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Abstract 

Alzheimer’s disease (AD), the most common neurodegenerative disease worldwide, is caused by loss of neurons and 
synapses in central nervous system. Several causes for neuronal death in AD have been introduced, the most impor‑
tant of which are extracellular amyloid β (Aβ) accumulation and aggregated tau proteins. Increasing evidence suggest 
that targeting the process of Aβ production to reduce its deposition can serve as a therapeutic option for AD man‑
agement. In this regard, therapeutic interventions shown that a disintegrin and metalloproteinase domain-containing 
protein (ADAM) 10, involved in non-amyloidogenic pathway of amyloid precursor protein processing, is known to be 
a suitable candidate. Therefore, this review aims to examine the molecular properties of ADAM10, its role in AD, and 
introduce it as a therapeutic target to reduce the progression of the disease.
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Background
Alzheimer’s disease (AD) is known as the most common 
chronic neurodegenerative disease. As the disease pro-
gresses, it disrupts the patient’s memory and cognitive 
functions [1]. AD is characterized by aggregation of amy-
loid β (Aβ)-containing extracellular plaques and tau-con-
taining intracellular neurofibrillary tangles in the neurons 
[2, 3]. However, AD initially presents with transient for-
getness, but as the disease progresses, other symptoms 

such as impaired speech and vision and long-term mem-
ory dysfunction [4]. Although the rate of progression can 
vary, the average life expectancy after diagnosis is three 
to nine years [5].

AD is a multifactorial disease, which means environ-
mental factors also play an essential role in addition to 
genetic factors. However, only up to 2% of AD cases are 
inherited, known to start early and progress faster [6]. 
In sporadic AD, genes encoding amyloid precursor pro-
tein (APP), PSEN1, and PSEN2 are known to be critical 
factors, which are involved in over-production of Aβ [7, 
8], which is a significant component of Aβ plaques. Two 
other mutations in the ABCA7 and SORL1 genes have 
recently been observed in patients with the familial AD 
[9].

Most AD cases are not inherited and experience the 
onset of symptoms at an older age, typically 65  years. 
More than 600 genes have been studied as AD suscepti-
bility agents. The most potent genetic risk factor for dis-
seminated AD is APOEε4 [10], one of the four alleles of 
Apolipoprotein E. Between 40 and 80% of people with 

*Correspondence:
Mohammad Rafi Khezri
Drmnkh76@gmail.com
Morteza Ghasemnejad‑Berenji
ghasemnejad.m@umsu.ac.ir
1 Student Research Committee, Urmia University of Medical Sciences, 
Sero Road, Urmia 5715799313, Iran
2 Systematic Review and Meta‑Analysis Expert Group (SRMEG), Universal 
Scientific Education and Research Network (USERN), Tehran, Iran
3 Department of Pharmacology and Toxicology, Faculty of Pharmacy, 
Urmia University of Medical Sciences, Urmia, Iran
4 Research Center for Experimental and Applied Pharmaceutical Sciences, 
Urmia University of Medical Sciences, Urmia, Iran

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12964-023-01072-w&domain=pdf
http://orcid.org/0000-0002-4280-0378
http://orcid.org/0000-0001-5672-9202


Page 2 of 12Khezri et al. Cell Communication and Signaling           (2023) 21:60 

AD have at least one APOEε4 allele [11]. The APOEε4 
allele triples the disease risk in heterozygotes and 15-fold 
in homozygotes. Some studies have also shown that 
alleles in the TREM2 gene are 3–5 times more likely to 
develop AD [12].

It is not yet clear how the production and accumula-
tion of Aβ cause pathogenesis. The amyloid hypothesis 
refers to the accumulation of Aβ peptides as the main 
event that causes neuronal destruction. Accumulation of 
Aβ fibrils, believed to be responsible for impaired cell ion 
homeostasis, leading to induce neuronal apoptosis. It is 
also known that Aβ is selectively present in mitochondria 
in brain cells. It is made with AD and also inhibits the 
functions of certain enzymes and the use of glucose by 
neurons [13, 14].

