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Abstract 

Doxorubicin (DOX) is a powerful and commonly used chemotherapeutic drug, used alone or in combination in a 
variety of cancers, while it has been found to cause serious cardiac side effects in clinical application. More and more 
researchers are trying to explore the molecular mechanisms of DOX-induced cardiomyopathy (DIC), in which oxida-
tive stress and inflammation are considered to play a significant role. This review summarizes signaling pathways 
related to oxidative stress and inflammation in DIC and compounds that exert cardioprotective effects by acting on 
relevant signaling pathways, including the role of Nrf2/Keap1/ARE, Sirt1/p66Shc, Sirt1/PPAR/PGC-1α signaling path-
ways and NOS, NOX, Fe2+ signaling in oxidative stress, as well as the role of NLRP3/caspase-1/GSDMD, HMGB1/TLR4/
MAPKs/NF-κB, mTOR/TFEB/NF-κB pathways in DOX-induced inflammation. Hence, we attempt to explain the mecha-
nisms of DIC in terms of oxidative stress and inflammation, and to provide a theoretical basis or new idea for further 
drug research on reducing DIC.
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Introduction
Doxorubicin (DOX) is a classical chemotherapy agent 
derived from anthracycline, whose anticancer effect has 
been confirmed in decades of clinical application, exten-
sively used alone or in combination for the treatment of 
breast cancer, lymphoma, acute leukemia, ovarian cancer 
and other cancers [1]. DOX plays a significant antican-
cer role by acting on topoisomerase IIα and inhibiting 
synthesis of DNA and RNA. However, obvious adverse 

cardiac reaction is often in the wake of the anticarcino-
genic effect of DOX, clinically manifested as elevated 
troponin, arrhythmia, myocarditis and cardiomyopathy, 
which seriously restricted the clinical application. Car-
diomyopathy can be classified as dilated, hypertrophic 
and restrictive according to the clinical phenotype [2]. 
DOX-induced cardiomyopathy (DIC) is a non-ischemic 
cardiomyopathy often presenting as dilated [3], clinically 
presented with left ventricular expansion accompanied 
by systolic dysfunction that cannot be explained by pres-
sure or volume overload or coronary artery disease [4]. 
There is a strong correlation between cumulative doses 
of DOX and incidence and severity of DIC, in addition, 
age and previous cardiovascular disease were found to 
increase the incidence of DIC. Severe cardiomyopathy 
cause progressive heart failure and irreversible cardiac 
dysfunction, even death, severely affecting the quality of 
survival of cancer survivors [5].
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With the development of the detection technology, 
echocardiography, cardiac computed tomography, car-
diac magnetic resonance imaging, nuclear and molecular 
cardiology and monitoring strategies for cardiac bio-
markers have been progressively applied in clinical prac-
tice to facilitate early diagnosis and treatment of patients 
[6]. Biomarkers used to detect DOX-induced cardiomyo-
pathy include cardiac troponin I (cTnI), hypersensitive 
troponin I, creatine kinase isoenzyme (CK-MB), type B 
brain natridium peptide (BNP) and NT-pro BNP [7].

The current clinical treatment strategies for DOX-
induced cardiomyopathy are mainly to limit the cumu-
lative dose of DOX, the use of liposomal doxorubicin 
and the application of cardioprotective drugs, includ-
ing Dexrazoxane, angiotensin converting enzyme 
inhibitor (ACEI), angiotensin receptor blocker (ARB), 
mineralocorticoid receptor antagonist (MRA), β-blockers 
(BB) and statins [6, 8]. Dexrazoxane (DEX) is the only 
drug currently approved to prevent DOX-induced car-
diomyopathy by inhibiting topoisomerase IIβ and DOX-
Fe2+ complex [9]. Moreover, DEX can also alleviate 
DOX-induced apoptosis by upregulating the expression 
of miR-17-5p and inhibiting p38 mitogen-activated pro-
tein kinases (p38 MAPK)/nuclear factor-kappaB (NF-κB) 
pathway [10, 11]. However, one study showed that more 
than 59% of patients who received DEX pretreatment 
had elevated high-sensitivity troponin T levels, suggest-
ing that DEX pretreatment could not completely improve 
DIC [12]. Therefore, it is crucial to further investigate the 
molecular mechanisms of DIC and find more effective 
targeted therapeutic strategies.

In recent years, the molecular mechanism of DIC has 
been extensively studied, including oxidative stress, 
inflammatory response, mitochondrial dysfunction, 
autophagy, apoptosis, myocardial fibrosis, Ca2+ overload, 
endoplasmic reticulum stress and so on [13–16]. It has 
been found that DIC was resulted by a variety of mecha-
nisms, involving multiple signal pathways. This review 
article summarizes signaling pathways related to oxida-
tive stress and inflammatory (Fig. 1), and lists some drugs 
that play a cardioprotective role in DIC by acting on sign-
aling pathways.

Signaling pathways related to oxidative stress
Oxidative stress refers to the stress state caused by the 
unbalance between the weakening of body antioxidant 
defense system and the excessive generation of reac-
tive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS), which is one of the fundamental causes for 
DIC. Cardiolipin is a type of membrane phospholipid 
that resides in the inner lobe of the mitochondrial mem-
brane in cardiomyocytes, which has high affinity with 
DOX. The high affinity between DOX and cardiolipin 

makes DOX easy to accumulate in mitochondria and 
lead to mitochondrial dysfunction mediated by oxida-
tive stress [17]. The combination of DOX and cardiolipin 
can interrupt electron transfer chain (ETC) via inhibit-
ing the activity of complexes I, II and IV [18]. The qui-
none structure in DOX can be reduced to semiquinone 
intermediate, catalyzed by several oxidoreductases, 
such as cytochrome P450 reductase, xanthine oxidase, 
nicotinamide adenine dinucleotide phosphate (NAD(P)
H) oxidase (NOX) through a single-electron reduction 
mechanism. The hemiquinone intermediates rapidly 
reduces oxygen to uperoxide(O2

·−), which can be trans-
formed into hydrogen peroxide (H2O2) via the catalysis of 
manganese superoxide dismutase (MnSOD or SOD). In 
contrast, H2O2 is less toxic. However, H2O2 can be fur-
ther converted into hydroxyl radical (·OH) with stronger 
activity and toxicity in the presence of Fe2+ [19]. The 
accumulation of DOX in mitochondria can bring about 
excessive generation of ROS (including O2

·−, H2O2 and 
·OH), leading to mitochondrial protein oxidation, lipid 
peroxidation, as well as DNA damage, further leading to 
sarcolemmal and mitochondrial sarcoplasmic reticular 
change, which eventually causes myocardial contraction 
impairment [20–22]. ROS generation and mitochondrial 
damage promote mutually, and elevated ROS levels can 
directly lead to ETC inactivation and mitochondrial dys-
function, further increasing the generation of ROS [23].

RNS refers to a series of radical and nitro compounds 
with high oxidative activity derived from the interaction 
of NO and compounds including reactive oxygen species, 
such as peroxynitrite anion (ONOO−) et al. The response 
between NO and O2

·− most likely leads to NO depletion, 
which impairs the endothelium-dependent vasodilatory 
function [24]. Some important biomolecules such as pro-
teins, lipids and DNA react with ONOO− through direct 
or radical-mediated mechanisms, leading to changes in 
enzymatic activity and signaling pathways. ONOO− has 
a high affinity for tyrosine residues in proteins and can 
form nitrolated proteins by nitrating tyrosine groups, 
resulting in loss or enhancement of enzymatic activity 
[25]. The reaction of ONOO− with DNA may lead to the 
production of multiple oxidation products of the purine 
and pyrimidine bases, such as 8-nitroguanine, a bio-
marker of oxidative DNA damage [26]. Moreover, it was 
found that DOX increased the generation of ONOO− in 
myocytes, which subsequently caused the activation of 
c-Jun N-terminal kinase (JNK), thereby increasing the 
expression of High mobility group box  1(HMGB1) in 
cardiomyocytes and involved in DOX-induced cardio-
myocyte apoptosis [27]. Overproduction of peroxyni-
trite overcomes the endogenous antioxidant mechanism, 
which ultimately disrupts cellular homeostasis and leads 
to cell death.
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Besides, the  effects  of DOX include a signifi-
cant  reduction  in the level of endogenous antioxidant 
enzymes, such as SOD, NAD(P)H quinone oxidore-
ductase-1  (NQO-1), heme oxygenase-1 (HO-1), glu-
tathione peroxidase (GPX), catalase (CAT) and so 
on, which significantly weaken the body’s antioxidant 
defense system and cause the imbalance of redox [28].

