in active integrin-β1 and pro-anoikis 
protein BIM

 [256]

pygenic acid A (PA) MDA-MB-231, 4T1 Down-regulating pro-survival proteins such as cIAP1, cIAP2 
and survival; down-regulating anoikis resistance proteins 
such as p21, cyclin D1, p-STAT3 and HO-1

 [257]

Disulfiram (DSF) MDA-MB-231, 4T1 Inhibiting focal adhesion, regulating waveform proteolysis, 
and activating calpain, promoting anoikis

 [258]

pretubulysin MDA-MB-231, 4T1 Activation of mitogen-activated protein kinases (especially 
JNK (c-Jun N-terminal kinase)) and phosphorylation of Mcl-
1, induces proteasomal degradation of Mcl-1, promoting 
anoikis

 [259]

Epoxyazadiradione MDA-MB-231 Reducing EGFR expression, promoting anoikis, inhibits 
colony formation, downregulating MMP-9 and fibronectin, 
induces G2/M phase block, downregulating cyclin A2/
cdk2, interfering with cellular metabolism and inhibiting 
nuclear translocation of nuclear factor NF-kB

 [260]

Tubeimoside V MDA-MB-231 Inhibition of non-anchored culture-induced CAV-1 
overexpression, EGFR activation, and ITGB1-FAK activation, 
promoting anoikis

 [261]

Goniothalamin(GTN) MDA-MB-231 GTN reverses EMT, inhibits EGFR, FAK and Src pathways, 
reduces matrix metalloproteinase secretion, increases 
E-cadherin protein and decreases N-cadherin levels, 
promoting anoikis

 [262]

HPW-RX40 MDA-MB-231 Inhibiting integrin expression and activation and shed-
ding-induced FAK activation and downstream phospho-
rylation of Src and pilein, promoting anoikis

 [263]

Ziyuglycoside II MDA-MB-231 Regulating Src/EGFR-dependent ITGB4/FAK signaling 
pathway, promoting anoikis

 [264]

Salinomycin MDA-MB-231 Inhibiting STAT3 activation and reduces CD44 + /CD24- 
stem cell-like populations, promoting anoikis

 [265]

Dieldrin MDA-MB-231 Increasing resistance to anoikis and TrkB expression  [266]

Metformin and 2-deoxy glucose MDA-MB-231 Strong activation of AMPK increases phosphorylation 
of ACC, which increases the G2/M phase cell population 
and triggers G2 and mitotic (M) phase arrest of the cell 
cycle, promoting anoikis

 [267]

5-azacytidine (5-AzaC) MCF-7 Nucleoside analogs that reduce DNA methylation, induce 
anoikis, inhibit mammosphere formation and reduce 
metalloproteinase 9 activity, promoting anoikis

 [268]

Pt(O,O’-acac)(gamma-acac)(DMS) MCF-7 Activating PKC-α, which generates ROS, leads to increased 
Ca(2 +) permeability and decreased PMCA activity, promot-
ing anoikis

 [269]
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that are predicted to regulate the expression of over 
90% of genes at the post-transcriptional level. These 
miRNAs influence various cellular and molecular pro-
cesses, including anoikis, angiogenesis, tumorigenesis, 
tumor growth, cell migration, metabolic pathways, 
and signal transduction [233]. The results (Table  1) 
indicate that miR-630, miR-223, miR-200c, miR-148b, 
miR-18a, miR-124, miRNA-200b, miR-491-5p, miR-
6744-5p, and miRNA-188-3p were down-regulated 
in BC. Conversely, miR-23b, miR-27b, miR-522, miR-
200a, and miR-181a were up-regulated in BC, leading 
to enhanced anoikis resistance.

Targeted therapy
Targeted therapy for BC is essential in the treatment of 
this condition.Controlling BC in situ and eliminating the 
possibility of metastasis serve as effective strategies for 
improving treatment outcomes. Restoring BC cell anoikis 
sensitivity can help achieve this objective. A collection of 
drugs and compounds reported to influence BC anoikis 
function has been compiled, including plant extracts and 
drugs commonly used in clinical practice for other dis-
eases, in addition to conventional BC targeted therapies. 
These are all summarized in Table  2. Among the com-
piled results, Goniothalamin (GTN) appears to be the 
most comprehensive drug for targeting the restoration of 
anoikis function. Further exploration is required to deter-
mine its potential for treating BC.

Conclusion and outlook
Metastasis is a complex biological process and the leading 
cause of death in BC patients. Tumor cells detach from  

Table 2  (continued)

Drugs/Compounds Type Functions References

BKM120 Joint ATO MCF-7 BKM120 enhances ATO-induced anti-proliferative effects 
by inducing G1 phase block and reducing DNA synthesis 
in BrdU-treated cells, promoting anoikis

 [270]

Benzothiazole carbamates and amides MCF-7 Inducing anoikis, G2/M cell cycle arrest and reducing ROS 
levels

 [271]

PS, JCP1 and JCP2 extracts MCF-7 Inhibition of β1-integrin expression, F-actin, cell detach-
ment, promoting anoikis

 [272]

Pt(O,O’-acac)(gamma-acac)(DMS) MCF-7 Inducing anoikis and alters cell migration, anchorage inde-
pendence, matrix interactions, and MMP activity

 [273]

2-Deoxy-D-Glucose Hs578T, Hs578Ts(i) 8 Decreasing oxidative phosphorylation, increase glycolysis, 
and inhibit tumor migration and invasion, promoting anoikis

 [274]

Aspirin 4T1, E0771 Aspirin targets thromboxane A2 (TXA2), TXA2 receptor (TP) 
and thromboxane A2 synthase 1 (TBXAS1) are upregu-
lated in metastatic BC cells and confer anoikis resistance 
through sustained activation of Akt

 [275]

Monascin (MS) 4T1 Inhibiting E-cadherin and β-catenin expression in cells, 
promoting anoikis

 [276]

their original locations, migrate, invade the circula-
tory and lymphatic systems, and ultimately invade and 
colonize distal locations, growing and proliferating to 
form secondary tumors. The ability of cells to survive 
independently is a critical factor in the metastatic pro-
cess, as tumor cells with malignant potential can initiate 
mechanisms to resist anoikis and survive. Cancer cells 
undergo alterations at various levels, including genes, 
proteins, cytoskeleton, and cell structure, in order to 
resist anoikis. Different cancer cells are involved in dis-
tinct mechanistic alterations, and multiple mechanisms 
often collaborate to affect a single cell. The cumulative 
result of these factors presents a significant challenge for 
clinical treatment.

Precisely targeting the critical period when anoikis 
resistance occurs (i.e., after disruption of tumor epithe-
lial cell-ECM interactions and before metastatic spread) 
is an essential approach for prognostic regression of BC. 
Current strategies using anoikis sensitizing drugs pri-
marily involve combinatorial algorithms aimed at reduc-
ing the activation of alternative signaling pathways and 
maximizing efficacy. The mechanism by which GTN 
promotes anoikis in multiple directions requires further 
investigation.

Promoting the restoration of the anoikis phenotype in 
tumor cells through modulation of miRNAs is another 
highly promising approach. MiRNAs can play a role in 
the clinical treatment of patients with tumor metastasis, 
in addition to their previous value as predictive molec-
ular markers in clinical work. Consequently, potential 
anoikis sensitizing drugs and genetic manipulation tar-
geting miRNA families could provide a practical frame-
work for inhibiting tumor metastasis.
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