Despite many efforts to understand the pathophysiol-
ogy of AD, no definitive cure has been identified yet. 
Increasing evidence suggest that designing treatment 
regimens to target the factors involved in the pathophysi-
ology of the disease can be constructive. One of the best 
treatment candidates for AD appears to be the Aβ pro-
duction pathway, where a variety of enzymes and intra-
cellular factors are involved. In this regard, numerous 
studies introduce that inducing the non-amyloidogenic 
APP processing pathway and inhibition of amyloidogenic 
APP processing can be an effective therapy in AD. A dis-
integrin and metalloproteinase domain-containing pro-
tein (ADAM) 10 is one of the most important proteases 
involved in APP processing, which is shown its activation 
leads to reduce Aβ production and exhibits a protective 
role agains AD. Therefore, this review focuses on the 
role of ADAM10 in pathophysiology of AD, and intro-
duces it as a probable therapeutic target to reduce disease 
progression.

ADAM10 structure and synthesis
ADAM is a family of metalloproteinases consist of 
approximately 750 amino acids with proteolytic activity 
to process ectodomain of diverse cell-surface receptors 
[15]. One of the most important members of this family 
is ADAM10 which is mostly known due to its role in the 
processing of the amyloid precursor protein (APP) [16]. 
However, ADAM10 is expressed in different cells, the 
most important of which are vascular cells, leukocytes 
neurons, and tumor cells [17]. ADAM10 is synthesized 
co-translationally via the rough endoplasmic reticulum, 
maturated and transported by the Golgi apparatus [18]. 
Removal of the ADAM10 pro-domain is the main change 
during its maturation which keeps ADAM10 in an inac-
tive state through a cysteine switch mechanism in a way 
that coordinates the zinc ion in the catalytic site and 
prevents ADAM10 proteolytic activity [18]. Pro-protein 

convertase is involved in ADAM10 maturation through 
its cleavage in several sites such as PC7 in Golgi appara-
tus [19]. The pro-domain is required as an intramolecular 
chaperon for folding correction, and it seems not to has a 
mere inhibitory function in ADAM10 [19]. This process 
has been proved followed by finding a large proportion 
of ADAM10 in the Golgi apparatus in breast carcinoma 
cells by confocal microscopy [20]. In addition to pro-
domain removal, N-glycosylation of ADAM10 at four 
positions occurs during its transport to the membrane 
[19]. The other main domains of ADAM10 structure 
include disintegrin and an inactive zymogen containing 
C-terminal [18]. Although disintegrin domain seems not 
to be necessary for ADAM10 protease activity [21], the 
short intracellular C-terminus appears to play a crucial 
role as it has been demonstrated that the cleavage of epi-
dermal growth factor is impaired in ADAM10−/− cells 
with overexpressed cytoplasmic domain deletion mutant 
of the proteinase [22]. Additionally, several binding sites 
have been noted for cytoplasmic domain of ADAM10 
which seems to be involved in regulatory events, includ-
ing two proline-rich putative Src homology 3 (SH3) bind-
ing domains [23] and a binding site for calmodulin [22]. 
The SH3 binding domains direct ADAM10 are involved 
in direct ADAM10 to the postsynaptic membrane in 
neurons, while juxtamembrane binding site is involved 
in ADAM10 basolateral localization in epithelial cells 
[24]. In addition to bio-synthesis of ADAM10, its trans-
location to the membrane is a process which has been 
considered in different studies to modulate its physi-
ologic function. There are a series of intracellular fac-
tors involved in translocation of ADAM10 in different 
steps of its maturation. In this regard, synapse-associated 
protein-97 (SAP97) is known as one of the main factors 
which governs ADAM10 transport from the Golgi out-
posts to the synapse, without any effects on ADAM10 
trafficking from the endoplasmic reticulum. Mechanisti-
cally, protein kinase C (PKC) has been shown to medi-
ate phosphorylation of SAP97 SRC homology 3 domain 
which regulates SAP97 association with ADAM10 and its 
translocation from Golgi to synapse [25]. Due to the suf-
ficiency of SAP97 in ADAM10 exit from the endoplasmic 
reticulum, further studies conducted to introduce sev-
eral other factors involved in this process. In this case, a 
subgroup of tetraspanins consist of eight cysteines in the 
large extracellular domain (Tspan10, Tspan5, Tspan15, 
Tspan14, Tspan17 and Tspan33) were known to be 
involved in ADAM10 exit from the endoplasmic reticu-
lum [26]. In addition, it has been reported that an argi-
nine-rich (723RRR) sequence is responsible for ADAM10 
retention in the endoplasmic reticulum and its inefficient 
surface trafficking [27].
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The mature form of ADAM10 has a molecular weight 
of ∼ 65  kDa [19]. ADAM10 ectodomain shedding leads 
to leave a membrane-anchored C-terminal fragment with 
a ∼ 10  kDa of weight and release of a ∼ 55  kDa soluble 
ADAM10. This process shows that regardless of the pro-
tease activity of ADAM10, this factor itself is affected by 
other proteases the most important of which are ADAM9 
and 15 and γ-secretase [28]. One of the main compo-
nents of γ-secretase, presenilin, affects ADAM10 leading 
to release its intracellular domain. This released domain 
is translocated to nucleus which thought to play a part in 
gene regulation [28].

