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Abstract 

The existence of multiple endocytic pathways is well known, and their exact biological effects in tumors have been 
intensively investigated. Endocytosis can affect the connection between tumor cells and determine the fate of tumor 
cells. Many relationships between endocytosis and tumor cells have been elucidated, but the mechanism of endo-
cytosis between different types of cells in tumors needs to be explored in greater depth. Endocytic receptors sense 
the environment and are induced by specific ligands to trigger communication between tumor and immune cells. 
Crosstalk in the tumor microenvironment can occur through direct contact between cell adhesion molecules or indi-
rectly through exosomes. So a better understanding of the endocytic pathways that control cell adhesion molecules 
and function is expected to lead to new candidates for cancer treatment. In additional, tumor-derived exosomes may 
changes immune cell function, which may be a key role for tumors to evade immune detection and response. The 
overall understanding of exosomes through endocytosis is also expected to bring new candidates for therapeutic 
regulation of tumor immune microenvironment. In this case, endocytic pathways coordinate cell adhesion molecules 
and exosomes and can be used as targets in the tumor immune microenvironment for cancer treatment.
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Background
Endocytosis refers to the formation of 60–120 nm vesi-
cles through invagination of the plasma membrane, 
which wraps and imports foreign substances into cells 
to regulate the internalization of substances (liquid and 
extracellular components, such as proteins, lipids, metab-
olites, small molecules and ions), signal transduction and 
composition [1–3]. The endocytic pathway integrates 
various signals to promote the development of cells. 
Receptor-mediated signal transduction can be regulated 
by endosome sorting, which effectively isolates the recep-
tor from cytoplasmic effectors and promotes proteolysis. 

Receptor-related processes are more closely related to 
phosphorylation [4] and ubiquitination levels [5].

The well-known effects of endocytosis is necessary for 
a diverse range of morphogenetic and dynamic tissue 
events. Endocytosis can cause changes in tissue mor-
phology through various processes, such as signal trans-
duction and effects on the cytoskeleton [6]. Similarly, 
asymmetric division caused by endocytic transport is an 
important target for manipulating stem cells that lead to 
tumor recurrence [7]. In addition, endocytosis and dif-
ferent types of cells intertwine to play a decisive role in 
the tumor microenvironment (TME). The crosstalk in 
the tumor microenvironment can occur directly through 
cell-to-cell contact between cell adhesion molecules or 
indirectly through extracellular vesicles. Immune cells, 
including specialized antigen-presenting cells and natural 
killer cells, rely on endocytosis to quickly gather receptors 
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to detect targets on tumor cells for antigen presentation 
[8]. Exosomes target specific types of recipient cells, and 
the exchange of information between cells also involves 
endocytosis [9]. Therefore, endocytosis mediates the 
communication between tumor cells and immune cells 
and coordinates the interaction between different types 
of cells to control the tumor immune microenvironment 
(Fig. 1). We review and clarify the role of endocytosis in 
tumor cells and the latest developments in communica-
tion in the tumor microenvironment.

Progression of endocytosis in tumor cells
Studies in the past decade have shown that the func-
tional interaction between cell signaling and endocy-
tosis is important at all stages of morphogenesis and 
regulating cell proliferation, metabolism, movement, 
differentiation and immunity [10]. Cells sense the 
environment and each other through activation of cell 
surface signal receptors induced by ligands. Among 
them, tyrosine kinase receptor (RTK) and G protein-
coupled receptor (GPCR) participate in homeostatic 
regulation to prevent ligand-induced overactivation 
of downstream effectors. This paradigm has also been 
extended to other receptors, including transform-
ing growth factor (TGFβ) and cytokines. In addition, 
Notch and Wnt coordinate the fate of adjacent tumor 

cells through endocytosis, highlighting the influence of 
cell morphology on fate [11, 12]. Endocytosis seems to 
be the simplest way to regulate cell signal transduction 
by controlling the number of activated receptors. The 
activation of receptors or downstream effectors usu-
ally stimulates endocytosis, but questions remain about 
endocytosis and signal transduction under in vivo con-
ditions. Endocytosis and signal transduction seem to 
be two aspects of the same coin, raising the question of 
whether the same biochemical pathway can achieve dif-
ferent biological results. Similarly, given that the high 
overlap between pathways is activated by multiple sig-
nal receptors, can the detection mechanism on the cell 
membrane break down many input signals into specific 
signals?.

