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Abstract 

Aging is a biological process determined through time‑related cellular and functional impairments, leading to a 
decreased standard of living for the organism. Recently, there has been an unprecedented advance in the aging 
investigation, especially the detection that the rate of senescence is at least somewhat regulated via evolutionarily 
preserved genetic pathways and biological processes. Hematopoietic stem cells (HSCs) maintain blood generation 
over the whole lifetime of an organism. The senescence process influences many of the natural features of HSC, 
leading to a decline in their capabilities, independently of their microenvironment. New studies show that HSCs are 
sensitive to age‑dependent stress and gradually lose their self‑renewal and regeneration potential with senescence. 
MicroRNAs (miRNAs) are short, non‑coding RNAs that post‑transcriptionally inhibit translation or stimulate target 
mRNA cleavage of target transcripts via the sequence‑particular connection. MiRNAs control various biological path‑
ways and processes, such as senescence. Several miRNAs are differentially expressed in senescence, producing con‑
cern about their use as moderators of the senescence process. MiRNAs play an important role in the control of HSCs 
and can also modulate processes associated with tissue senescence in specific cell types. In this review, we display the 
contribution of age‑dependent alterations, including DNA damage, epigenetic landscape, metabolism, and extrinsic 
factors, which affect HSCs function during aging. In addition, we investigate the particular miRNAs regulating HSCs 
senescence and age‑associated diseases.
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Introduction
Senescence is an unavoidable process. As the older popu-
lation grows, decreasing aging and potentially age-related 
disorders require minimizing or controlling senescence. 
Stem cell therapy has become a promising method for 
intervening in aging frailty and aging-related disorders 
[1]. Somatic stem cells include neural stem cells (NSCs), 
hematopoietic stem cells (HSCs), mesenchymal stem 
cells (MSCs), hair follicle stem cells (HFSCs), intestinal 
stem cells (ISCs), and muscle stem cells (MuSCs), which 
are known as satellite cells of skeletal muscle [2–6].

HSC regulates the hematopoietic system, which 
produces new blood cells continuously through-
out life.  Bone marrow (BM) is their primary habitat, 
although they may also be found in the spleen, thymus, 
and lymph nodes [7, 8]. They also exist in umbilical cord 
blood and, in small numbers, in circumferential blood. 
HSCs play the main role in regulating regular blood cell 
growth. The BM microenvironment includes a hetero-
geneous population of stromal cells. They are organized 
into niches that protect HSCs and other lineage-com-
mitted hematopoietic progenitors. Self-renewal or the 
generation of daughter HSCs, which preserve the HSC 
pool throughout time, and multilineage differentiation, 
which generates all the effector cells of the blood and 
BM, are two of the many characteristics that set HSCs 
apart from other cells of the hematopoietic system. The 
stem cell niche generates signals that regulate HSCs 
self-renewal, quiescence, and differentiation [9–15]. 
HSCs’ in hematopoiesis produce both the myeloid and 
lymphoid lineages of blood cells, which are in the innate 
and adaptive immune systems. Myeloid and lymphoid 
lineages both are included in dendritic cell organization. 
Myeloid cells include monocytes, macrophages, neutro-
phils, basophils, eosinophils, erythrocytes, and mega-
karyocytes, as well as platelets. Lymphoid cells involve 
T cells, B cells, and natural killer cells (NK) [16–18]. 
Through a diminishing inclusion that interferes with 
regular homeostatic tissue maintenance and regenera-
tion response, senescence is likely to play a significant 
role in the pathophysiology of senescence in many tis-
sues. Companion cells in the BM microenvironment 
control HSC function [19, 20]. HSCs mediate ongoing 
blood cell production throughout the organism’s lifes-
pan by their protected capacity to self-renew to sustain 
the stem cell pool and differentiate to give rise to all 
terminally differentiated blood cells. In adult humans, 
an estimated one hundred billion new blood cells are 
produced every day due to the limited lifespan of vari-
ous effector cells. While  the hematopoietic system has 
various proliferative and regenerative capacities, aging 
is associated with a general reduction in hematologi-
cal competence [21, 22]. As with the organization of 

blood and immune system cells, homeostasis of HSCs 
occurs when there is a balance between HSC self-
renewal and the creation of daughter cells that create 
specialized lineage-exclusive cells. HSCs are maintained 
at a constant level throughout an individual’s lifespan. 
To maintain homeostasis, HSCs do not undergo rapid 
cell division. However, they spend a lot of time in the 
G0/G1 phase of the cell cycle. Despite the extensive 
research into HSC maintenance at the molecular level, 
the processes by which HSCs maintain cellular quies-
cence remain unknown [23, 24]. Senescence HSCs have 
been associated with several hematological dysfunc-
tions and pathological alterations, such as skewing the 
population balance of myeloid cells, lymphoid deficit, 
decreased immune responses, erythrocytopenia, oligo-
clonal hematogenesis, myelodysplastic syndrome, and 
blood cancer [25]. HSCs coexist with osteoblasts (the 
osteoblast niche), which are regulated by bone morpho-
genetic protein (BMP). The stromal cell-derived factor 
1 (SDF1) adjusts the displacement of HSCs from the 
blood flow to the BM. The   BM environments, as well 
as stromal cells, protect hematopoiesis and produce 
cytokines such as c-Kit ligand, which stimulates stem 
cells and progenitors [7]. Wnt signaling is an essential 
part of the mature stem cells self-renewal and embry-
onic hematogenesis. The Wnt pathway cascade has vari-
ous signal transfer contingencies, known as canonical 
(Wnt/β-catenin) and non-canonical pathways. These 
two pathways are included in complex operations, 
including fetal growth, stem cell preservation, and tissue 
homeostasis. For example, non-canonical wnt5A pro-
tein enhanced HSC regrowth in ex vivo conditions. As 
well as, wnt3a protein enhanced mice HSC self-renewal 
in  vitro. In addition, prostaglandin E2 (PGE2) influ-
ences on β-catenin resistance, and also PGE2 persuades 
canonical Wnt pathway in ex vivo modulation of human 
cord blood HSC [26]. Notch signaling is necessary for 
primary HSC growth; however, it is unnecessary for the 
preservation of mature BM HSCs [27] (Fig. 1).