ADAM10 as a biomarker in Alzheimer’s disease
ADAM10 has previously been present in human CSF in 
several forms: an immature form that retains protamine, 
an unprocessed form, and a large cut solution form [29]. 
However, studies in AD patients have shown that the 
expression of ADAM10 in their platelets is associated 
with changes. Initially, there were reports of a decrease 
in ADAM10, but further studies reveal no significant 
link between ADAM10 levels and cognitive symptoms in 
AD patients, so it has been proposed that these changes 
might be due to the medications taken by patients [30]. 
Manzini et  al. in a study examined ADAM10 levels in 
AD patients compared with healthy individuals who have 
reported increased levels of its substrates in patients’ 
platelets (17).

This evidence suggests that ADAM10 might be used as 
a biomarker for AD diagnosis, although further research 
is needed to corroborate this theory. Table 1 summarizes 
the studies indicating ADAM10 alterations in samples 
from AD patients.

Roles of ADAM10 in Alzheimer’s disease
ADAM10 and Aβ in Alzheimer’s disease
The most known activity of ADAM10, as a main 
α-secretase enzyme [31, 32], is its role in processing 

the APP. APP, a type I transmembrane glycoprotein, is 
expressed in different mammal cells, especially neurons. 
APP is known because it serves as Aβ precursor, includ-
ing 12–15 residues of the membrane-spanning and 28 
amino acids of the extracellular region of APP [33]. 
Although the underlying cause of AD remains unknown, 
Aβ accumulation as plaques is known to be a hallmark of 
the disease because of its association with the other pro-
cesses involved in AD pathophysiology, such as oxidative 
stress and neuroinflammation [34]. Due to this issue, in 
recent years, therapeutic interventions to slow the pro-
gression of AD have been focused on reducing Aβ pro-
duction. In the processing of APP, there are two pathways 
which addressing them can help understand the role of 
ADAM10 in AD pathophysiology. In Amyloidogenesis 
pathway, cleavage of transmembrane residue of APP 
by β-site amyloid precursor protein cleaving enzyme 1 
(BACE-1), the main β-secretase enzyme, contributes to 
release β-stubs. In addition, cleavage of APP by BACE-1 
leads to liberate soluble N-terminus of APP and a mem-
brane bound C-terminal fragment (C99). At the second 
step, C99 fragment is cleaved by γ-secretase which con-
tributes to Aβ release into the extracellular space [35]. 
The other pathway of APP processing, known as non-
Amyloidogenesis pathway, is initiated by α-secretase 
activity. The effect of α-secretase on APP contributes to 
generate and release soluble APP-α (sAPPα), other APP 
ectodomain variant known as a neuroprotective and neu-
rotrophic factor [35, 36]. Additionally, several roles have 
been noted for sAPPα, including modulation of basal 
synaptic transmission likely via γ-aminobutyric acid type 
B (GABAB) receptor subunit 1a [37]. However, explain-
ing these two pathways can theoretically help to present 
therapeutic goals, although in practice more studies are 
required to prove this claim. In this regard, it has been 
proven that suppression of Amyloidogenesis pathway 
through suppression of BACE-1 and γ-secretase exhib-
its protective effects in different models of AD [38]. 