Nrf2/Keap1/ARE signaling pathway
Nuclear factor E2-related factor 2 (Nrf2) is a critical 
regulator of various physiological and pathological pro-
cesses, playing a key role in regulating cellular redox state 
[29]. Nrf2 is not biologically active and does not activate 
downstream genes in normal physiological state. Nrf2 
has seven homodomains, Neh1–7, of which the Neh2 

Fig. 1  Schematic representation of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. DOX 
induces overgeneration of ROS and RNS and leads to oxidative stress by activating Nrf2/Keap1/ARE, SIRT1/p66Shc, Sirt1/PPAR/PGC-1α pathway 
as well as interfering with NOS, NOX and Fe2+ signaling. DOX increases the secretion and release of inflammatory cytokines by acting on NLRP3/
caspase-1/GSDMD, HMGB1/TLR4/MAPKs/NF-κB, mTOR/TFEB/NF-κB pathway, and further cause cell and tissue damage. DOX: doxorubicin, ROS: 
reactive oxygen species, RNS: reactive nitrogen species, Sirt1: Silent information regulator 1, Nrf2: Nuclear factor E2-related factor 2, Keap1: 
kelch-like ECH associated protein 1, sMaf: small Maf proteins, ARE: antioxidant response element, NQO-1: NAD(P)H quinone oxidoreductase-1, 
SOD: superoxide dismutase, GPX: Glutathione peroxidase 4, HO-1: heme oxygenase-1, P66Shc: The 66-kDa Src homology 2 domain-containing 
protein, NOX: NAD(P)H oxidase, iNOS: inducible nitric oxide synthas, eNOS: endothelial nitric oxide synthase, PPAR: Peroxisome proliferator-activated 
receptors, PGC-1α: PPAR coactivator 1α, NRF-1: nuclear respiratory factor 1, TFAM: mitochondrial transcription factor A, Acot1: acyl-coenzyme A 
thioesterase 1, IRP: iron regulins protein, FtMt: Mitochondrial ferritin, TfR: transferrin receptor, ABCB8: ATP-binding cassette transporter protein B8, 
NLRP3: nucleotide-binding domain-like receptor protein 3, GSDMD: gasdermin D, GSDME: gasdermin E, MyD88: myeloid differentiation factor 88, 
IRF3: interferon regulator 3, NF-κB: nuclear factor-κB, TLR: Toll-like receptors, TNF-α: tumor necrosis factor-α, IL: interleukin, IKK: IκB kinase, mTOR: 
Mechanistic target of rapamycin, TFEB: transcription factor EB
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domain contains both DLG and ETGE fragments, as 
required for interaction with kelch-like ECH associated 
protein 1 (keap1) [30]. Nrf2 widely exists in cells as a 
compound formed by combining with keap1. Keap1 has 
five domains containing NTR, BTB, IVR, DGR, and CTR. 
Among them, the BTB domain allows cullin3 and keap1 
binding, and the DGR domain is essential for the interac-
tion of Keap1 with other proteins (e.g.Nrf2 and p62) [30]. 
Keap1 promotes the ubiquitination and degradation of 
Nrf2 in the cytoplasm under the action of E3 ubiquitin 
ligase containing cullin3. Lack of Keap1 causes elevated 
Nrf2 activity and further raised the expression of down-
stream antioxidant genes [31]. When cells are stimu-
lated, Nrf2 is stripped from the Nrf2-Keap1 complex and 
transfers to the nucleus, binds to the small Maf proteins 
(sMaf). Nrf2 interacts with the antioxidant response ele-
ment (ARE) of cytoprotective genes with the help of sMaf 

to activate the downstream expression of antioxidase, 
including SOD, CAT, HO-1, NAD(P)H oxidase and so on 
[30, 32] (Fig. 2). It was found that the expressions of Nrf2 
and HO-1 were slightly upregulated and the expression 
of Keap1 gene was inhibited in the early stage of DOX 
treatment, but this weak upregulation was not enough 
to offset the oxidative stress induced by doxorubicin [33, 
34]. Over all, DOX treatment can increase Keap1 level, 
inhibit expression of Nrf2, HO-1, NAD(P)H oxidase and 
aggravate oxidative stress [35, 36]. Nrf2 deficiency can 
even aggravate the damage caused by DOX [37].

Silent information regulator 1(Sirt1) deacetylates Nrf2 
in order to activate it [38]. Knockout of Sirt1 downregu-
lated the expression of Nrf2 and HO-1 [39]. Besides, Sirt2 
is also involved in regulating the expression of Nrf2. Study 
has found that miR-140-5p was obviously increased after 
DOX treatment, which could aggravate oxidative stress 

Fig. 2  Schematic diagram of the mechanism of Nrf2/Keap1/ARE signaling pathway. Nrf2 has seven homodomains, Neh1–7. Keap1 has five 
domains containing NTR, BTB, IVR, DGR, and CTR. Nrf2 binds to the DGR domain of keap1 homodimer via the DLG and ETGE fragments, and Cul3 
binds to the BTB domain of Keap1. Under basal conditions, Nrf2 is ubiquitinated and degraded by the Keap1-Cul3 complex, without generating 
biological activity. Upon stimulated, Nrf2 dissociates from the Keap1-Nrf2 complex, ectopically into the nucleus and binds to sMaf, and Nrf2-sMaf 
binds to ARE to promote the expression of antioxidant genes, such as NQO-1, SOD, GPX, HO-1. Nrf2: Nuclear factor E2-related factor 2, Keap1: 
kelch-like ECH associated protein 1, sMaf: small Maf proteins, ARE: antioxidant response element, NQO-1: NAD(P)H quinone oxidoreductase-1, SOD: 
superoxide dismutase, GPX: Glutathione peroxidase 4, HO-1: heme oxygenase-1. (By Figdraw.)
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by targeting Sirt2/Nrf2 [40]. Dioscin directly reduces 
the expression of miR-140-5p and activates Nrf2/Sirt2 
signaling pathways, subsequently increasing the expres-
sion of antioxidant enzyme and reducing ROS generation 
[41]. The p62/Sqstm1 protein can release Nrf2 by bind-
ing to Keap1, increasing Nrf2 activity and enhancing the 
expression of antioxidant genes [42]. Researchers have 
found that expression of tripartite motif containing-21 
(TRIM21) is upregulated after DOX treatment, adversely 
affecting the function of Nrf2. TRIM21 is an E3 ubiqui-
tin ligase that interacts with p62 to disturb the separa-
tion of Nrf2 from Nrf2-keap1 and inhibit the activity of 
Nrf2, further decreasing the expression of downstream 
antioxidant genes. Inhibition or knockdown of TRIM21 
could enhance Nrf2 expression and attenuated DIC [43]. 
In addition, protein kinase C (PKC) [44], P13K/Akt [45], 
p21 protein [46] can also activate Nrf2 to phosphorylate 
by interacting with Keap1 [47].