MicroRNAs (miRNAs) are a group of short non-cod-
ing RNA (about 22 nt) that can control the expression 
of several protein-coding mRNA transcripts by connec-
tion to the 3’ UTR of target transcripts and inhibiting 
their translation into the encoded protein or activation 
of their instability and cleavage of mRNA [28]. Numer-
ous reports have shown that miRNA functions as unique 
expression templates in the hematopoietic system, with 
specific miRNAs having the ability to affect the matura-
tion of distinct blood cell lineages. Different miRNAs, 
including miR-22, miR-29a, miR-125a, miR-126, and the 
miR-132/122 cluster, have been demonstrated to play 
crucial functions in HSC biology [29]. By identifying and 
confirming mRNA targets, miRNA regulatory networks 
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in senescence HSCs and tissues may provide opportuni-
ties for HSCs in vitro and in vivo [30].

In this review, we display the contribution of age-
dependent alterations, including DNA damage, epige-
netic landscape, metabolism, and extrinsic factors that 
affect HSCs function during aging. In addition, we dis-
cuss the roles of the particular miRNAs regulating HSCs 
senescence and age-associated diseases.

MiRNAs function in stem cell aging
MiRNA genes are transcribed through RNA polymer-
ase II (pol II) and may be synthesized either from their 
genes or from a segment of sequences in protein-coding 
genes. MiRNAs are derived from longer ds-RNAs named 
pri-miRNAs, which may be produced from intergenic 
regions, exonic or intronic sequences, or as polycis-
tronic transcripts (including many hairpin structures in 
a single RNA transcript) [31, 32]. The pri-miRNAs are 
cleaved into hairpin-formed premature miRNA (recog-
nized as pre-miRNA) via the catalytic RNase III domain 

of Drosha. Pre-miRNA hairpins are transferred from 
the nucleus to the cytoplasm through a RanGTP/expor-
tin 5-related system. Dicer (RNase III) converts the pre-
miRNA hairpin into the mature 22 nt double-stranded 
miRNA*/miRNA duplex in the cytoplasm [33–36]. Mul-
tiple proteins were used to assemble an RNA induced 
silencing complex (RISC) with a single strand deleted 
and a single strand protected as a guide strand, which 
can connect to target mRNAs as a supplement, suppress-
ing translation, mRNA instability, and/or mRNA split 
for post-transcriptional regulation of protein synthesis 
[37]. The methods miRNA to suppress of target mRNAs 
or to regulate the protein-coding genes, including sup-
pression of elongation (mRNAs inhibition), suppression 
of translation (Cap and 60S Joining suppression), ribo-
some drop-off (premature termination), Co-transla-
tional protein destruction [34, 38–41] (Fig.  2).miRNAs 
are implicated in several biological processes, including 
developmental timing, differentiation, apoptosis, stem 
cell growth and development, immune reaction, aging, 

Fig. 1 miRNA biogenesis and function in the cell
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and cancer [42]. In addition, miRNAs and aging presum-
ably play an intertwined function in driving these patho-
logic conditions. New research has shown that miRNAs 
play a role in the aging of stem cells. miRNAs are a shape 
of epigenetic control that changes gene expression with-
out altering genetic code [43]. One of the first sets of 
miRNAs proposed for the stem cells regulation was the 
let-7 family. Caenorhabditis elegans was used to describe 
this conserved family of miRNAs throughout evolution. 
Similarities between let-7 in C. elegans and the mouse 
are observed by Nishino and coworkers, are intrigu-
ing. Hypodermal stem cells (seam cells) of C. elegans are 
strongly stimulated in let-7 near the end of their differen-
tiation process, and impairment of let-7 activity results in 
the ongoing proliferation of these cells [44]. Furthermore, 
miRNAs are epigenetic modulators of gene expression 
that inhibit or repress the translation of specific mRNAs. 
Many studies have used miRNAs to target oncogenes, 
tumor suppressors, and differentiation markers, all of 
which need to be suppressed to maintain stem cell self-
renewal [45]. Blood transfusions from young mice into 
old mice have shown improvements in cognitive perfor-
mance and synaptic plasticity, as well as restoring the 
regenerative capacity of skeletal muscle stem cells, as part 
of several studies looking into parabiosis as a means of 
rejuvenating older animals. Several studies have shown 
the presence of miRNAs in blood plasma and serum. 
In addition, as age progressed, changes occurred in the 
expression of miRNAs and the mRNAs they target in 

peripheral blood mononuclear cells (PBMC). The func-
tion of several miRNAs in degenerative disorders asso-
ciated with aging has been confirmed. The potential use 
of miRNAs as therapeutic targets has been the subject of 
recent research, and new studies elucidating their precise 
function are now being published [46].