Table 1  Dysregulated ADAM10 in samples from AD patients

Author Year Country Specimen Findings References

Aitana Sogorb-Esteve et al. 2018 Spain CSF proADAM10 levels remained unaltered 
decrease in ADAM10f and sADAM10

[29]

Izabela Pereira Vatanabe et al 2021 Brazil Plasma and CSF Increased plasma and CSF ADAM10 [99]

Maria Patrícia A. Oliveira Monteiro et al. 2021 Brazil Plasma Increased plasma ADAM10 [100]

Colciaghi et al. 2004 Italy Platelet Decreased Platelet ADAM10 [101]

Patricia Regina Manzine et al 2015 Brazil Platelet Decreased Platelet ADAM10 [102]

Anna Di Maio et al. 2022 Italy Post-mortem brain tissue Unchanged [103]

Lynn M. Bekris et al. 2012 USA CSF Decreased ADAM10 [104]

Wen-Hui Huang et al. 2018 China Plasma Decreased ADAM10 [105]

Minji Kim et al. 2009 USA Plasma Increased ADAM10 [106]
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Similarly, inducing the non-Amyloidogenesis pathway 
via increasing the expression or activity of α-secretase 
leads to reduce Aβ production and accumulation [39]. As 
described, ADAM10 is one of the main α-secretases, and 
it has been presented as a suitable therapeutic target to 
modulate Aβ production.

ADAM10 and TREM2 in Alzheimer’s disease
Triggering receptor expressed on myeloid cells-2 
(TREM2) is a receptor located on cell surface and con-
sists of a V-immunoglobulin extra-cellular domain and 
cytoplasmic tail [40]. TREM2 is mainly expressed in 
myeloid cells including granulocytes, dendritic cells, 
tissue-specific macrophages like osteoclasts, alveolar 
macrophages and Kuppfer cells [41]. In CNS, TREM2 
is expressed in microglia cells and plays a great part in 
regulation of their activity [42]. Physiologically, TREM 
2 is involved in regulation of phagocytosis, cell prolif-
eration, and inflammation via its effect on downstream 
targets including the PI3K/AKT and ERK1/2 signal-
ing pathways [41]. However, increased expression of 
TREM2 has been detected in different pathologies, such 
as Parkinson’s disease, traumatic brain injury, and AD 
[41] indicating its probable role in pathophysiology of 
these diseases. In AD, the most important role noted for 
TREM2 is its interactions with Aβ plaques and regulation 
of neuroinflammation, in a way that TREM2 is involved 
in microglia recruitment to Aβ plaques [42, 43]. Activa-
tion of mentioned intracellular pathways followed by 
TREM2-Aβ axis contributes to enhance Aβ clearance 
and induce inflammatory responses [35]. In addition, 
there is a soluble form of TREM2 (sTREM2) which is 
generated followed by the effect of α-secretase on extra-
cellular domain of TREM2 [44]. The sTREM2 is known 
as a neuroprotective factor due to its role in enhance-
ment of Aβ plaque degradation [45]. However, it seems 
that the most important α-secretase involved in TREM2 
shedding and generation of sTREM2 is ADAM10. In this 
regard, it can be referred to a study indicating ADAM10 
role in TREM2 shedding [46]. In this study it was shown 
that TREM2 shedding at the H157-S158 bond and gen-
eration of sTREM2 inhibited by metalloprotease inhibi-
tors, G1254023X and siRNA targeting ADAM10, but not 
matrix metalloproteinases 2/9, and ADAM17 siRNA. 
This process can be expressed as a therapeutic target to 
increase sTREM2 levels through ADAM10 activation, 
and further studies in this regard can be constructive.