Researchers have proved that alpha-Linolenic acid, 
Sulforaphane, and Asiatic Acid can play a protective 
role in DIC by activating Keap1/Nrf2/ARE pathway 
[48–50]. Resolvin D1, Orosomucoid 1, Punicalagin, Fise-
tin and others improved cellular redox defense and alle-
viated DIC by activating the Nrf2/HO-1 pathway [34, 
39, 51–61]. Baicalein, β-lapachone, Indole-3-carbinol, 
p-Coumaric acid alleviates DIC by activating Nrf2/ARE 
pathway and enhancing antioxidant enzymes expression 
(including HO-1, SOD, CAT, GST, NQO1 and GPX) in 
the myocardium [49, 54, 62–69]. At present, a variety of 
compounds that can act on Keap1/Nrf2/ARE signaling 
pathway have been found (Additional file  1: Table  S1). 
Nrf2 is expected to become a therapeutic target against 
DIC [70].

Sirt1/p66Shc signaling pathway
P66Shc (The 66-kDa Src homology 2 domain-contain-
ing protein) is a member of the adapter protein family 
involved in several biological processes such as ROS syn-
thesis, proliferation and apoptosis, containing a highly 
conserved N-terminal phosphotyrosine binding domain 
(PTB),central proline-enriched region 1 (CH1), C-ter-
minal Src identity region 2 (SH2), cytochrome c binding 
domain and a unique CH2 domain [71]. The presence of 
the ser36 amino acid residues in the CH2 domain largely 
determines the cell sensitivity to ROS [71]. The p66Shc 
is in an inactive state in normal physiological state. Dur-
ing oxidative stress, on the one hand, p66Shc can be 
transferred to the nucleus, transported to mitochondria 
as well as related membranes and combined with mito-
chondrial cytochrome c, resulting in the oxidation of 
cytochrome c, further promoting the generation of ROS 
[72]. On the other hand, p66Shc is activated by the phos-
phorylation of ser36 amino acid residues and activates 

AKT (a serine/threonine protein kinase) to inactivate 
FOXO3a transcription factors, thus reducing the level of 
MnSOD and reducing the cellular detoxification of ROS 
[73, 74].

Studies have shown that Sirt1 is related to regulat-
ing the expression of p66Shc, and the level of p66Shc is 
reduced in rats with knockout of Sirt1 gene, while the 
level of p66Shc can be restored by transfection of Sirt1 
gene [75]. Sirt1 is a nicotinamide adenine dinucleotide 
(NAD +) dependent enzyme which can catalyze the dea-
cetylation of lysine residues of histone and participate in 
the regulation of multiple vital movement such as pro-
liferation, growth and activation [76, 77]. Expression of 
p66Shc requires the involvement of acetylated histones, 
while Sirt1 can reduce the amount of acetylated histones 
by catalyzing histone deacetylation, thereby reducing 
p66Shc expression and decreasing its activity [78].

Researchers demonstrated that p66Shc has a hand in 
the oxidative stress process [72], and downregulation 
or knockdown of p66Shc alleviated oxidative stress and 
ROS generation in rat cells [74]. In contrast, overexpres-
sion of p66Shc exacerbates oxidative stress. After DOX 
treatment, increased p66Shc content and decreased 
Sirt1 expression were observed in both in  vitro and 
in  vivo experiments. Wu et  al. showed that berberine 
can downregulate the expression of p66shc by activating 
Sirt1,enhance the body’s antioxidant defense (including 
SOD, CAT, GPX),and promote lipid H2O2 metabolize 
into malondialdehyde to alleviate DIC [79]. Zhu et  al. 
showed that the level of miR-34a-5p increased after DOX 
treatment, and miR-34a-5p could increase the heart 
injury induced by DOX by targeting Sirt1 and activat-
ing Sirt1/p66Shc pathway, while blocking this pathway 
could achieve the purpose of cardiac protection [80]. Liu 
et  al. found that the expression of intracellular miR-124 
decreased after DOX treatment, increasing the expres-
sion of miR-124 can alleviate oxidative stress and car-
diac injury by inhibiting p66Shc [81] (Additional file  7: 
Table S7). The Sirt1/p66shc signaling pathway may be a 
therapeutic target for alleviate DIC.

NOX singnaling
NOX is the cytochrome subunit of the phagocyte 
NAD(P)H oxidase, playing a crucial role in the generation 
of ROS [82]. The NOX family is composed of NOX1-5 
and DUOX1,2, of which NOX2 and NOX4 are mostly 
existed in cardiomyocytes and regulate of cardiomyo-
cyte function. NOX2 and NOX4 can reduce the quinone 
structure of DOX to hemiquinone intermediate through 
a single-electron reduction mechanism, which converts 
O2 into O2

·−,H2O2 and ·OH through a series of reac-
tions, resulting in myocardial injury [21]. NOX itself has 
no catalytic activity and requires binding with subunits 
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to form a stable complex to exert catalysis. Five subunits 
take part in the activation of NOX2, including p22phox, 
p67phox, p40phox, p47phox, as well as the GTPase Rac, 
in which p22phox plays a major role. The activation of 
NOX4 requires the involvement of p22phox and poly-
merase Poldip2 [83, 84]. DOX has been shown to activate 
NOX signaling, promotes NOX2 and NOX4 expression 
and ROS generation, exacerbate oxidative stress and 
further activating apoptosis mediated by MAPK [85]. 
In addition, Dox activates the motility-related protein 1 
(Drp1) by enhancing the expression of NOX1 and NOX4, 
further inducing mitochondrial division, and causing 
the NLRP3 inflammasome-mediated pyroptosis in car-
diomyocytes [86]. It was found that knockdown of NOX2 
and NOX4 can prevent excessive generation of ROS and 
attenuated DIC [87, 88].

Many compounds have been found to reduce DIC 
by inhibiting activity of NOX [83] (Additional file  2: 

Table  S2). Neferine, astragaloside IV, acacia hydaspica 
and resolvin D1 can exert a cardioprotective effect by 
inhibiting NOX [21, 55, 88–91]. As an momentous reg-
ulator, Rac are involved in the activation of NOX2. The 
activation of Rac can trigger the feedback self-activa-
tion of NOX2, resulting in oxidation burst and obvious 
increase of ROS production [92]. Conversely, knockout 
of Rac can inhibit the activation of NOX and cut down 
the generation of ROS, and mitigate DIC. Giving spe-
cific Rac inhibitor NSC23766 to mice with DIC can also 
achieve cardiac protection [93]. In addition, p67phox 
also take part in the activation of NOX2. Experiments 
by Zhang et  al. have proved that irisin can reduce the 
activation of NOX, inhibit the activity of NOX and 
reduce oxidative stress by inhibiting the expression of 
p67phox [94]. Angiotensin II (Ang II) can activate and 
regulate the expression of NOX. Valsartan can reduce 
the DIC by inhibiting AngII receptor and downregulat-
ing the expression of NOX2 and NOX4 [85] (Fig. 3).