HSCs Aging
Mechanisms that cause cellular senescence might be 
intrinsic alterations such as telomere friction, proteosta-
sis changes, epigenetic viewpoint changes, DNA damage, 
mutational load, and mitochondrial failure. Foreign mod-
ifications may also vary from small niche-macroenviron-
mental changes to systemic level changes to larger-level 
environmental insults such as irradiation, pathogen, and 
reactive oxygen exposure [47–53] (Table 1).

Similar processes occur during the maturation of 
blood cells in both mice and humans. Therefore, it is 
likely that the exact mechanisms that induce stem cell 
senescence in mice also do so in humans [55]. The con-
tribution of the systemic environment to the regenera-
tion of aging tissues and stem cells was recently shown 
in groundbreaking experimental studies. The cogni-
tive performance and physical stamina of geriatric 
mice models have been shown to improve after receiv-
ing transfusions of young blood. For instance, injecting 
young blood into the body led to an increase in growth 
differentiation factor 11 (GDF11) levels, a restoration of 
muscle structure and function, and improved strength 

Fig. 2 Maturated bone marrow (BM) stem cell niche. In the osteoblast niche (by using Notch, Wnt, and PGE‑2 pathways), HSCs exist near the 
osteoblast, which is regulated by bone morphogenetic protein (BMP). In addition, HSCs are as well as exist near the blood vessels in the vascular 
niche. The stromal cell‑derived factor 1 (SDF1), as well as recognized as C‑X‑C motif chemokine 12 (CXCL12), controlled the immigration of HSCs in 
the blood flow to the BM. In vivo, the osteoblast and vascular niches may be close to one another. The BM environment also includes stromal cells, 
which protect hematopoiesis, such as the generation of cytokines, including c‑Kit ligand, which was induced by stem cells and progenitors
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and stability exercise in a mouse model of aging [56–58]. 
HSCs are increased in aged humans or mice. As a result, 
the number of HSCs population is determined by its sur-
face markers. By applying clonal assays, recent studies 
have shown both quantitative and qualitative alterations 
of HSCs in senescence period [15, 59]. Human observa-
tions shown that the number of immunophenotypically 
determined HSCs or progenitor cells from healthy men 
enhances with aging and causes a reduction in their 
self-renewal ability and quiescence state [60, 61]. In an 
investigation, clonal assays and single-cell RNA sequenc-
ing were used to examine variations in proliferation and 
self-renewal capabilities. They reported that aged HSCs 
can directly influence the populations of innate and 
acquired immune cells. Also, the unique characteristic of 
senescence HSCs is their disproportionate focus on the 
myeloid lineage during differentiation at the expense of 
the lymphoid lineage [15, 62]. In aged tissues or organs, 
the equilibrium between HSC self-renewal, action, and 
durability is strongly altered. Young HSCs produce a bal-
anced population of myeloid and lymphoid progenitor 
cells. However, aging causes an increase in the differen-
tiation of HSCs to myeloid progenitor cells, resulting a 
decrease in the formation of B and T cells. The changed 
combination of the hematopoiesis can be accountable to 
the immune senescence phenotype Known in aged per-
sons. Senescence HSCs are characterized by improved 
self-renewal, diminished long-term regeneration capac-
ity, myeloid-biased differentiation, and niche localization 
variance. Consequently, older mice demonstrate a repo-
sitioning of phenotypically defined HSCs with a poor 
capacity to home to the BM niche [63, 64] (Fig. 3). Sev-
eral molecular and cellular pathways contribute to the 
decline in HSC function that occurs with aging. A variety 
of variables and processes, including cell cycle-depend-
ent genes and epigenetic modifications, have been exam-
ined in HSC senescence as a means of assisting HSCs in 
adapting to aging process. For example, a change in p53 
activity affecting HSCs numbers, proliferation capability, 

and hematopoiesis in aged organisms, support a model 
in which aging is caused by a reduction in tissue stem 
cell regenerative function [63, 65–67]. Loss of polar-
ity in aged HSCs coincides with the expression of the 
RhoGTPase Cdc42, which is directly associated with 
HSC senescence. Functionally rejuvenating old HSCs by 
blocking Cdc42 activity with a drug, increases the pro-
portion of polarized cells in an aged HSC population and 
returns the amount and spatial repartition of histone H4 
lysine 16 acetylation to that of young HSCs. In addition, 
a pharmaceutical target for reducing stem cell aging and 
elucidating a molecular function for Cdc42 activity in 
HSC biology and epigenetic control [68]. In addition, a 
meta-analysis employing mice HSCs uncovered a link 
between HSC decline and epigenetic modifications as 
people age [69].