ADAM10 and microRNAs in Alzheimer’s disease
microRNAs (miRs) are a group of non-coding RNA mol-
ecules involved in regulation of the expression of proteins 
through binding to 3’UTR of their mRNA [47]. In addi-
tion to their physiologic roles, it is clearly understood 

that aberrant expression of miRs plays a great part in 
different pathologies, such as cancers and neurologic 
disorders [48]. In recent years, numerous studies indi-
cate that miRs are involved in AD pathophysiology, as 
their up- or down-regulation has been detected in these 
patients. In addition, pre-clinical studies demonstrate 
that miRs regulate different processes in AD, the most 
important of which are Aβ production (reviewed at [49]). 
In this regard, miRs have been shown to regulate the 
activity of α-secretase, β-secretase, and γ-secretase. In a 
computational study, it was reported that miR-103, miR-
1306, and miR-107, which their aberrant expression has 
been detected in AD patients, may affect the expression 
of ADAM10 to regulate APP processing [50]. miR-221, a 
downregulated miR in AD, has been shown to reduce the 
expression of ADAM10 in SH-SY5Y cells [51]. In another 
study, it has been indicated that miR-144 and miR-451 
regulate the expression of ADAM10 in HeLa and human 
neuroblastoma SH-SY5Y cells [52].

Collectively, these studies clarify the essential role of 
miRs to regulate ADAM10 expression and activity. How-
ever, more studies are required to present other miRs 
involved in this process and introduce them as therapeu-
tic options in AD.

Regulation of ADAM10 expression and activity 
by intracellular pathways in Alzheimer’s disease
The expression of ADAM10 is regulated at different 
stages of transcription (i.e. retinoic acid, sirtuins, SOX-
2, and PAX-2), translation, and post-translation levels 
(reviewed at [53]). However, there are several intracel-
lular pathways with altered activity in AD which their 
relationship with ADAM10 has been less analyzed. Extra-
cellular signal‑regulated protein kinase (ERK)1/2 is one 
of the main intracellular pathways involved in regulation 
of different aspects of cell life, including cell proliferation 
and protein synthesis [54]. However, this pathway has 
been shown to be disrupted in patients with AD and play 
a role in regulation of Aβ production, tau phosphoryla-
tion, and neuroinflammation [35]. Regarding the effect 
of ERK1/2 on ADAM10, it has been demonstrated that 
ERK1/2 induces ADAM10 expression through induc-
tion of cAMP-response element binding protein (CREB) 
activity leading to enhance APP processing and sAPPα 
production [55]. Additionally, S100A7, a novel AD bio-
marker, has been shown to promote non-Amyloidogene-
sis pathway through induction of ADAM10 by mediating 
of ERK1/2 [56].

Phosphatidylinositol 3 kinase (PI3K)/AKT signaling 
pathway is the other main intracellular pathway with 
altered activity in AD [57]. In this regard, it has been 
indicated that activation of estrogen receptors contrib-
utes to promote non-Amyloidogenic processing of APP 
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through activation of the PI3K/AKT pathway leading to 
enhance ADAM10 activity [58].

Although the role of these two pathways in the regula-
tion of ADAM10 activity is inevitable, the exact mecha-
nism of this regulation in AD is still unknown. However, 
in non-AD models it has been noted that PI3K/AKT 
and ERK1/2 signaling pathways regulate several factors 
involved in regulation of ADAM10 expression, such as Y 
sex determination region (SRY)-box  2 (SOX-2) [59, 60]. 
However, more studies are required to determine the 
exact mechanism of the involvement of the PI3K/AKT 
and ERK1/2 pathways in regulation of ADAM10 expres-
sion and investigate them as a therapeutic target in AD 
(Figs. 1, 2).

ADAM10 and synaptic plasticity in Alzheimer’s disease
Different experiences, whether they be stressful event, 
learning in a classroom, or using of a psychoactive 

substance, influence the brain through modifying the 
activity of specific neural circuitry. Synaptic plasticity is 
an experience-dependent change in neuronal connec-
tion strength that provides the basis for most learning 
and memory models [61]. This type of cellular learning 
consists of specific stimulation protocols generating a 
long-term synapse strengthening, known as long-term 
potentiation (LTP), or a weakening of the said long-
term synapses, known as long-term depression (LTD). 
Although AD is known to be associated with loss of 
neurons in different regions of the brain, the hypothesis 
indicating the alteration in the molecular mechanisms 
of synaptic plasticity underlying this imbalance is widely 
accepted [62]. However, the association between various 
molecular aspects of AD and synaptic plasticity has been 
investigated in different studies.