Fig. 3  Schematic representation of the role of NAD(P)H oxidase (NOX) in DOX-induced cardiomyopathy. DOX upregulates NOX2 and NOX4 
expression by activating the angiotensin receptor, oxidizes NADPH, and reduces O2 to produce ROS. On the one hand, ROS causes oxidative stress 
and DNA damage, further activates MAPK-mediated apoptosi. On the other hand, ROS activates Drp1, inducing mitochondrial division, causing 
NLRP3-mediated apoptosis and eventually causing myocardial damage. Natural compounds including neferine (N), valsartan (V), necrostain-1 (N-1), 
setanaxib (S), astragaloside (AS), acacia (A), irisin (I), NSC23766 (NS) and resolvin D1 (R) attenuated DOX-induced cardiomyopathy by downregulation 
of NOX2 and NOX4. DOX: doxorubicin, Drp1: motility-related protein 1, MAPK: mitogen-activated protein kinases, NLRP3: nucleotide- binding 
domain-like receptor protein 3, ROS: reactive oxygen species. (By Figdraw.)
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NOS singnaling
Except outside the oxidative stress mediated by ROS, 
RNS-mediated nitrosative stress also participates in 
the process of DIC (Fig. 4). RNS is a kind of free radi-
cal and nitro compounds with high oxidation activity, 
generated by the interaction between ROS and nitric 
oxide(NO). Thus, NO levels largely determine the lev-
els of intracellular RNS and are important in DIC. NO 
is one of the products of L-arginine catalyzed by nitric 
oxide synthase (NOS). NOS consists of three isoforms, 
including neuronal nitric oxide synthase (nNOS), 
inducible nitric oxide synthase(iNOS) and endothe-
lial nitric oxide synthase (eNOS), in which iNOS and 
eNOS take part in the catalytic synthesis of NO in 
the myocardium. NO levels can be directly regulated 
by NOS, and NO levels are also indirectly affected by 

endothelin-1(ET-1) activity and ROS levelsN [95]. No 
acts as a messenger molecule with small molecular 
weight that can dilate blood vessels. The normal NO 
concentration and its bioavailability are important for 
the maintenance of cardiovascular and neural tissue 
function [96].

The process of NO production catalyzed by iNOS 
requires the participation of NADPH and four cofac-
tors, including tetrahydrobiopterin (BH4), flavin ade-
nine dinucleotide (FAD), flavin mononucleotide (FMN) 
and heme complex-ferriprotoporphyrin IX [97]. The 
iNOS expression is affected by NF-κB and IFN-γ. DOX 
treatment can upregulate the expression of iNOS and 
the synthesis of NO. The excess of NO and O2

·− pro-
duce ONOO−. Excessive accumulation of free radicals 

Fig. 4  Schematic representation of the role of iNOS and eNOS in DOX-induced cardiomyopathy. iNOS is mainly distributed in macrophages and is 
not expressed under physiological conditions. The iNOS is activated under stress, converts L-arginine to L-citrulline and generates a large amount 
of NO with the help of the co-factors FAD, FMN, BH4, heme complex-ferriprotoporphyrin IX. NO can react with O2

·− to generate ONOO−, which 
inhibits GPX and exacerbates oxidative stress. The eNOS is mainly distributed in endothelial cells and formed in its physiological state can reduce O2 
to NO. In the stress state, eNOS is uncoupled to reduce O2 to O2

·−, aggravating the oxidative stress. Drugs including phenylalanine-butyramide(P), 
fisetin(Fis), curcumin(Cur), crocin(Cro), eicosapentaenoic acid(E) can attenuate oxidative stress by downregulating the activation of iNOS. Drugs 
including nebivolol(N), fenofibrate(Fen), ursolic acid(UA), folic acid(FA), fluvastatin(Flu) attenuate oxidative stress by downregulating the activation 
of eNOS. iNOS: inducible nitric oxide synthase, eNOS: endothelial nitric oxide synthase, BH4: tetrahydrobiopterin, FAD: flavin adenine dinucleotide, 
FMN: flavin mononucleotide, CaM: calmodulin. (By Figdraw.)
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with highly oxidative activity such as ONOO− can 
affect the expression of GPX and promote the nuclear 
translocation of NF-κB to induce oxidative stress as 
well as lipid peroxidation [97–100]. what’s more, iNOS 
can also mediate ER stress, activate Toll-like recep-
tor-2 (TLR2) to promote inflammation, and further 
induce apoptosis [101]. The HER2 inhibitor lapatinib 
exacerbated DIC by increasing the expression of iNOS 
and the generation of NO [102]. Studies have found 
a variety of compounds that can exert cardioprotec-
tive effects by reducing the expression of iNOS, such 
as eicosapentaenoic acid, curcumin, crocin, vitamin E, 
fisetin, liposomal resveratrol, carvedilol, nebivolol and 
so on [103–108] (Additional file 3: Table S3).

The process of NO production can also be catalyzed 
by eNOS, whose cofactors required for catalysis are the 
same as the iNOS. The activation of eNOS is associated 
with AKT, activation of adenosine monophosphate-
activated protein kinase (AMPK) and soluble guanylate 
cyclase (sGC) [109]. In the physiological state, the eNOS 
is in a relatively stable dimer-coupled state to generate 
the NO. During oxidative stress, eNOS uncouples into 
unstable eNOS monomers that no longer generate NO 
while generate large amounts of O2

·−, further aggravat-
ing oxidative stress. On the one hand, DOX can induce 
eNOS uncoupling by affecting NOX4, Ang II receptor 
and AKT, increasing the monomer/dimer eNOS ratio. 
DOX binds to eNOS monomers to form a hemiquinone, 
which reacts rapidly with oxygen radicals to increase 
the production of O2

·− and reduce NO synthesis as well 
as bioavailability. On the other hand, DOX inhibits the 
phosphorylation at eNOS Ser1177, increases the phos-
phorylation at eNOS Thr495, and decreases the eNOS 
activity [110]. The  results  showed  that DOX treatment 
in eNOS knockout rats showed lower ROS levels and 
weaker cardiotoxicity than the control group. However, 
myocardial-specific eNOS overexpression can aggravate 
the cardiac toxicity caused by DOX [111]. Therefore, 
the inhibition of the eNOS uncoupling and reducing the 
number of eNOS monomers could be used as a strat-
egy for cardioprotection. Vitamin C can reduce DIC by 
increasing the level of cofactor BH4 and stabilizing the 
eNOS and reducing the number of eNOS monomer. 
Meanwhile, vitamin C also increases the phosphorylation 
at eNOS Ser1177 to reduce the DOX-induced nitrosative 
stress [112]. A special amino acid formulation used for 
promoting cellular respiration modulates phosphoryla-
tion at Ser1177 by affecting mTOR complex 1 (mTORC1) 
and activates eNOS/mTORC1 signaling to prevent DIC 
[113, 114]. Fenofibrate, urgulic acid and folic acid can 
increase NO bioavailability by activating eNOS and 
inhibiting eNOS uncoupling to alleviate DIC [115–117] 
(Additional file 3: Table S3).

Sirt1/PPAR/PGC‑1α signaling pathway
Peroxisome proliferator-activated receptors (PPAR) is 
a ligand-inducible nuclear receptor with three isoforms 
containing PPARα, PPARγ and PPARβ/δ [118]. PPAR 
is widely expressed in cardiomyocytes and involved in 
cardiomyocyte energy metabolism, proliferation, differ-
entiation, development as well as the regulation of cell 
death [119]. It was found that DOX can cause mitochon-
drial dysfunction by acting on PPAR, activating oxidative 
stress and inflammation and ultimately inducing apopto-
sis. On the one hand, DOX can reduce the expression of 
PPAR by regulating Sirt1 or AMPK and further upregu-
late NF-κB expression, promote inflammatory factor 
release and aggravate the inflammatory response [120]. 
On the other hand, DOX can decrease Nrf2 expres-
sion by inhibiting PPAR, reduce the level of antioxidant 
enzymes and reduce the body’s antioxidant capacity, 
resulting in oxidative stress [121]. The expression of 
PPARα, PPARγ and PPARβ/δ in the heart decreased after 
DOX treatment [122–125]. It was found that Glycyr-
rhiza Glabra root extract could reduce DIC by restoring 
Sirt1 and PPARα/γ levels [124]. Piperine, Astragali Radix, 
Catalpol can exert their cardioprotective effects through 
the activation of PPAR [126–128].