Metabolism of HSCs aging
Metabolic processes are an organism’s chemical reactions 
that keep it alive. Quiescence to reduce stress damage, 
proliferation, and self-renewal to maintain progenitor 
pools, and lineage specification for tissue regeneration 
represent metabolically distinct stem cell appreciations 
of different energy sources. The primary purposes of 
metabolism are included: proteins, fatty acids, nucleic 
acids, and some carbohydrates, as well as the removal 
of nitrogenous wastes. Hydrocarbons and energy in the 
form of ATP, and dwindling cofactors from catabolic pro-
ductions are substrates for the anabolic production of 
non-renewable macromolecules. Metabolic circulation 
supplies energy and activates master genetic programs 
that control cells behaviour [70–72]. To prevent cellular 
damage from reactive oxygen species (ROS) and main-
tain their tissue-renewing capacities throughout life, qui-
escent somatic stem cells maintain a slow metabolic rate 
[73]. Recent research shows that variations in stem cell 
populations are nutrient-affiliated. Nutrient sensing sign-
aling, for example, the balance between quiescence and 
proliferation in aging stem cells, is regulated by a several 

Table 1 Alterations in stem cell characteristics with age [54]

a Increased ( ×)/ Decreased ( ÷)/Maintained at equivalent levels ( =)

Stem cells Self-renewal 
in senescence 
tissuesa

Proliferative activity Differentiation capability Regeneration and repair

HSCs About × 2–6 diminished Increased myeloid cell production Immune suppression, reduced engraftment potential

NSCs About ÷ 2 diminished Maintained in vitro ‑

MuSCs About ÷ 2 diminished Increased fibrosis after injury Myofibril regeneration and reduced engraftment 
potential

ISCs  = diminished Increased secretory lineage cells UV exposure reduces generation; response delayed

HFSCs  = diminished  = The hair cycle stops, and wounds take longer to heal
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pathways, including the mammalian target of rapamy-
cin (mTOR), Protein Kinase B (Akt), and AMP-activated 
protein kinase (AMPK) [74]. Many animals benefit from 
caloric restriction by extending their lives and slowing 
the onset of age-related diseases, thus, researchers have 
been looking into the mechanism by which this occurs 
in stem cells [75, 76]. Cellular activity and proliferation 
are boosted by caloric restriction via mTOR, IGF, and 
MAPK signaling. Somatic stem cells proliferation are 
restricted by ROS in a hypoxic niche, suggesting that 
environmental factors may play a role in stem cell aging. 
The reactivation of hypoxia-inducible factors is directly 

linked to the reactivation of stem cell quiescence, pro-
liferation, and oxidative metabolism [77–80]. Sirtuins 
play an essential role in the cellular reaction, environ-
mental stress, promoting DNA repair, telomere consist-
ency, cell cycle arrest, cellular senescence, and apoptosis. 
The function of sirtuins in natural longevity is consid-
ered [81, 82]. Sirtuins 2, 3, and 7 all decrease with aging 
in HSCs, and maintaining their expression in old HSCs 
can reduce mitochondrial stress and enhance HSC func-
tion [83]. Sirtuins 7 inactivation led to decreased quies-
cence, enhanced mitochondrial protein folding stress 
(PFS(mt)), and compromised regenerative capability of 

Fig. 3 The schematic comparison of aged and young HSCs function in BM. While the total number of cells with regenerative potential in the BM 
of elderly adults increases, the extent to which specific old cells can still chip away at blood cell production becomes highly variable. Young HSCs 
are home to the BM and centralize near endosteum. They have great self‑renewal and regenerative potential and a moderate differentiation ability 
towards lymphoid and myeloid progenitor cells. The location of elderly HSCs in the BM is distinguished from that of young HSCs; elderly HSCs 
centralize away from the endosteal stem cell niche following their transplantation
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HSCs. Sirtuins 7 expression was reduced in old HSCs, 
and Sirtuins 7 upregulation ameliorated the regenerative 
capacity of aged HSCs. Mitochondrial unfolded protein 
response (UPR(mt)) is interceded through the interac-
tion of SIRT7 and nuclear respiratory factor 1(NRF1) 
and is associated with cellular energy metabolism and 
proliferation. These data implicate dysregulation of a 
UPR(mt)-interceded metabolic checkpoint as a reversible 
contributing agent for HSC senescence [84].

Numerous molecular and cellular essential pathways 
have been identified as factors in the decline of HSC 
function with age. Mechanistically, however, it may be 
possible and beneficial to communicate these multiple 
aging pathways separately, leading one to conclude that 
they are, in fact, highly related and connected. While it’s 
implausible to reversed any of the cellularly fundamental 
causes of aging, number of them have the potential to be 
intervened on and thus could be a target for pharmaco-
logical study [63]. Downstream transcription factors acti-
vated in situations of low IIS activity, Foxo proteins (FOX 
(Forkhead box)), promote quiescence, long-range preser-
vation, and the inclusion of a variety of somatic stem cell 
populations in flies and mice, all of which are necessary 
for tissue repair and regeneration [85, 86]. The conserva-
tion of this Foxo function in mammalian HSCs highlights 
its importance in controlling stem cell quiescence. To 
some extent, Foxo’s capacity to control antioxidant gene 
expression mediates this effect since HSCs with mutant 
Foxo show elevated levels of reactive ROS. Further-
more, Foxo loss-of-function phenotypes may be rescued 
by treatment with the free radical scavenger N-acetyl 
cysteine (NAC) [87–89].