During AD progression, the efficiency of synapses 
is decreased followed by a significant decrement in 

Fig. 1  ADAM10 synthesis and maturation in the cell. ADAM10 in synthesized in endoplasmic reticulum, containing pro-domain, catalytic and 
cysteine-rich disintegrin like domains. Golgi is involved in ADAM10 maturation, where pro-domain is dissociated by pro-protein convertases such as 
furin. On the other hand, other ADAMs can affect mature ADAM10 to form a soluble ectodomain
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synaptic vesicles. In this regard, progressive changes in 
gene expression in CA1 region of MCI and AD brains 
occurs in a way that a significant decrement in differ-
ent steps of synaptic function-related proteins has been 
detected in these patients [63]. In a closer inspection, 
reduced expression of synaptophysin and synaptogyrin 
(presynaptic vesicle trafficking proteins) syntaxin 1and 
synaptotagmin (vesicle coupling/fusion/release proteins), 
and PSD-95 (postsynaptic function regulators) has been 
detected in CA1 of subjects with MCI and AD [63]. In 
the case of Aβ, it has been observed that Aβ oligomers 
alter molecular pathways involved in LTP which initi-
ate LTP decline and LTD increase in hippocampus slices 
[64]. Impaired learning and memory followed by Aβ 
injection into the brain of mice may prove the effect of 
Aβ on synapse plasticity [65]. These results may provide 
an insight into the role of ADAM10 in synaptic plas-
ticity via modulation of Aβ production, in a way that 
reduced ADAM10 activity in AD brains can alter synap-
tic plasticity by mediating of Aβ accumulation. On the 
other hand, the interaction between synaptic plasticity-
related processes and ADAM10 activity has been shown 
in several studies. In this regard, it has been reported 

that LTD differentially regulates the synaptic availabil-
ity and activity of ADAM10 via promoting its endocy-
tosis [66]. Additionally, in this study it was shown that 
synapse-associated protein 97 (SAP97) is required for 
LTD-induced ADAM10 trafficking. In addition to SAP97, 
LTP has been shown to trigger ADAM10 association to 
clathrin adaptor AP2, as shown to be increased in AD 
brains, leading to induce its endocytosis [66, 67]. Inter-
estingly, it has been reported that Aβ oligomers-induced 
aberrant plasticity process can reduce Aβ generation 
via modulation of ADAM10 synaptic availability [68]. 
These results have led to introduce ADAM10 endocy-
tosis as a suitable target for therapy in AD. In this case, 
it has been elucidated that treatment of APP/PS1 mice 
with a cell-permeable peptide (PEP3), which interferes 
with ADAM10 endocytosis, contributes to upregulate 
the postsynaptic localization and activity of ADAM10 
and eventually, promote synaptic plasticity and improve 
cognitive deficit [69]. However, there is a long way to use 
these agents in clinical trials because of their non-specific 
activity and probable side effects. In this regard, using 
of agents which modulate several intracellular path-
ways may be considered to modulate the endocytosis of 