The increasing understanding of the link between 
endocytosis and signal transduction raises the possibil-
ity that targeted interference with endocytosis may alter 
disease-related phenotypes, especially those related to 
abnormal cell specifications. The endocytosis mechanism 
in tumor heterogeneity may be the basis of the specific 
characteristics of tumors and their level of sensitivity to 
therapeutic drugs targeting signal receptors [13]. The 
dynamic balance in tissues strongly depends on the inter-
action between cells and the extracellular matrix [14]. In 
contrast, integral proteins can regulated the extracellular 

Fig. 1  Cell-to-cell communication through direct and indirect contact. Crosstalk in the tumor microenvironment can be through direct 
contact between adhesion molecules, or indirectly through secretion signals from extracellular vesicles. Tumor surface antigen regulation 
and tumor-induced immune suppression involve endocytic pathway in tumor immunity. In addition, immunosuppression may arise through 
accumulating and secreting exosomes around tumor
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matrix (ECM) and transmit signals between the cell and 
its surroundings [15].

In the past decades of research, the main focus has 
been on studies related to endocytosis and signaling path-
ways. With a better understanding of the tumor immune 
microenvironment, the relationship between tumor cells 
and immune cells is now recognized, and endocytosis 
mediates cell-to-cell communication through the regula-
tion of direct or indirectly contact. Therefore, we discuss 
in depth about endocytosis mediating tumor immune 
microenvironment through regulation of cell adhesion 
molecules (including major histocompatibility complex 
(MHC), immune checkpoints) and exosomes.

Endocytosis mediates tumor immune 
microenvironment through cell adhesion 
molecules
Endocytosis and tumor immune microenvironment
The overall complexity of tumors presents challenges 
to the development of effective anticancer treatments 
[16–18]. In the process of tumor development, tumor 
heterogeneity intensifies as tumor cells and noncellu-
lar components of the tumor microenvironment (TME) 
mature [19, 20]. The TME consists of extracellular matrix 
(ECM), stromal cells (such as fibroblasts, mesenchymal 
stromal cells, pericytes, occasionally fat cells, blood and 
lymphatic network) and immune cells (including T and 
B lymphocytes, natural killer cells, macrophages) [21]. 
Tumor immune escape refers to the ability of tumor cells 
to avoid recognition and attack by the immune system. It 
is an important strategy for tumor survival and develop-
ment [22]. Tumor surface antigen regulation and tumor-
induced immune suppression involve the endocytic 
pathway in tumor immunity.

The cells of the innate immune system, such as mono-
cytes, macrophages and dendritic cells (DCs)—are spe-
cialized antigen-presenting cells. In addition to this 
natural killer cells (NKs) rely on recognition of receptors 
and other cell surface molecules to rapidly detect micro-
bial proteins or membrane molecules on tumor cells to 
orchestrate downstream inflammatory responses [23]. 
Key to the bridging role between innate and adaptive 
immunity is the processing and cross-presentation of 
antigens by APCs to T cells. The ability of APCs to engulf 
tumor cells through phagocytosis, a process that involves 
target cell recognition, phagocytosis and lysosomal 
digestion, is regulated by receptor-ligand interactions. 
Although healthy normal tissues and cells inherit the 
ability to avoid self-clearance by phagocytosis by express-
ing anti-phagocytic molecules, cells are more dependent 
on similar mechanisms to evade immune eradication [24, 
25]. Thus identifying and targeting phagocytic check-
points in cancer will provide a new avenue to develop 

cancer immunotherapies to eliminate tumor immune 
escape.

More and more phagocytic checkpoints are found to 
play an essential role in innate and adaptive immunity. 
Phagocytic checkpoint blockade, including anti-CD47 
therapy and PD-L1 blockade, stimulates the innate 
and adaptive immune systems to generate anti-tumor 
responses, combining them with existing cancer immu-
notherapy strategies to improve the response rate to 
tumor treatment [26]. When major signaling pathways 
are constitutively activated by genetic disorders, such as 
v-Src or mutated K-Ras, a receptor-independent pattern 
of macropinocytosis occurs. Macropinocytosis provides 
tumor cells with an additional means of acquiring nutri-
ents and internalizing adhesions molecules to support 
their growth and spread. By inhaling and concentrat-
ing amino acids and proteins in the extracellular fluid, 
tumor cells activate the mammalian target of rapamycin 
1 (mTORC1) to stimulate transcriptional translation and 
support growth [27]. Thus, endocytosis inhibitors as well 
as immune checkpoint blockade therapy offer promise 
for clinical trials in a wide range of tumors, and can be 
used in combination with other monoclonal antibodies 
or immune checkpoint inhibitors (Table 1).