PPAR coactivator 1α(PGC-1α) is an inducible tran-
scription coactivator of PPAR, which enhances the 
nuclear transcriptional function of PPAR and plays a 
significant role in regulating various signaling pathways 
occurring in mitochondria. The expression of PGC-1α 
is regulated by AMPK and Sirt1, and Sirt3 [129, 130]. 
Deacetylation of Sirt1 and Sirt3 can activate PGC-1α to 
increase the level of its downstream factor Nrf2 and the 
transcription of the antioxidant gene SOD and HO-1, 
significantly enhancing the antioxidant defense system 
of body [131]. DOX treatment decreased the levels of 
SIRT1 and PGC-1α, reduced the antioxidant capacity and 
induced oxidative stress. Ferruginol can exert cardiopro-
tective effects by activating PGC-1α expression by acting 
on Sirt1 [132]. Dichloroacetate attenuates DIC by restor-
ing the abnormal SIRT3 and PGC-1α signaling caused 
by DOX [133]. Pterostilbene can upregulate PGC-1α 
activity by activating AMPK and SIRT1 to reduce the 
oxidative stress caused by DOX [134]. Troxerutin can 
prevent DOX from downregulating the levels of SIRT1 
and PGC-1α and reduce cardiomyocyte damage [121]. 
PGC-1α can also act as a regulatory factor of the expres-
sion of nuclear respiratory factor 1(NRF-1) and mito-
chondrial transcription factor A (TFAM), thus affecting 
mitochondrial biosynthesis process [135]. Sonowal et al. 
have found that fidarestat (an aldose reductase inhibi-
tor) reduced DIC by increasing the levels of PGC-1α and 
TFAM and enhancing mitochondrial biogenesis [136]. 
What’s more, PGC-1α can also affect the expression 
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of uncoupling protein 2 (UCP2). UCP2 is an oxidative 
stress-protective molecule that may reduce oxidative 
stress by transferring Ca2+ from extracellular to matrix 
and exporting lipid peroxides [137]. Dexmedetomidine 
can reduce the degradation of PGC-1α and increase the 
expression of UCP2, significantly reducing the synthesis 
of mitochondrial ROS [138]. Matrine can also reverse the 
downregulation of UCP2 caused by DOX through AMPK 
activation, and reduce the oxidative damage and apopto-
sis in cardiomyocytes [139] (Additional file 4: Table S4).

The current study has also found that a portion of 
MicroRNAs (miRNAs), which is abnormally expressed 
after DOX treatment, aggravate DIC by targeting PPAR 
or PGC-1α (Additional file 7: Table S7). MiRNAs is a kind 
of small single stranded noncoding RNA that can lead to 
the degradation of mRNA and inhibit mRNA translation 
by acting on the untranslated region of mRNA. In vitro 
and in  vivo experiments found that miR-128-3p and 
miR-130a were upregulated after DOX treatment, and 
the inhibition of miR-128-3p and miR-130a produced 
cardioprotective effects. Moreover, this protective effect 
can be abolished by PPARγ antagonists, which fully dem-
onstrates that miR-128-3p and miR-130a can target and 
reduce PPAR expression [125, 140]. MiR-22 is abnormally 
expressed in DOX-treated cells. Inhibition or knockout 
of miR-22 can inhibit mitochondrial biosynthesis, reduce 
ROS production and reduce heart injury. It was found 
that this protective effect was achieved by activating Sirt1 
and upregulating the expression of PGC-1α, TFAM and 
NRF-1 [135]. In cardiotoxicity models, the expression 
of miR-23a increased with the cumulative dose of DOX, 
and miR-23a significantly leads to mitochondrial damage 
and apoptosis by targeting PGC-1α and the phosphoryla-
tion of Dynamin-related protein-1 (Drp1). Inhibition of 
miR-23a significantly alleviated mitochondrial dysfunc-
tion and oxidative stress [141]. Therefore, screening for 
mRNA and other indicators abnormally expressed after 
DOX treatment can also be used as a way to study the 
molecular mechanism of DIC.

Iron signaling
Fe2+ participates in the generation of ROS in mitochon-
dria through Fenton reaction, and then induces the gen-
eration and accumulation of oxidized lipids [142]. Iron 
is one of the fundamental trace elements to maintain 
normal life activities of the body. Lack or excess of iron 
will lead to the occurrence of diseases, such as anemia, 
chronic heart failure and so on [143]. It was found that 
iron homeostasis imbalance causes overproduction of 
ROS, induces lipid peroxidation, and eventually leads to 
cell ferroptosis [144]. Ferroptosis is a regulatory cell death 
caused by the accumulation of lethal lipid peroxides, 
which is different from apoptosis and is characterized 

by intact mitochondrial nuclei but rupture of the outer 
membrane [145]. Ferrostatin-1(fer-1) removes lipid per-
oxides by reducing the generated alkoxy groups for anti-
iron death effects [146].

On the one hand, DOX can induce ferroptosis by 
directly interfering with the clearance of lipid perox-
ides. The formation of Fe2+-dependent toxic lipid ROS 
can be significantly reduced by converting lipid hydro-
gen peroxide into lipid alcohols, which is less toxic. Glu-
tathione peroxidase 4 (GPX4) plays an important role 
in this transformation process and inhibition of GPX4 
function results in the accumulation of lipid peroxides in 
Cardiomyocytes [147]. The DOX-Fe2+ complex formed 
by DOX and Fe2+ can downregulate the expression of 
GPX4, reduce the reduction of oxidized phospholipids, 
and increase the accumulation of oxidized phospho-
lipids in mitochondria [148]. It was found that protein 
arginine methyltransferase 4 (PRMT4) could regulate 
the expression of GPX4. PRMT4 overexpression cata-
lyzes the enzymatic methylation of Nrf2, resulting in the 
restricted nuclear translocation of Nrf2 and reducing the 
expression of downstream iron death related gene. While 
knoknockdown of PRMT4 promotes nuclear ectopic of 
Nrf2 and alleviates cardiac damage [149]. Experiments 
showed that GPX4 overexpression or iron chelate target-
ing Fe2+ in mitochondria could reduce DOX-induced fer-
roptosis [144]. Astragaloside IV and Salidroside can play 
a cardioprotective role by upregulating the expression of 
GPX4, restoring its antioxidant capacity and reducing 
the accumulation of oxidized phospholipids [150, 151]. 
MITOL/MARCH5 is an E3 ubiquitin ligase that inhibits 
DOX-induced ferroptosis by maintaining the ratio of glu-
tathione/ glutathione disulfide(GSH/GSSG) in mitochon-
dria and the expression of GPX4. Conversely, knockdown 
of MITOL/MARCH5 aggravated DIC, and this aggra-
vation of cardiomyopathy could be offset by fer-1 [152] 
In addition to GPX4, acyl-coenzyme A thioesterase 1 
(Acot1) is also involved in lipid metabolism, that inhibit 
lipid peroxidation. It was found that Acot1 was down-
regulated after DOX treatment, and the knockdown of 
Acot1 sensitized cardiomyocytes to ferritin action and 
aggravated iron death. In contrast, overexpression of 
Acot1 attenuated DOX-induced ferroptosis [153] (Addi-
tional file 7: Table S7).

On the other hand, DOX can disrupt iron homeosta-
sis through the following three pathways, leading to 
iron overload and subsequently inducing the generation 
of lipid peroxides. Firstly, DOX leads to iron overload 
within the mitochondria by increasing iron synthesis 
and uptake. DOX and its metabolites can interfere with 
the expression of iron regulins protein 1 and 2 (IRP1 and 
IRP2), increasing iron absorption and reducing iron stor-
age [154]. ROS is an important factor in mediating the 
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regulation of IRP activity [155]. In addition, the activation 
of TLR4 and NOX4 can also interfere with the function 
of the IRP and mediate ferroptosis [156]. Mitochondrial 
ferritin (FtMt), an iron-storing protein in mitochondria 
decreases in quantity and leads to increased intracellular 
free Fe2+ content after DOX treatment [157]. DOX can 
increase the cellular uptake of Fe2+ by upregulating the 
transferrin receptor (TfR). Secondly, DOX interferes with 
iron release.DOX causes the activation of Nrf-2 to bring 
about the upregulation of HO-1, catalyzes heme degra-
dation and induce the release of free Fe2+, ultimately 
leading to the accumulation of oxidized lipids in the 
mitochondrial membrane [158]. Finally, DOX interferes 
with the excretion of iron. ATP-binding cassette trans-
porter proteinB8 (ABCB8) is a mitochondrial protein 

that promotes iron excretion.DOX treatment brings 
about the accumulation of Fe2+ within the mitochondria 
by downregulating ABCB8 expression and reducing Fe2+ 
expulsion [159]. Study has found that ABCB8 deficiency 
even led to reduced efflux of DOX, causing DOX accu-
mulation and increased DIC. In contrast, ABCB8 over-
expression improved intracellular DOX retention and 
toxicity [160]. Besides, DOX reduces the extracellular 
excretion of Fe2+ by downregulating the iron export pro-
tein ferroportin (FPN) expression.