Fig. 2  The amyloidogenic and non-amyloidogenic pathways of APP processing. In amyloidogenic pathway, BACE1 affects APP leading to 
release sAPPβ. γ-secretase is the other protease involved in amyloidogenic pathway, which its activity contributes to Aβ formation. In the 
non-amyloidogenic pathway, at the first step, ADAM10 cleaves APP leading to release sAPPα. At the second step, γ-secretase activity leads to P3 
fragment formation and release. On the other hand, ADAM10 cleaves TREM2 leading to release soluble TREM2, which binds to Aβ plaque and 
induces its clearance. The PI3K/AKT and ERK1/2 pathways are involved in regulation of ADAM10 expression. This effect can be mediated by CREB 
and HIF-1. Aβ: amyloid β; ADAM10: a disintegrin and metalloproteinase domain-containing protein 10; APP: amyloid precursor protein; BACE1: 
beta-site amyloid precursor protein cleaving enzyme-1; CREB: cAMP response element-binding protein; ERK1/2: extracellular signal‑regulated 
protein kinase 1/2; HIF-1: hypoxia inducible factor 1; PI3K: phosphatidylinositol 3 kinase; TREM2: triggering receptor expressed on myeloid cells 2
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ADAM10. For instance, the PI3K/AKT signaling path-
way has been shown to inhibit clathrin-mediated endo-
cytosis via modulation of AP2 activity [70, 71]. On the 
other hand, it has been reported that inhibition of the 
PI3K/AKT signaling pathway by Aβ plaques contributes 
to downregulate synaptic related proteins, such as syn-
aptophysin and post-synaptic density-95, which eventu-
ally may influence ADAM10 synaptic availability [72]. 
Also, it has been shown that activation of the PI3K/AKT 
pathway promotes dendrite branch density and increase 
synaptic protein expression leading to increased levels 
of ADAM10 in AD mice [73]. In a mechanistic inspec-
tion, it can be said that changes to synaptic plasticity 
may influence intracellular pathways, mainly the PI3K/
AKT pathway [74], which is known as a regulator for 
ADAM10 expression and endocytosis. This process may 
be mediated by GSK-3, as it has been demonstrated that 
LTP-induced PI3K/AKT/GSK-3 regulates LTD in CA1 
pyramidal neurons negatively [75, 76]. Therefore, it can 
be concluded that activation of LTP inhibits LTD along 
with activation of the PI3K/AKT pathway leading to 

induce clathrin-mediated endocytosis of ADAM10. On 
the other hand, caspase-3, which plays a crucial role in 
the pathophysiology of AD [77], has been shown to be 
activated by Aβ oligomers, which in turn cleaves AKT, 
activates LTD [78], and possibly inhibits endocytosis of 
ADAM10 (Fig. 3). Regardless the role of synaptic plastic-
ity in regulation of ADAM10 availability, it has been elu-
cidated that function of ADAM10 regulates the synaptic 
plasticity, mainly via cleavage of several factors such as 
APP, neuroligin 1, and N-cadherin [79].

Pharmacologic modulation of ADAM10 in Alzheimer’s 
disease
According to the important role of ADAM10 in the 
processing of APP, it is clearly understood that induc-
ing its expression or activity in AD exhibits neuropro-
tective effects. Numerous studies investigate the effect 
of different drugs and natural compounds on AD by 
mediating of ADAM10.

Fig. 3  The cross-talk between intracellular pathway involved in synaptic plasticity and ADAM10 availability. LTP induces the activation of the PI3K/
AKT pathway which regulates GSK-3 activity negatively. This process contributes to inhibit LTD followed by GSK-3 inhibition. On the other hand, 
activated AKT induces clathrin-mediated ADAM10 endocytosis via its role in regulation of AP2. Aβ can inhibit mentioned pathways through 
activation of caspase-3. Aβ: amyloid β; ADAM10: a disintegrin and metalloproteinase domain-containing protein 10; APP: amyloid precursor protein; 
GSK-3: glycogen synthase kinase; LTD: long-term depression; LTP: long-term potentiation; PI3K: Phosphatidylinositide 3-kinase;
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FDA‑approved drugs for Alzheimer’s disease
Although AD is known as one of the main challenges 
for health systems worldwide, just two classes of drugs 
are approved for using in AD patients, namely N-methyl 
d-aspartate (NMDA) antagonists and cholinesterase 
enzyme inhibitors (naturally derived, synthetic hybrid 
analogues). Cholinesterase enzyme inhibitors are used in 
AD based on the cholinergic hypothesis which proposes 
the reduction of acetylcholine (ACh) biosynthesis in AD. 
NMDA receptor antagonists, the other group of FDA-
approved drugs for AD, are used due to overactivation 
of NMDA receptors in the brains of AD patients which 
results in an elevation in Ca2+ influx to the neurons and 
subsequently induction of oxidative stress and neuronal 
apoptosis [80, 81]. However, the neuroprotective effects 
of mentioned drugs on other pathologic changes in AD 
has been shown in several studies. In this regard, it has 
been reported that memantine, a NMDA receptor antag-
onist, induces the expression and activity of ADAM10 
and reduces Aβ oligomers formation in 3xTg-AD mice 
leading to improve cognitive function [82]. Additionally, 
it has been observed that rivastigmine, a cholinesterase 
enzyme inhibitor, up-regulates the ADAM10 levels lead-
ing to increase sAPPα generation in 3 × Tg mice [83]. 
Regarding the other cholinesterase enzyme inhibitor, 
donepezil, it has been elucidated that treatment of SH-
SY5Y cells by donepezil increases sAPPα formation via 
induction of ADAM10 activity [84].