Endocytosis and cell adhesion molecules
The differentiation of initial T cells into effector cells can 
promote the killing of cancer cells. This effect occurs 
when the T-cell receptor (TCR) triggered by the signal 
accumulates, and then specific antigen presenting cells 
(APCs) are recognized [28]. The imbalance of endocytic 
events that control TCR circulation and degradation has 
been considered an important determinant of antigen 
presentation by immune cells. TCR is a protein complex 
formed by an antigen recognition module composed of α 
and β chains and a signal transduction module composed 
of ζ chain homodimers and CD3 chain clusters [29].

At present, clathrin-dependent and clathrin-inde-
pendent endocytosis have been identified as the main 
pathways involved in the internalization of TCR [30]. 
Postendocytosis receptor movement is coordinated by 
ubiquitinated Rab GTPases, SNARE and regulators and 
effectors of endosomal subpopulations [31, 32]. The 
cargo can be recovered directly from early endosomes 
(ESEs) via a rapid, microtubule-independent process is 
achieved by rabenosyn5, which is the Fab 1, YOTB, Vac 
1 and EEA1 (FYVE) domain containing Rab5 and Rab4 
effectors [33]. Internalized receptors are incorporated 
into endosomes and can also be delivered to the plasma 
membrane through a slow, microtubule-dependent 
pathway [34]. In addition to the universal Rabs, Rab3d, 
Rab8a, Rab8b, Rab29, Rab35, intraflagellar transport 
(IFT), and electrohydrodynamic (EHD) family proteins 
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act sequentially in this pathway based on the ability to 
recycle TCRs [35–37]. Rab8 has been identified as the 
terminal pathway. It recruits v-SNARE VAMP3 and 
t-SNARE SNAP23 synaptic fusion protein to finally 
allow the recovered TCR to be fused to the cell mem-
brane [36]. T cells can also enhance the release of extra-
cellular vesicles (EVs) through stimulation, such as TCR 
triggering or T-cell activation [38, 39]. Activated T cells 
release biologically active Fas ligand and APO2 ligand 
in EVs, thereby promoting activation and inducing cell 
death [40]. In addition, the EVs formed by CD8+ CTL 
MVBs contain granzyme and perforin [41] (Fig. 2).

To achieve complete activation, B cells rely on their 
ability to capture external antigens and present them 
to CD4+ T cells as peptide fragments loaded on major 
histocompatibility complex class II (MHC II) molecules 
[42]. This interaction differentiates B cells into plasma 
cells that produce high affinity and develop into mem-
ory B-cell populations [43]. Regarding the mechanism 
by which B cells extract antigens on the cell surface, one 
view is that local lysosomes secrete and release pro-
teases and acidify the synaptic cleft of related antigens 
to facilitate their extraction of antigen [44]. Another 
view is that the tension exerted on the synaptic mem-
brane mediated by myosin II-A triggers internalization 
of the antigen into coated clathrin [45].

The binding of surface antigens to the B-cell receptor 
(BCR) triggers the recruitment of PAR3 to the antigen 
contact site, which leads to polarization of the microtu-
bule network, in which the centrosome transfers to the 
immune synapse in a Cdc42-dependent manner [44, 46]. 
Centrosome relocation directs the recruitment of MHC 
II+ lysosomes, which can fuse with antigen-containing 
endosomes to facilitate antigen processing. It is worth 
noting that the Lamp1+ multivesicular compartment, 
which contains both antigen and MHC molecules, has 
been found to be closely related to the immune synapse 
of activated B lymphocytes [44]. Therefore, determining 
the specific mechanism used to selectively enhance the 
extraction of antigens by B cells to enhance the activation 
of T cells should be the focus of future research.

Immunosuppression involves inducing the expres-
sion of immunosuppressive molecules or their receptors, 
including cytotoxic T-lymphocyte-associated protein 
4 (CTLA-4), programmed cell death protein 1 (PD-1), 
T cell immunoglobulin and mucin domain 3 (TIM-3), 
Indoleamine 2,3-dioxygenase (IDO), V-domain Ig inhibi-
tor of T-cell activation (VISTA), killer cell immunoglobu-
lin-like receptors (KIR), T cell immunoglobulin and ITIM 
domain (TIGIT), B and T lymphocyte attenuator (BTLA) 
and Lymphocyte activation gene-3 (LAG-3), which are 
called immune checkpoints and can inhibit the activated 
lymphocytes of effector T cells and ultimately lead to 