DNA damage of aged HSCs
Stem cell lineages in various organs and tissues become 
more susceptible to DNA damage as we age [90, 91]. 
Another major cause of stem cell senescence is dys-
function in DNA damage repair. DNA damage, in turn, 
causes a particular DNA damage response (DDR), which 
includes the following occurrences, a) triggering of any 
each kinase (ATM, ATR, DNA-PK), b) phosphorylation 
of adaptor protein 53BP1, and c) creation of the discrete 
foci, comprising phosphorylated histone H2A.X and 
p53BP1. In addition, DDR triggering results in cell cycle 
arrest via triggering of p53/p21 and/or p16/pRb path-
ways. The hydroxyl radical, the most biologically ener-
getic free radical, is the dominant reactive oxygen species 
(ROS) that target DNA. It is generally accepted that oxi-
dative stress and ROS ultimately lead to DNA damage, 
whereby inadequate cellular restoration mechanisms 
may chip into premature aging and apoptosis. In the aged 
cells, increased ROS can lead to direct DNA damage and 
continuous DDR triggering, thus forming a feedback loop 

[92–94]. Increased DNA damage may lead to alterations 
in gene function due to mutations or chromosomal rear-
rangements. Although somatic stem cells are given a leg 
up in the cell cycle and metabolism, these advantages 
may be lost with age or function due to the robust acti-
vation of the DNA damage response and the subsequent 
activation of tumor suppressor genes [95–98]. A cell-
intrinsic factor that induces HSC senescence is discussed 
DNA damage. HSCs are accountable for preserving tis-
sue homeostasis during a lifetime. Therefore, it is crucial 
for HSCs to maintain their genomic integrity to decrease 
the danger of BM failure or transformation. The DNA 
damage theory of stem cell aging explains aging-related 
alterations in the DNA repair system in HSCs with alter-
ations in cell division control, arising from enhanced 
DNA damage with age, which may lead to increased 
DNA mutations. Then, with increasing age, the func-
tion of HSCs decreases [99]. Studies in mice and human 
patients with mutations in genes-producing proteins 
involved in DNA repair provide essential insights into the 
early senescence of stem cells. As DNA damage accumu-
lates with age, the functional capacity of HSCs decline, 
a process known as physiological senescence [95–98]. 
In addition to a loss of proliferative capacity, decreased 
self-renewal, and functional exhaustion, HSCs from mice 
deficient in DNA damage maintenance also showed signs 
of cellular exhaustion. For instance, γ-H2AX foci and 
other markers of extensive DNA damage accumulate in 
elderly HSC over time [97, 100]. It is still unclear whether 
or not genetic damage is the actual cause of HSCs’ aging. 
In general, it is difficult to comprehend how the buildup 
of DNA damage may directly lead to stem cell dysfunc-
tioning if HSCs are truly primarily quiescent and divide 
relatively seldom throughout a mouse’s lifespan. Myeloid-
biased HSCs have been demonstrated to be included in 
the quiescent state, and it is possible that the cells imme-
diately downstream of these HSCs are targeted for DNA 
damage accumulation [101, 102]. In addition to random 
DNA damage, it has been shown that DNA mutations 
at specific loci are linked to the onset of clonal hemat-
opoiesis in otherwise healthy elderlies. Telomere abra-
sion causes a different kind of DNA damage. The failure 
to maintain telomere length is linked with challenging 
HSC dysfunction since the role of telomere shortening in 
the functional decline of HSC is only apparent in humans 
and mice with long telomeres. Although HSC telomere 
length may be increased by forced overexpression of tel-
omerase, doing so does not restore functional damage 
in mice [103–106]. Furthermore, external agents, inher-
ent changes that are not mutations in DNA, might finally 
contribute to HSC senescence. Researchers showed that 
HSCs alter their polarity on senescence in both the cyto-
plasm and the nucleus. Therefore, changes in overall cell 



Page 9 of 16Ortiz et al. Cell Communication and Signaling           (2023) 21:85  

structure may also contribute to HSC senescence. Altera-
tions in the three-dimensional arrangement of epigenetic 
marks and structural proteins might affect the cell cycle 
in a way that decreases capability in daughter stem cells, 
for instance, helping in the natural senescence of HSCs. 
Generally, several mechanisms might contribute to the 
senescence of HSCs and ultimately relate to the interplay 
between internal and external cell agents [99].

The epigenetic basis of HSC aging
Epigenetics examines how changes in gene expression 
may be passed down from generation to generation to 
affect cellular phenotype independent of DNA sequence. 
In a broader sense, the word refers to the mechanism 
of genomic control that is not based on the sequence of 
nucleotides [107–110]. There are several kinds of epige-
netic information encoded within our epigenome, which 
it is not limited to the existence or lack of histones on 
any specific DNA sequence, such as DNA methylation, 
chromatin remodeling, posttranslational modifications 
of the histone proteins, structural and functional variants 
of histones, and transcription of non-coding RNAs (ncR-
NAs). Different studies show that epigenetic regulators 
are essentially needed for the preservation of tissue-par-
ticular stem cells and epigenetic marks are changed dur-
ing physiological aging in stem cells [111, 112]. Similar to 
cells terminal differentiation to skin cells, liver cells, brain 
cells, etc., epigenetic alterations may show up in a wide 
variety of ways. On the other hand, epigenetic alteration 
may have much more dire consequences, including the 
cancer development. At present, epigenetic modification 
is evaluated on its ability to start and maintain at least 
three systems: DNA methylation, histone modification, 
and non-coding RNA (ncRNA)-associated gene silenc-
ing [107–110]. Activation and repression of genes, which 
play regulatory roles in transcription initiation and elon-
gation, include various histone modifications. Moreover, 
the age-related altered expression of chromatin-mod-
ifying enzymes may generate epigenetic alterations in 
aged stem cells. Changes in histone modifications and 
chromatin remodeling proteins have been extensively 
studied for aged stem cells. For example, the transcrip-
tional repressors of the polycomb group restrict the aging 
process by marking the INK4a locus with the repressive 
histone marker H3K27me3 [113, 114]. DNA methyltrans-
ferase 1 (DNMT1) is a protein-coding gene with a crucial 
role in HSCs and when the gene is genetically inacti-
vated, its deficiency result in the near-total elimination 
of HSCs in living organisms. Additionally, HSCs from 
mice with reduced Dnmt1 activity become restricted to 
myeloerythroid differentiation as a result of the devas-
tating silencing of essential lineage determinative genes 
such as Gata1, Id2, and CEBP/, as well as a dysfunction 