Fe2+ overload in cardiomyocytes can mediate lipid 
peroxidation and further induce cell ferroptosis, playing 
a crucial role in DIC [161]. Therefore, inhibition of lipid 
peroxidation and maintenance of iron homeostasis are 
important for mitigate DIC (Fig. 5).

Fig. 5  Schematic representation of the mechanism of ferroptosis in DOX-induced cardiomyopathy. Ferroptosis is a type of cell death mediated 
by lipid peroxidation. Fe3+ is imported by the transferrin receptor and converted to Fe2+ in endosome, released from endosomes to cytoplasm by 
the bivalent metal transporter 1. Fe2+ is converted to Fe3+ by fenton and activates lypoxygenases to induce lipid peroxidation. After Fe2+ entering 
the mitochondria, it can participate in the heme composition, be stored in FtMt, and be excreted in the mitochondria via ABCB8. Free Fe2+ can be 
excreted from the cytoplasm by FPN. Glutathione peroxidase 4 is the main endogenous mechanism to inhibit lipid peroxidation. Glutathione is a 
cofactor of GPX4. Cells transfer glutamate to extracellular via glutamate inhibit system Xc, at the same time, cystine enters the cell and subsequently 
transforms to cysteine to produce GSH. DOX can increase uptake of Fe2+ by upregulating TfR, and reduce excretion of Fe2+ by downregulation of 
FPN, ABCB8, and FtMt, leading to Fe2+ overload-mediated lipid peroxidation. DOX can reduce the clearance of lipid peroxides by downregulation 
of GPX4 and Acot1, leading to lipid peroxide accumulation-mediated ferroptosis. DOX: doxorubicin, TfR: transferrin receptor, DMT1: bivalent metal 
transporter 1, FtMt: mitochondrial ferritin, ABCB8: ATP-binding cassette transporter proteinB8, FPN: ferroportin, GPX4: Glutathione peroxidase 4, GSH: 
Glutathione, IRP: Iron regulins protein. (By Figdraw.)
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Signaling pathways related to inflammation
Inflammatory response is the defensive response of living 
tissues with vascular systems to various stimuli, includ-
ing septic and aseptic inflammation. Aseptic inflamma-
tion is mainly caused by non-pathogenic stimuli such as 
physical and chemical conditions. In recent years, many 
studies have found that DIC is associated with asep-
tic inflammation [162]. DOX upregulates the levels of a 
variety of inflammatory factors, including interleukin-1 
(IL-1) and tumor necrosis factor-α(TNF-α) in the heart, 
activating inflammatory and immune responses and lead-
ing to cardiomyocyte damage [163]. Zhang et  al. found 
that there were two types of macrophages acting together 
to coordinate the inflammatory response in DIC, namely 

repairing macrophages and pro-inflammatory mac-
rophages. A large number of lipid peroxides induced by 
DOX act as ligands to activate class A1 Scavenger recep-
tors (SR-A1), activate transcription factor c-Myc by 
transforming growth bringing about the accumulation of 
Fe2+ within the mitochondria factor-activated kinase 1 
and P38-related pathways, and further mediates the acti-
vation of SIRT1, influences the expression of macrophage 
self-renewal genes, promotes the proliferation of cardiac 
resident repair macrophages, and alleviates DIC [164]. 
However, this repair effect is insufficient to resist the 
inflammatory induced by DOX. The release of inflamma-
tory factors is regulated by the following signaling path-
ways (Fig. 6).

Fig. 6  Schematic representation of the mechanism of pyroptosis and inflammation in DOX-induced cardiomyopathy. After Toll-like receptors (TLR) 
activation, it can transduce signals through myeloid differentiation factor 88 (MyD88) or Toll/IL-1 receptor domain-containing adapter-inducing 
interferon-β (TRIF), activate nuclear factor (NF-κB) and induce transcriptional upregulation of inflammasome regulators nucleotide-binding 
domain-like receptor protein 3 (NLRP3), leading to more efficient inflammasome assembly and release of damage-associated molecular 
pattern (DAMPs) such as IL-1β, IL-18, TNF-α and IFN-γ, mediating the inflammatory response. DOX can activate NLRP3 to assemble with ASC and 
pro-caspase-1, and further activating Caspase-1. Caspase-1 has both the p20 and p10 protein domains and generates activity via self-processing 
into Caspase-1p10 form. Activated caspase-1 cleaves gasdermin D (GSDMD) and causes GSDMD cleavage to produce N and C terminal fragments. 
GSDMD N terminus binds with the plasma membrane to form transmembrane pores, causing cell swelling and rupture, releasing numerous 
inflammatory factors into the blood system and inducing cell pyroptosis. In addition, DOX can upregulate Bnip3 to activate caspase-3 and cleave 
gasdermin E(GSDME) to produce the N and C terminal fragments, inducing cell pyroptosis. (By Figdraw.)
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NLRP3/caspase‑1/GSDMD signaling pathway
Pyroptosis is a cell death which is distinguished from 
apoptosis and is characterized by promoting inflamma-
tion and cell swelling or lysis [165], accompanied with 
massive release of by inflammatory factors and cellular 
contents [166]. Pyroptosis can be activated by the follow-
ing three signaling pathways. One is the typical inflam-
masome pathway, which activates caspase-1 (caspase-1) 
and gasdermin D (GSDMD) by nucleotide-binding 
domain-like receptor protein 3 (NLRP3) [167]. The sec-
ond is an atypical inflammasome pathway that occurs 
during pyroptosis during cell infection, resulting by the 
binding of caspase-4/5/11 through specific recognition of 
bacterial lipopolysaccharide [168]. The third is induced 
by activation of caspase-3 cleavage gasdermin E(GSDME) 
[169]. It has been found that DOX can induce pyroptosis 
through the above one and third paths, leading to myo-
cardial damage.

NLRP3 is a significant regulatory factor of the innate 
immune system, whose activation requires the assem-
bly of NLRP3 protein, apoptosis-associated speck-like 
protein containing a CARD (ASC), and caspase-1 into a 
mixture. The NLRP3 inflammasome can be activated by a 
variety of stimuli, including K+ excretion, Cl− excretion, 
Ca2+ mobilization, mitochondrial dysfunction, lysoso-
mal damage, the generation of ROS and so on [170]. The 
NLRP3 inflammasome can activate caspase-1 under the 
stimulation of endogenous and exogenous factors, on the 
one hand converting inactive IL-1β and IL-18 precursors 
into bioactive IL-1β and IL-18 and released outside the 
cell, leading in inflammatory and tissue damage. On the 
other hand, activated caspase-1 causes GSDMD lysis to 
produce N and C terminal fragments, and the N termi-
nus of GSDMD binds to the plasma membrane, causing 
cell swelling and rupture, and a large number of inflam-
matory factors enter the blood system, leading to cell 
pyroptosis [171, 172]. GSDMD is a porogenic protein 
containing an N and a C terminal domain, which is one 
of the substrates of caspase-1 and plays a significant role 
in pyroptosis [173]. Caspase-1 has a conserved protease 
domain, which is divided into P20 and P10 subunits. The 
breakage of both subunits prompted activation of cas-
pase-1. Caspase-1 can be self-processed into an active 
Caspase-1 p10 form, that binds to the C-terminal domain 
of GSDMD through hydrophobic interaction, cleaves 
GSDMD, exposes the GSDMD N terminus, and binds 
to the plasma membrane to form transmembrane pores, 
leading to cell swelling and rupture to mediate pyroptosis 
[174]. ASC does not participate in GSDMD cleavage, but 
can increase the amount of GSDMD, thereby enhancing 
GSDMD activation [175].