Table 1  Categorization and features of endocytosis process

Endocytosis process Associated protein Mechanical Inhibitor Endocytosis checkpoint

Clathrin-mediated endocytosis Actin Membrane tension Clorpromazine E-, N-, and VE-cadherin, integrins, 
Notch, RTKs (EGFR, Her2, and 
FGFR1), Wnt, GPCR

Clathrin Membrane tension

ENTH domain Membrane tension

N-BAR Membrane tension

Caveolae-mediated endocytosis Cav-1 Low shear stress Methyl-cyclodextrin

Cavin-1 Membrane stretch

Filamin A Loss of cell adhesion

Clathrin/caveolae-independent 
endocytosis

GPI-anchored Membrane tension Integrins, Notch, RTKs(EGFR, Her2, 
and FGFR1), Wnt, GPCR

Vinculin Membrane tension

TORC2 Membrane tension

Macropinocytosis Rac1 and CDC42 Aspect ratio of cargo EPIA, amiloride MHCI, MHC-II, mTORC1

Phosphatidic acid Membrane stretching

PLD2 Membrane tension

SCAR/WAVE Actin-nucleation-promoting 
factors

WASp/N-WASp Actin-nucleation-promoting 
factors

Phagocytosis Rac1 Substrate stiffness CD47-Signal-regulatory protein α 
(SIRPα), PDL1, MHC I-LILRB1Cdc42 Substrate stiffness

MRTF-A Area confinement

TRPV4 Substrate stiffness
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tumor immune escape [47]. Immune checkpoints are also 
specifically expressed on protumor immune cells (e.g., 
Tregs). For example, PD-1 on T effectors reduces activa-
tion, while PD-1 on Tregs enhances immunosuppressive 
effects. In addition,  linker for activation of T cells (LAT) 
[48, 49] and lymphocyte-specific protein tyrosine kinase 
(LCK) [50, 51], with the assistance of specific vesicle-
related proteins, ensure the optimal TCR level required 
for T-cell activation. Changes in endocytic transport are 
associated with cancer, so a better understanding of the 
endocytic pathways that control immune checkpoints 
and function is expected to lead to new candidates for 
cancer treatment.

Endocytosis mediates tumor immune 
microenvironment through exosomes
Endocytosis and exosomes
In addition, immunosuppression may arise through the 
accumulation and secretion of exosomes around tumors. 

Exosomes can inactivate cytotoxic T lymphocytes (CTLs) 
to enhance the immune tolerance of tumor cells [52–55]. 
The communication between cancer cells and surround-
ing cells is a bidirectional process that involves multiple 
mechanisms. Crosstalk in the tumor microenvironment 
can occur directly through contact between antigen pres-
entation or indirectly through secretion signals from 
extracellular vesicles. Therefore, the therapeutic method 
of regulating cell-to-cell communication by endocytosis 
may be a promising strategy in the fight against tumors.

Liquid and extracellular components (such as pro-
teins, lipids, metabolites, small molecules and ions) 
can enter cells through endocytosis and plasma mem-
brane invagination, along with cell surface proteins [56]. 
Tumor-derived exosomes are bound and internalized by 
organ-specific cells. Heparan sulfate proteoglycans medi-
ate the interaction between cells and exosomes. Exosome 
transfer to the recipient cell can be competitively blocked 
by heparinoids because heparin is structurally similar to 
heparan sulfate [57]. The plasma membrane bud formed 
on the side of the cell cavity has an orientation from out-
side to inside, which leads to the formation of the ESE 
(early endosome) [58]. The ESE can also be fused with 
the ER (endoplasmic reticulum) and anti-Golgi network 
(TGN), which may explain why the phagocytic cargo 
contains components of the ER, TGN and mitochon-
dria, and the ESE may contain membrane and intralu-
minal components representing different origins [58]. 
MVBs are formed by the inward invagination of the late 
endosome restriction membrane (that is, the two invagi-
nations of the plasma membrane). MVBs contain multi-
ple intraluminal vesicles (ILVs), which lead to exosomal 
cargo in future modifications. As part of the formation 
of ILVs, proteins (originally located on the cell surface) 
can be clearly distributed between ILVs [56]. MVBs can 
be fused with autophagosomes, and the final content 
will be degraded in the lysosome, allowing the degrada-
tion products to be recovered by the cell. MVB that does 
not follow this trajectory is transported to the plasma 
membrane through the cell cytoskeleton and micro-
tubule network and is docked on the lumen side of the 
plasma membrane with the help of MVB docking protein 
to cause exocytosis [59]. Rabs, endosomal sorting com-
plex required for transport (ESCRT) and other related 
proteins (CD9, CD81, CD63, TSG101, Alix, and putative 
universal biomarker of syntenin-1) are used as exosomal 
markers or are related to the biogenesis of exosomes [58, 
60] (Fig. 3).