to prime master lymphoid regulators like Ebf1, Pax5, and 
Il7r20 [115–117]. Changes in the DNA methylome are 
associated with senescence in HSCs. The hypermeth-
ylation phenotype shared by aging HSCs and senescence 
post-mitotic somatic cells is characterized by a gradual 
increase in all DNA methylation levels. The mechanism 
for HSC hypermethylation in aging has not been fully 
explained. Collectively, DNA methyltransferase enzyme-
encoding genes are repressed in aged HSCs, in contrast 
to their expression in youthful HSCs. However, this does 
not explain why and how distinct isoforms of Dnmt3a 
and Dnmt3b are expressed and functional [69, 118]. By 
directly inhibiting DUSP1 with repressive histone marks, 
BMI1 increased COX-2/PGE2 production, which is cru-
cial for immune preventive properties. It has been shown 
that BMI1 also helps human HSCs maintain their qui-
escent state for longer, allowing for more self-renewal 
[119]. The histone deacetylase Sirt1 is essential for stem 
cell homeostasis and has been related to the loss of stem 
cell function in aging and illness. Sirt1, a chromatin 
modulator, maintains HSC homeostasis by altering Hoxa 
expression via epigenetic regulation. After Sirt1 dele-
tion, an increase in H4K16 acetylation and a reduction in 
H3K27 trimethylation led to an up-regulation of Hoxa9. 
H3K27me3, an inhibitory marker, also increased in both 
HSCs with age. Age-related loss of lymphoid differentia-
tion capability in HSCs was mirrored by a raised pattern 
of H3K27me3 [118, 120, 121] (Fig. 4).

miRNAs in HSCs aging
During each stage of differentiation, a unique miRNA 
signature is produced by HSCs. By regulating the 
expression of the master pluripotency genes and early 
organogenesis, miRNAs have been shown to play a role 
in maintaining "stemness" and priming differentiation. 
MiRNAs constitute an additional regulatory mecha-
nism in HSCs, influencing transcription patterns and 
transcript consistency. There is evidence that miRNAs 
can direct primary somatic cells back to a pluripotent 
state [122]. Numerous unique miRNAs have been iden-
tified with a specific impact on the behavior of stem 
cells when their expression is disrupted in the human 
hematogenesis pathway. Eliminating this gene results 
in increased differentiation, suggesting that miR-23a 
suppresses differentiation, in contrast to the pro-dif-
ferentiation effects of other miRNAs such as miR-181, 
miR-223, and miR-142. Reducing the number of HSCs 
and HSPCs is the net effect of eliminating miR-23a and 
the closely related miR-23b. The intricacy of miRNA 
networks, regulating HSCs is demonstrated by these 
examples and the observation of miRNAs with several 
mRNA targets [123, 124]. Targeting genes involved in 



Page 10 of 16Ortiz et al. Cell Communication and Signaling           (2023) 21:85 

DNA damage, epigenetic modifications, and metabo-
lism, miRNAs control HSC aging. Here, we’ll consider 
the roles of exogenously introduced miRNAs and the 
pathways they’re involved in as HSCs age, along with 
the direct targets of those miRNAs [125].

The miR-212/132 cluster (Mirc19)
Researchers showed that the miRNA-212/132 clus-
ter is increased in HSCs and is upregulated in aging. 
The miRNA-132 and miRNA-212 overexpression and 
elimination of these miRNAs result in inappropriate 
hematogenesis with increasing age. Mice with miR-
132 overexpressed in their BM had rapid HSC cycling 
and depletion. Mice, in whom this cluster of miRNAs 
had been genetically eliminated, had HSCs with altered 
cycle, function, and survival in response to growth fac-
tor deficiency. In this study, researchers demonstrated 
that miR-132 targeted the transcription agent FOXO3, 
an established senescence-related gene, to exert its effect 

on senescence HSCs. Furthermore, by regulating FOXO3 
expression, these miRNAs help maintain a preserving 
balance in HSCs’ production [126].

miR-125b
miR-125b, which regulates HSC survival, is highly 
expressed in the early compartment and is regulated by 
DNA and histone methylation in tumor settings. miR-
125b expression rates are lowered in HSC populations 
with aging. A higher frequency of the CD150low "lineage 
balanced" and CD150neg lymphoid-biased HSC subsets 
is seen when miR-125b expression is elevated, suggesting 
that miR-125b confers a more stress resistant, anti-apop-
totic scenario to the HSCs, influencing the composition 
of the HSC compartment. It is interesting to note that 
the frequency of these HSC subsets is reduced in aging 
animals, suggesting that the miR-125b deregulation is 
involved in the variations of the CD150 compartments 
frequency [127–129].