Melatonin
Melatonin is an endogenous hormone responsible for 
regulation of circadian rhythm, free radicals, and neuro-
protection [85]. In addition, melatonin is also prescribed 
in patients with sleep disorders [86]. However, the asso-
ciation between melatonin and ADAM10 activity is very 
interesting. It is clearly understood that melatonin is an 
inducer for ADAM10 transcription through direct effects 
on the promoter regions 2304 and 1193, subsequently, 
increase ADAM10 expression [87, 88]. Decreased lev-
els of melatonin in AD patients has been introduced as 
a mechanism for decreased ADAM10 expression and 
Aβ accumulation in these patients [89, 90]. However, the 
mechanism of melatonin-induced ADAM10 expression 
has been well-studied. In this regard, it has been shown 
that melatonin induces ERK1/2 phosphorylation via 
binding to melatonin receptor, and increases ADAM10 
expression leading to up-regulate non-Amyloidogenic 
pathway of APP processing [87]. Also, melatonin has 
been indicated to induce ADAM10 expression and sup-
press BACE1 expression through activation of mela-
tonin G protein-coupled receptors in human neuronal 

SH-SY5Y cells [91]. It has been demonstrated that mela-
tonin increases ADAM10 expression in the hippocampus 
of aged mice through upregulation of sirtuin1, one of the 
main regulators of ADAM10 transcription [92].

Statins
Statins are a group of lipid-lowering agents. They sup-
press conversion of 3-hydroxy-3-methylglutaryl coen-
zyme (HMG-CoA) to through inhibition of HMG-CoA 
reductase [93]. In addition to effectiveness of statins in 
regulation of lipid levels, they are known due to their 
pleiotropic effects, including immunomodulatory, anti-
oxidant, and anti-tumor properties [94]. Also, statins 
exert neuroprotective effects in different neurologic 
pathologies, such as neurodegenerative diseases [95]. In 
AD, these drugs affect different pathologic processes, 
especially Amyloidogenesis and APP processing [96]. In 
this regard, it has been shown that statins increase APP 
processing leading to generate sAPPα in N2a mouse neu-
roblastoma cells through an isoprenoid-mediated mecha-
nism, and possibly ADAM10 induction [97]. In addition, 
it has been demonstrated that atorvastatin increases 
α-secretase activity and stimulates sAPPα production in 
N2a cells through an ERK-independent mechanism [98].

Natural compounds
In recent years, numerous studies focused on the pro-
tective effects of different natural compounds on AD. 
Although these agents are best known because of their 
anti-inflammatory and antioxidant properties, they can 
have far-reaching effects on other aspects of AD patho-
physiology. One of the most important effects of natural 
compounds on AD is their role in modulating Aβ pro-
duction, which is mediated by their effect on the expres-
sion of factors involved in its production, such as BACE1, 
γ-secretase, and α-secretase. However, the association 
between different natural compounds and ADAM10 
expression and activity in models of AD summarized in 
Table 2.

Conclusion
It is clearly understood that ADAM10 has a protective 
effect against AD progression due to its role in processing 
of APP in non-amyloidogenic pathway. Pharmacologic 
evidence also suggests its potential as a therapeutic target 
in AD. In addition, alterations in ADAM10 expression 
and activity in different samples from AD patients can 
be encouraging to introduce it as a therapeutic option 
in AD. However, there are different natural compounds, 
with low side effects, which can be used in clinical trials 
due to their effects on ADAM10.
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