Exosomes can also contain different types of cell sur-
face proteins, intracellular proteins, RNA, DNA, amino 
acids and metabolites [56]. The questions surrounding 
the function of exosomes focus mainly on understand-
ing the fate of their components and their induction of 

Fig. 2  Regulation of immune response by exosomes. Exosomes 
from distinct cellular sources, including immune cells (B cell, T cell, 
macrophage, and dendritic cells) and cancer cells, exosomes with 
cargos that can influence the proliferation and activity of recipient 
cells of both the innate and adaptive immune system
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phenotypic and molecular changes in recipient cells. The 
uptake and secretion pathways of exosomes may inter-
sect, resulting in a mixed population of endogenously 
produced and circulating exosomes produced over time. 
The unique mechanisms and pathways related to the 
uptake of exosomes [58, 61], as well as the specificity of 
exosomes for certain cell types, increase the functional 
complexity of exosomes in cell-to-cell communication.

Exosomes are vesicles with membrane structures 
between 40 and 160 nm (both 100 nm) in diameter [9, 62, 
63] containing RNA, proteins and lipids that play a role 
in tumor proliferation, metastasis, immunosuppression 
and drug tolerance [58, 61]. These processes seem to be 
similar to leukocyte transendothelial migration, in which 
integrins are involved in the adhesion/attachment of 
exosomes to receptor cells, followed by the enrichment of 
four transmembrane microstructural domains facilitating 
exosome fusion [64–67]. The endocytosis of exosomes 

is the most important way they deliver content. It can 
be divided into micropinocytosis [68, 69], phagocytosis 
[70], clathrin-mediated endocytosis [71], caveolin-medi-
ated endocytosis [72] and clathrin/caveolin-independent 
endocytosis [73]. The endocytosis of exosomes depends 
on the actin cytoskeleton, phosphatidylinositol 3-kinase 
(PI3K) and dynamin2 [70]. Studies have shown that the 
pharmacological inhibitors EIPA and LY294002 inhibit 
Na+-H+ ion exchange and PI3K activity, which can 
inhibit the effect of macropinocytosis and reduce the 
uptake of exosomes [74]. Clathrin-dependent endocy-
tosis uses clathrin and AP2 to cover the membrane and 
induce exosomes to invade vesicles; clathrin/cavolin-
independent endocytosis is caused by RhoA, Cdc42 and 
Arf6 [75].

Exosomes targeting recipient cells by endocytosis have 
been confirmed in tumors. For example, oncogenic sig-
nals induced by KRAS mutation expression promote 

Fig. 3  Regulation of immune response by exosomes. Exosomes from distinct cellular souurces, including immune cells (B cell, T cell, Macrophage 
and Dendritic cells) and cancer cells, exosomes with cargos than can influence the proliferation and activity of recipient cells of both the innateand 
adaptive immune system
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exosomal uptake in human pancreatic cancer cells 
through micropinocytosis [2, 76] and promote the uptake 
of exosomal cargo by human melanoma cells by fusion 
with the plasma membrane [77]. Exosomes derived from 
rat adrenal medulloma PC12 cells are more likely to rely 
on clathrin-dependent endocytic uptake [74]. It is pos-
sible that internalized exosomal cargo varies depending 
on the endocytosis and the recipient cell status that regu-
lates uptake of extracellular molecules and vesicles.

Exosomes in tumor progression and metastasis
The discovery of exosomes, especially their role in medi-
ating the transportation or “trafficking” of biological 
materials, has explained various pathological and physio-
logical phenomena that involve the transmission of infor-
mation between cells [78]. As a new model for mediating 
information exchange between cells, exosomes transport 
oncogene message during the occurrence and develop-
ment of tumors. Recent studies have elaborated on the 
important role of exosomes in tumor carcinogenesis [76]. 
Tumor-derived exosomes can promote tumor formation 
by regulating the synthesis of cell-independent ncRNA 
[79]. During the development of cancer, there is compe-
tition between cancer cells and neighboring normal cells 
[80]. As a homeostatic mechanism, abundant noncan-
cer cells can release tumor suppressor miRNAs, thereby 
suppressing the malignant phenotype of adjacent cancer 
cells [81–86]. In addition, it has been reported that differ-
ences in exosome content can distinguish several types of 
cancer cells (such as prostate cancer, gastric cancer, and 
laryngeal squamous cell carcinoma) from normal cells 
[87].