Due to the generation of ROS, reduced intracellular 
K+ levels and/or downregulation of Sirt1, DOX activates 

the NLRP3 inflammasome in cardiomyocytes and mac-
rophages to activate caspase-1 as well as produce and 
secrete large amounts of pro-inflammatory cytokines, 
such as IL-1β, IL-18 and so on. IL-1β and IL-18 signal-
ing triggers cardiomyocyte apoptosis through the IL-1 
type I receptor (IL-1R), further promoting poor cardiac 
remodeling and inducing heart failure [176]. It was found 
that DOX treatment significantly upregulated the expres-
sion of NLRP3 and GSDMD, as well as the secretion of 
inflammatory cytokines in cardiomyocyte [177].

In the research of Wei et al., both H9c2 cells and ani-
mals treated with DOX showed upregulation of NLRP3 
and caspase-1 p20, and elevated levels of caspase-1 and 
IL-1β and IL-18. Moreover, MCC950(a specific NLRP3 
inhibitor) treatment reversed DOX-induced NLRP3 
inflammasome activation and apoptosis in  vitro and 
in  vivo, proving that NLRP3 is involved in DIC [178]. 
Meng et al. experimentally demonstrated that DOX can 
promote NLRP3 expression by activating terminal differ-
entiation-induced terminal differentiation-induced non-
coding RNA (TINCR), increase the activity of NLRP3/
caspase-1, and increase cardiomyocyte pyroptosis, thus 
leading to cardiac damage and dysfunction [179]. Thiore-
doxin interactive protein (TXNIP) overexpression has 
promoting effect on the activation of NLRP3. Honok-
iol can inhibit NLRP3 activation by inhibiting TXNIP 
expression [180]. Moreover, Nrf2 can also affect NLRP3 
activation. It was found that Selenium and Pinocembrin 
could reduce the inflammatory response by enhancing 
Nrf2 expression and weakening the NLRP3 activation 
caused by DOX [181, 182]. Calycosin and Dihydromyri-
cetin could inhibit inflammation and improve DIC by 
improving SIRT1, NLRP3 and related protein levels in 
cells and mouse hearts [183, 184]. Fraxetin, resveratrol, 
Nicotinamide mononucleotide and others exert anti-
inflammatory effects to protect the heart by inhibiting 
NLRP3 activation and reducing the subsequent inflam-
matory factor secretion and release [185–188]. Zhang 
et  al. found that Calycosin and MCC950 enhanced the 
viability of rat cardiomyocytes and attenuated DIC by 
inhibiting the NLRP3/caspase-1/GSDMD pathway [189, 
190] (Additional file 5: Table S5).

Similarly, GSDME also produces a partial effect in cel-
lular pyroptosis, as evidenced by the reduced doxoru-
bicin-induced cellular pyroptosis upon knockdown of 
GSDME [191]. A variety of chemotherapeutic agents, 
including DOX, were found to trigger cell pyropto-
sis by activating caspase-3 and splitting GSDME [169]. 
As a classical anthracycline chemotherapeutic agent, 
DOX can promote JNK phosphorylation by increasing 
ROS accumulation, thereby inducing the activation of 
caspase-3, cleaving GSDME and triggering pyroptosis 
[192]. Zheng et  al. have found that Bnip3 upregulated 
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the expression of caspase-3 and lysis of the GSDME, thus 
alleviating doxorubicin-induced cell pyroptosis [191] 
(Additional file 5: Table S5).

HMGB1/TLR4/MAPKs/NF‑κB signaling pathway
Toll-like receptors (TLR), a class of transmembrane 
receptors, play a significant role in identifying various 
pathogen-associated molecular patterns and transducing 
signals into intracellular through their transmembrane 
regions [193]. Currently, 11 TLR species have been found 
in the human body, among which TLR2, TLR3, TLR4, 
and TLR5 play a role in DIC [194]. TLR4 is the first TLR 
found to be closely related to inflammation and is mainly 
expressed in immune cells [195]. TLR2, TLR4 and TLR5 
are mainly expressed on the cell surface, whereas TLR3 
is mainly expressed intracellularly. TLR can transduce 
signals dependent on or independent of the myeloid dif-
ferentiation factor 88 (MyD88). TLR2 and TLR4 can 
bind to MyD88 to activate interferon regulator 3 (IRF3) 
and NF-κB, promoting the release of a series of dam-
age-associated molecular pattern (DAMPs) [196, 197]. 
TLR2, TLR3 and TLR5 can also directly activate NF-κB, 
directly or indirectly promoting the secretion and release 
of inflammatory factors, being independent of MyD88 
[198]. It was found that the ROS and RNS generated 
by DOX could upregulate TLR2, TLR4, and TLR5, and 
downregulate the expression of TLR3 [199, 200]. Ani-
mal experiments demonstrated that TLR4 deficiency and 
TLR5 deficiency attenuated doxorubicin-induced cardiac 
toxicity [201, 202], TLR2 deficiency suppressed the high 
expression of proinflammatory factors due to DOX [203].

It was found that HMGB1 takes part in the regula-
tion of TLR4 expression. HMGB1 is a nuclear protein 
with pro-inflammatory effects, participating in the 
progress of autophagy, apoptosis, ferroptosis, inflam-
mation etc. [204–207]. HMGB1, acted as a damage-asso-
ciated molecular pattern (DAMP) protein, is secreted in 
response to ROS, RNS, Ca2 + and other stimuli, and is 
released extracellular by activated macrophages to medi-
ate inflammatory response [208, 209]. HMGB1 released 
to extracellular cells can activate receptors such as TLR2 
and TLR4, upregulate their expression, and further affect 
the release and secretion of inflammatory cytokines 
[209]. Study has found that HMGB1 levels were increased 
after DOX treatment, while silencing HMGB1 had 
detectable reduced TLR4 expression and reduced DIC 
due to DOX [210]. Thus, reducing HMGB1 can be a strat-
egy to mitigate DIC. Zhang et al. found that rosuvastatin 
reduced the secretion of TNF-α and IFN-γ by reducing 
HMGB1 levels [211]. Du et al. found that miR-204 levels 
were decreased after DOX treatment, and miR-204 over-
expression targeted HMGB1 to directly reduce its levels, 
thus exerting a cardioprotective effect [212]. Besides, 

myeloid differentiation protein 1(MD-1) appears to be 
related to the regulation of TLR4 expression and DOX-
induced myocardial inflammation. Knockout of MD-1 
can strengthen the activation of TLR4/MAPKs/ NF-κB 
pathway and aggravate DOX-induced myocardial inflam-
matory response [213].

The upregulation of TLR expression can significantly 
activate the TLR/MAPKs/NF-κB signaling pathway, and 
induce the expression of inflammatory cytokines such 
as interleukin 8 (IL-8) and TNF-α, leading to the injury 
and apoptosis of cardiomyocytes [67]. Mitogen-activated 
protein kinases (MAPKs) are mainly responsible for 
conducting signals from the cell surface to the nucleus, 
including ERK1/2, p38 and JNK. Nuclear factor (NF-κB), 
a protein complex, plays a significant role in regulating 
cellular inflammatory, involved in regulating the tran-
scription of various pro-inflammatory cytokines [214]. 
NF-κB binds to IκB-α in normal physiological conditions 
and is not biologically active. When the body is endog-
enous or exogenous stimulated, it can interact with the 
IκB kinase (IKK) complex to promote IκB-α phospho-
rylation and accelerate the ubiquitination and degrada-
tion of IκB-α. The degradation of IκB-α can dissociate 
NF-κB from the NF-κB/IκB-α complex, increase the free 
NF-κB content, and transfer to the nucleus to generate 
activity [215]. It was found that Pristimerin and Nerolidol 
can exert anti-inflammatory effects and alleviate cardiac 
injury by inhibiting MAPKs/NF-κB signaling and subse-
quently inhibiting the effects of inflammatory  cytokines 
[60, 216, 217].