Fig. 4 Essential pathways that aid senescence in HSCs. Although it may be challenging to restore some molecular events, others may be amenable 
to pharmacological interpositions and therefore be exploitable in the context of HSC rejuvenation
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MiR-33
MiR-33 is downregulated in HSCs and strongly expressed 
in MPPs in super-p53 (sp53) animals with an extra copy 
of the p53 gene. After transplantation, miR-33 trans-
duced sp53 HSC shows extraordinary regeneration 
capabilities but drastically reduces recipient survival. In 
addition, high levels of miR-33 inhibit tumor-derived cell 
lines’ apoptotic response, cause murine embryonic fibro-
blasts (MEFs) to undergo a neoplastic transformation, 
and promote MEFs’ anchorage-independent prolifera-
tion. Downregulation of p53 by miR-33 is associated with 
its binding to two conserved domains in p53’s 3′UTR. To 
prevent and treat hematological diseases, understand-
ing the role of miR-33 in controlling HSC self-renewal 
through p53 is crucial [130].

miRNAs function in HSCs age‑related diseases
Myelodysplasia, chronic myelogenous leukemia (CML), 
polycythemia vera, and leukemia are all clonal hemat-
opoietic diseases that are more common in the elderly 
and may be caused by the genetic and epigenetic abnor-
malities that become more common in HSC clones 
as we age. Some researchers believe that changes in 
the BM microenvironment that occur with age have a 
role in the selection of senescence human HSC clones 
[131]. For instance, when comparing BM-HSPCs from 
elderly trauma patients to those from younger patients, 
the latter shows a more muted mRNA/miR reactivity 
to trauma. Senescence may be the main driver of post-
traumatic BM-HSPC transcriptome and specific epige-
netic changes, independent of injury severity and blood 
transfusion need. The reason of poor hematopoiesis 
response to trauma in older individuals may be explained 
by the regulation of crucial miRs and genes associated 
witth HSPC synthesis, and differentiation, leading to 
the next immunological dyscrasia. Even though HSPC 
immunomodulation is doable, it’s possible that older 
adults will not respond well to conventional cytokines 
and growth factors. Long-term effects on the elderly 
might be improved with epigenetic modification to pre-
serve HSPCs for use in personalized therapy [132]. Age-
related changes to the hematogenesis mechanism include 
heightened inflammation, impaired HSC function, and 
an increased risk of myeloid malignancy. Age-related 
changes in HSC role and myeloid malignancy have been 
linked to inflammation in the elderly (also known as 
"inflammaging") [133].

miR-146a
Researchers found that miR-146a deficiency contributed 
to age-related inflammation in individuals with acute 
myeloid leukemia (AML). Loss of miR-146a in young 
miR-146a-null mice enhanced senescence of HSCs and 

inflammation, and senescence-related AML developed 
earlier than in wild-type animals. An undeveloped subset 
of resting HSCs was eliminated after miR-146a inhibition. 
DNA methylation and transcriptome profiling implicated 
NF-κB, IL-6, and TNF as potential drivers of HSC dys-
function. This resulted in an inflammatory signaling relay 
leading to increased IL-6 and TNF release from mature 
miR-146a myeloid and lymphoid cells. Single-cell meas-
urements of miR-146a HSC involvement and subpopula-
tion creation were restored and when inflammation was 
reduced by targeting IL-6 or TNF, the incidence of hema-
tological malignancy has reduced miR-146a in mice. Loss 
of miR-146a alters HSC function through cell-extrinsic 
inflammatory signals and greater cell-intrinsic sensi-
tivity to inflammation, as shown by miR-146a/ HSCs’ 
heightened sensitivity to IL6 induction. Consequently, 
HSC inflammation contributes to the formation of AML 
through cell-extrinsic and -intrinsic pathways regulated 
by the miR-146a loss [133].

The miR-146a has a crucial role in dampening the 
inflammatory response. The miR-146a depletion leads 
to fatigue of HSCs and the development of hematologi-
cal tumors, reduction in the number and quality of HSCs, 
and an increase in myeloproliferative neoplasms. The 
internal problem with miR-146a-defective HSCs, and 
the extrinsic efficiency of lymphocytes and non-hemat-
opoietic cells contribute to the cellular environment’s 
insufficiency. This contains the miR-146a, the signal-
ing protein TRAF6, the transcription factor NF-κB, and 
the IL-6 along a molecular axis. Using a mouse model of 
chronic inflammation, researchers found miR-146a to be 
a crucial regulator of HSC homeostasis and established 
a mechanical connection between chronic inflamma-
tion, BM failure, and the development of myeloprolifera-
tive neoplasms. Myelodysplastic syndromes (MDS) are a 
hematological malignancy of older persons (median age 
70  years) that always exhibited reduced expression of 
miR-146a, making miR-146a-defective mice an excellent 
model to investigate the etiology of MDS. It concludes by 
suggesting that chronic inflammation could be to blame 
for the age-related decline in HSC activity [134].