Exosomal RNA derived from tumor cells can enhance 
the proliferation, migration and tube formation of 
endothelial cells, thereby promoting tumors and lym-
phatic vasculature [88–93]. Proteomic analysis of 
exosomes showed that the integrin expression pattern 
of cancer cells contributes to the tendency of metasta-
sis [94]. For example, integrin α6β4 and α6β1 are related 
to lung metastasis, and integrin αvβ5 is related to liver 
metastasis [95]. Depletion of integrins α6β4 and αvβ5 
reduced exosomal uptake and resulted in the inhibition 
of lung and liver metastasis, respectively. Therefore, the 
integrins found on specific tumor-derived exosomes can 
be used to predict organ-specific cancer metastasis and 
are a new target for the development of cancer metastasis 
treatment strategies [96–99].

Exosomes regulate cancer immunology
In most studies, the recipient cells of tumor derived 
exosomes are cancer-related immune cells and other stro-
mal cells, which dynamically regulate each other in the 
tumor microenvironment [100]. Compared with studying 

the role of exosomes in other types of cells, research on 
tumor related exosomes is progressing rapidly. More and 
more evidence supports the complex intercellular com-
munication mediated by exosomes in tumor immune 
microenvironment. Tumor-derived exosomes content 
HSP72 can trigger myeloid-derived inhibitory cell acti-
vation through STAT3 [101]. Tumor exosomes block the 
maturation and migration of dendritic cells in a PD-L1 
dependent manner [102]. The tumor-derived exosomal 
DNA by circulating neutrophils can enhance the produc-
tion of tissue factor and IL-8, thereby promoting tumor 
inflammation and thrombosis [103]. Therefore, tumor-
derived exosomes may changes immune cell function, 
which may be a key role for tumors to evade immune 
detection and response.

Similarly, exosomes released by immune cells affect 
tumor development by regulating immune response 
[104]. Exosomes released by NK cells show FasL mem-
brane expression, and produce strong cytotoxicity to can-
cer by eliminating Fas + tumor cells [105]. In addition, 
in patients with acute myeloid leukemia (AML), plasma 
exosomes carrying leukemia-related antigens and a vari-
ety of inhibitory molecules can inhibit tumor activity by 
interfering with NK-92 cells [106]. NK-92 cell-derived 
exosomes TNF-α have cytotoxic effects on melanoma 
cells and block cell proliferation signaling pathways 
[107]. In a phase II trial, IFN-γ mature DC-derived 
exosomes loaded with MHC class peptides can enhance 
NK cell activity in patients with non-small cell lung can-
cer (NSCLC) [108]. T cells can also transfer CD40L to B 
cells through helper T cells [109]. The binding of antigen-
loaded B cells to specific CD4+ T cells stimulates the 
release of EVs with peptide MHC-II complexes, which 
directly stimulate naive CD4+ T cells [110] (Fig.  3). In 
addition, ovalbumin (OVA)-stimulated dendritic cell 
exosomes are more effective than microvesicles to trigger 
antigen (OVA)-specific CD8+ T cell activation [111].

Conclusion
The field of communication in the tumor microenvi-
ronment is a relatively new concept in tumor biology 
and rapidly evolving. Cancer-stromal crosstalk is an 
extremely complex phenomenon, and different forms of 
cellular communication are highly expressed in cancer 
and clearly involved in cancer development. Different 
forms of cell communication are highly expressed in can-
cer and obviously participate in the occurrence of can-
cer. With our in-depth exploration and understanding of 
the connection of endocytosis, we believe that the com-
munication between cells is essential for the creation of 
tumor niches. Therefore, a novel medical method focuses 
on inhibiting cell-to-cell communication in cancer, or 
using these communication methods as a vehicle for 
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delivering drugs to tumor cells. Immune cells can rely on 
endocytosis to mediates cell adhesion molecules quickly 
detect targets on tumor cells. The overall understand-
ing of exosomes through endocytosis is also expected to 
bring new candidates for therapeutic regulation of tumor 
immune microenvironment. Therefore, further research 
is needed to fully understand endocytosis and clarify 
possible specific targets to inhibit tumors.
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