Multiple compounds that exert anti-inflamma-
tory effects by acting on TLR signaling were identi-
fied (Additional file  6: Table  S6). LCZ696 (sacubitril/
valsartan) attenuates DIC by inhibiting signaling from 
TLR2-MyD88 [203]. Enalapril and Crocin exert their 
cardioprotective effects by inhibiting the TLR-2/NF-κB 
pathway [218, 219]. Vanillic acid, and Ozone were found 
to reduce inflammatory cytokine release and reduce DIC 
by inhibiting the TLR-4/NF-κB pathway [220, 221]. It was 
found that Hemin alleviates inflammation by inhibiting 
the TLR-5/NF-κB/TNF-α pathway [199].

mTOR/TFEB/NF‑κB signaling pathway
Mechanistic target of rapamycin (mTOR), an atypical ser-
ine/threonine kinase, takes part in the regulation of vari-
ous cellular functions, including mammals’ growth and 
proliferation. The transcription factor EB (TFEB) with 
potential anti-inflammatory effects joins in regulating 
basic cellular processes [222]. NF-κB binds to IκB (NF-κB 
inhibitor) in the resting state, present in the cytoplasm, 
and is not bioactive. Upon stimulation by pro-inflamma-
tory signals, IKKs are activated to activate NF-κB dimers 
and release and transport them to the nucleus, enhancing 
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the expression of IL-8, TNF-α and other inflammatory 
cytokines [112]. The mTOR-mediated phosphorylation 
negatively regulates TFEB nuclear translocation and 
activity [223]. Reduced TFEB expression of TEEB can 
bring about an upregulation of IKK-α/βand NF-κB phos-
phorylation, which were reversed by TFEB overexpres-
sion. Wang et  al. found that dihydrotanshinone could 
inhibit NF-κB by regulating the mTOR/TFEB pathway 
in cardiomyocytes, thereby inhibiting the expression of 
inflammatory cytokines and relieve DIC [224]. Moreover, 
curcuminy can also exert anti-inflammatory effects by 
inhibiting inflammatory factor release by activating the 
mTOR pathway [188].

Conclusion
As a classical anthracycline anticancer drug, DOX has 
no doubt about its anticancer effect, while its clini-
cal application is greatly limited by the dose-dependent 
cardiotoxicity—have made DOX a representative drug 
responsible for the study of anthracycline-induced car-
diotoxicity. Currently, much progress has been made 
regarding the mechanism and clinical manifestations of 
cardiotoxicity caused by DOX. However, accurate predic-
tion as well as effectively providing cardioprotection for 
patients vulnerable to DIC remains a mystery. In the past 
decades, there have been many researchers trying to find 
drugs that provide cardiac protection through the in vitro 
and in vivo experiments. In vitro, the investigators used a 
medium containing DOX to culture H9C2 cells for 24 h 
to construct a DOX cardiotoxicity model. In  vivo, the 
experimental animals are often rats or mice. A model of 
DOX-induced acute cardiotoxicity was constructed by 
administering a disposable toxic dose of DOX, and the 
commonly used dose was a one-time intraperitoneal 
injection of 15–20  mg/kg DOX. Successful modeling 
was determined by measuring the presence of cardiac 
enzyme levels, echocardiography, HE staining of cardiac 
tissue, etc.

Many studies have been conducted on the molecular 
mechanisms of DIC, involving oxidative stress, inflam-
mation, apoptosis, autophagy, mitochondrial damage, 
iron death, endoplasmic reticulum stress, Ca2+ overload 
and so on. DIC is a complex process resulting by the 
effects of multiple mechanisms. ROS generation is the 
result of redox metabolism after DOX enters the body, 
with ROS acting as a blasting fuse, and oxidative stress 
serving as the basis for other molecular mechanisms of 
DIC. On the one hand, overgeneration and accumula-
tion of ROS directly damaged DNA and mitochondrial 
protein, causing mitochondrial dysfunction and tissue 
damage. On the other hand, ROS can also act as a signal 
to activate the body defense mechanisms to induce vari-
ous ways of cell death, including apoptosis, autophagy, 

necrosis, pyroptosis, iron death, etc. Furthermore, oxi-
dative stress and inflammatory responses are mutu-
ally causal and promote each other, exacerbating DIC. 
Inflammatory cytokines can participate in the generation 
of ROS. Simultaneously, ROS can induce NF-κB nuclear 
transcription factor activation and indirectly upregulate 
the level of inflammatory factors, making their overex-
pression, thus aggravating the inflammatory response of 
the body.

In conclusion, DOX induces overgeneration of ROS 
and RNS and leads to oxidative stress by activating Nrf2/
Keap1/ARE, SIRT1/p66Shc, Sirt1/PPAR/PGC-1α path-
way as well as interfering with NOS, NOX and Fe2+ 
signaling. DOX increases the secretion and release of 
inflammatory cytokines by acting on NLRP3/caspase-1/
GSDMD, HMGB1/TLR4/MAPKs/NF-κB, mTOR/TFEB/
NF-κB pathway, and further cause cell and tissue dam-
age. It is necessary to further search for the molecular 
mechanism of DIC. Clarify the molecular mechanism of 
DIC can provide effective basis and ideas for the preven-
tion and treatment of DIC and bring good news to cancer 
survivors.

Future perspective
Numerous studies have shown that oxidative stress and 
inflammation are closely related to DIC. Studies have 
shown that the administration of antioxidant and anti-
inflammatory therapy can reduce the level of myocardial 
damage markers and reduce DIC. However, antioxidants 
are hardly successful in the clinical prevention and treat-
ment of DIC [225]. Although current antioxidant and 
anti-inflammatory treatments have not shown better 
therapeutic effects in DIC, inflammation and oxidative 
stress remain the focus of intensive research.

In recent years, researchers have paid more and more 
attention to the role of inflammatory response in car-
diovascular diseases, which is recognized as a chronic 
process with inflammatory characteristics [226]. Immu-
nomodulatory and specific anti-inflammatory therapies 
have been demonstrated in clinical trials to treat car-
diovascular disease and mitigate cardiovascular disease 
mortality [227]. The role of inflammation in DIC is grad-
ually discovered, and the research on DIC is no longer 
focused on cardiomyocytes, but expanded to investigate 
cardiac resident macrophages, neutrophils, B cells, T 
cells, endothelial cells and even systemic inflammation 
[228]. In the existing studies, anti-inflammatory therapy 
targeting TNF-α, pro-inflammatory cytokines has failed 
to show better efficacy, and finding more effective inflam-
matory targets is imminent [229]. Targeting immune cells 
(including heart resident macrophages, B cells, T cells, 
etc.) and regulating the body’s immune function can be 
used as a new research idea. The study of immune system 
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related to cardiac inflammation, especially cardiac resi-
dent macrophages may be the main research direction 
of DIC in the future [228, 230, 231]. In addition, vari-
ous treatment that induce cardiomyocyte proliferation 
and cardiac regeneration, such as the transplantation of 
human embryonic stem cell-derived cardiac myocytes 
(hESC-CMs) and human induced pluripotent stem cell-
derived cardiac myocytes (hiPSC-CMs), coding and non-
coding gene inducers, small molecules inducer and so on, 
may also be the main research direction of DIC in the 
future [232].
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