Distinct types of hematologic malignancy may be iden-
tified by the abnormal growth of lymphocytes, which are 
known as lymphoproliferative disorders. Transplantation 
of autologous HSCs is a crucial component of treatment 
for lymphoproliferative conditions. Existing miRNAs in 
the hematopoietic niche that target cytokines and signal-
ing pathways may have a significant regulatory role in the 
mobilization of HSC. Furthermore, miRNAs may influ-
ence CD34 + cell mobilization efficiency. Next to the first 
apheresis, a negative relationship was detected among 
hsa-miR-146a-5p and the quantity of total CD34 + cells. 
Compared poor mobilizers, excellent mobilizers had a 
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lower hsa-miR-146a-5p rate on the day of the first apher-
esis, as determined by GITMO criteria. Potentially boost-
ing HSC mobilization efficiency, Hsa-miR-146a-5p [135].

miR-126
miR-126 has been determined as an essential modulator 
of HSCs. Reduced levels of miR-126 caused an increase 
in HSC cycling, which led to a dramatic increase in the 
HSC compartment and a corresponding reduction in 
lymphoid capacity. This functional stem effectiveness is 
also at odds with AML stem cells due to miR-126’s con-
trol of normal HSC cycling. In AML stem cells, miR-126 
protects quiescence and promotes antineoplastic resist-
ance by targeting the PI3K/AKT/mTOR signaling path-
way, as shown by a combination of transcriptome and 
proteome analysis. These characteristics, except retained 
complete reconstitution capacity, are again indicative of 
HSC senescence: development of the HSCs and reduced 
lymphoid output, and miR-126 is linked as a significant 
mediator of HSC senescence [128, 136].

miRNA‑based interventions in senescence HSCs
Incorrect quiescence, self-renewal, and differentiation 
are seen in aged HSCs. As miRNAs can regulate these 
processes, they may restore homeostasis to a more 
’youthful’ state. As a result, miR intermediacy presents 
a promising strategy for revitalizing HSCs. The mTOR 

inhibitor rapamycin and calorie restriction are two 
examples of therapies shown to delay senescence. In the 
latter case, no proof exists that HSCs can be kept young 
via nutritional therapies. However, rapamycin may have 
beneficial effects on HSCs that have reached senescence. 
The serine/threonine protein kinase mTOR, which regu-
lates cell growth, metabolism, and autophagy, is inhib-
ited by rapamycin. Genes in the mTOR pathway are also 
targeted by miR-21, miR-22, miR-99, miR-125a/b, and 
miR-155 [123, 137] (Table 2).

Conclusion
During senescence, HSCs undergo an ongoing disorder 
of function accompanied by a decreased regenerative 
capability. Understanding the many biochemical pro-
cesses driving the malfunctioning of senescence HSCs is 
a critical focus of biomedical research. The average age 
of the general population is increasing as new health care 
advances. If molecular therapies that regenerate senes-
cence HSCs are discovered, it might reduce the burden 
of age-related disorders while opening up new avenues 
for regenerative blood disease therapy. Numerous studies 
on the role of miRNAs in aging stem cells have revealed 
that changes in miRNA expression and their mRNA tar-
gets with age within a cellular environment play a critical 
role in cellular aging and the age-related phenotype. The 
progress in the comprehension of the miRNAs functions 

Table 2 HSCs aging‑related miRNAs and their miRNA target(s)

MicroRNA mRNA Targets Description References

miR‑212/132 cluster FOXO3 miR‑132 utilized its efficacy on senescence HSCs by targeting the transcription agent FOXO3, a 
recognized aging‑related gene. In addition, these miRNAs have a function in preserving balanced 
HSCs output

[126]

miR‑125b HOXA1 Overexpression of miR‑125b alters the HSC compartment composition by providing HSCs with 
a more stress‑resistant and anti‑apoptotic environment, resulting in an increase frequency of the 
CD150low "lineage balanced" and CD150neg lymphoid‑biased HSC subsets

[127–129]

miR‑33 p53 Defining the function of miR‑33 in regulating the HSC self‑renewal via p53 may result in the inhi‑
bition and therapy of hematopoietic disorders

[130]

miR‑146a TRAF6 Therefore, loss of miR‑146a controls cell‑extrinsic and ‑intrinsic pathways associating HSC inflam‑
mation to the development of AML

[133]

miR‑139 − 5p BRG1 miR‑139‑5p is a crucial modulator of cellular proliferation in primary hematopoiesis and is a strong 
antileukemic molecule

[138]

miR‑126 CDK3 miR‑126 targets the PI3K/AKT/mTOR signaling pathway, protecting AML stem cell quiescence and 
promoting antineoplastic resistance

[128, 136]

miR‑193b c‑KIT Ectopic miR‑193b expression limits long‑time repopulating HSC development and blood regen‑
eration. miR‑193b‑defective HSCs and pHSCs show enhanced basic and cytokine‑stimulated 
STAT5 and AKT signaling. This STAT5‑stimulated miRNA provides negative feedback for extreme 
signaling to limit unregulated HSC increase

[139]

miR‑382 − 5p MXD1 miR‑382‑5p overexpression in CD34 + HSCs/pHSCs results in a remarkable reduction of mega‑
karyocyte precursors coupled to augment granulocyte ones

[140]

miR‑155 CXCL12 miR‑155 enhances G‑CSF‑stimulated mobilization of murine HSCs and pHSCs through the propa‑
gation of CXCL12 signaling

[141]

miR‑143/145 TGFβ miR‑143/145 plays a cell context‑related function in HSPC action via control of TGFβ/DAB2 trigger‑
ing, and lack of these miRNAs generates a preleukemic condition

[142]
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in aging might propose novel curative modalities. How-
ever, the role of miRNAs in senescence HSCs is still 
poorly understood. With the ongoing deepening of HSCs 
senescence investigation and the continuous progress of 
miRNAs as anti-aging techniques, the clinical usage of 
miRNAs in HSCs delaying human aging would gradually 
come to fruition.
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