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Cellular crosstalk during liver regeneration: 
unity in diversity
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Abstract 

The liver is unique in its ability to regenerate from a wide range of injuries and diseases. Liver regeneration centers 
around hepatocyte proliferation and requires the coordinated actions of nonparenchymal cells, including biliary 
epithelial cells, liver sinusoidal endothelial cells, hepatic stellate cells and kupffer cells. Interactions among various 
hepatocyte and nonparenchymal cells populations constitute a sophisticated regulatory network that restores liver 
mass and function. In addition, there are two different ways of liver regeneration, self-replication of liver epithelial 
cells and transdifferentiation between liver epithelial cells. The interactions among cell populations and regenerative 
microenvironment in the two modes are distinct. Herein, we first review recent advances in the interactions between 
hepatocytes and surrounding cells and among nonparenchymal cells in the context of liver epithelial cell self-replica-
tion. Next, we discuss the crosstalk of several cell types in the context of liver epithelial transdifferentiation, which is 
also crucial for liver regeneration.
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Background
Although regeneration after liver injury is a continuous 
process, it can be artificially separated into three stages. 
The first stage refers to hepatocytes responding to vari-
ous stimuli (from both hepatocytes and nonparenchy-
mal cells (NPCs)) and eventually proliferating. In the 
second stage, replicating hepatocytes stimulate the pro-
liferation of NPCs (such as liver sinusoidal endothelial 
cells (LSECs)) to adapt to the enlarged hepatocyte mass. 
Finally, during the termination phase, the gradual disap-
pearance of proliferation and the induction of cell death 
occurs, which are critical in maintaining normal liver vol-
ume [1–3] (Fig. 1).

The liver lobule is the basic histological unit of the liver, 
which can be divided into three areas: around the portal 
vein (zone 1), around the center (zone 3), and the tran-
sition zone (zone 2) [4]. However, in recent years, gene 
lineage tracking methods based on Cre/LoxP technol-
ogy have been used to track proliferating cells in different 
regions during liver regeneration more accurately and for 
longer than traditional technologies [5, 6]. In addition, 
our team’s previous research showed that a subgroup 
of hepatocytes with high telomerase expression have a 
stronger proliferation ability than other cell groups and 
restore liver volume when liver damage occurs [7]. There-
fore, spatial heterogeneity in liver regeneration has been 
discovered at the cellular level; different liver cell sub-
populations (both hepatocytes and NPCs) have their own 
contributions to regeneration under various physiologi-
cal conditions.

In addition, it is generally believed that liver regenera-
tion can be achieved through hepatocyte proliferation or 
hypertrophy in pathological conditions [8]. When partial 
hepatectomy (PHx) reaches 30%, hepatocyte hypertro-
phy is sufficient to restore normal liver volume. However, 
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when the liver quality is severely damaged, such as when 
the PHx is as high as 70%, hypertrophy occurs, followed 
by cell proliferation, and the two processes restore the 
liver volume [8]. This finding is consistent with our previ-
ous work, where we established 1/3 and 2/3 PHx mod-
els in rats to observe the differences in miRNAs between 
the two groups. It was found that the changes in miRNA 
expression in the 2/3 PHx population were more obvious 
than in the 1/3 PHx population, which indicated that the 
livers in this group were preparing for cell proliferation 
[9]. These two regeneration methods have also been vali-
dated in clinical models. For example, in the associating 
liver partition and portal vein ligation for staged hepatec-
tomy (ALPPS) model, not only the mitotic characteristics 
of hepatocytes but also extreme hypertrophy of hepato-
cytes and binuclear hepatocytes are observed [10]. There-
fore, these studies showed that improving hypertrophy 
and proliferation the capacity of hepatocytes could trans-
form the unresectable liver into resectable tissue and 
improve patient survival.

Cellular crosstalk in self‑replication of hepatic 
epithelial cells
Liver regeneration from self-replication of hepatic epi-
thelial cells has been extensively studied, which regen-
erative characteristics of hepatocytes and cholangiocytes 
are summarized as phenotypic fidelity. As a delicately 
connected organ, hepatocytes cooperate precisely 
with surrounding cells, including biliary epithelial cells 
(BECs), LSECs, hepatic stellate cells (HSCs) and kupffer 
cells (KCs), and NPCs also closely communicate with 
each other to ensure this characteristic. In this section, 
advanced mechanisms of crosstalk between hepatocytes 

and surrounding NPCs are discussed in detail. At the 
same time, the mechanism of interaction among various 
nonhepatocytes cells will also be described.

Crosstalk between hepatocytes and surrounding cells
Hepatocytes and LSECs: mutual precision regulation
LSECs are highly specialized endothelial cells that rep-
resent the interface between blood cells on one side and 
hepatocytes and HSCs on the other side [11, 12]. There 
are three sources of LSECs during liver regeneration: 
mature LSECs, intrahepatic or resident sinusoidal epithe-
lial progenitor cells and bone marrow-derived sinusoidal 
epithelial progenitor cells (BM-SPCs) [13]. Experiments 
have shown that after 70% PHx, bone marrow-derived 
LSECs account for up to 25% of the total LSEC popula-
tion. Studies have shown that the interaction between 
stromal cell-derived factor 1 (SDF-1), which is secreted 
by hepatocytes, and CXC chemokine receptor 7 
(CXCR7), which is expressed by BM-SPCs, can promote 
the recruitment of BM-SPCs [14].

Liver regeneration requires precise synchronization 
between hepatocytes and LSECs, and LSECs coordinate 
the secretion of cytokines and growth factors required for 
hepatocyte proliferation. In addition, LSEC proliferation 
is also regulated by hepatocytes [15, 16]. Liver damage 
increases liver vascular endothelial growth factor (VEGF) 
expression, promoting the recruitment of BM-SPCs rich 
in hepatocyte growth factor (HGF). After PHx, the por-
tal vein flow per gram of tissue immediately increases, 
enhancing the shear stress on LSECs [17, 18]. Endothelial 
cells secrete Nitric oxide (NO) under shear stress, which 
promotes liver regeneration by enhancing the response 
of hepatocytes to HGF [19]. LSECs under shear stress 

Fig. 1  Different stages of liver regeneration. Hepatocytes are stimulated by other cells and start to proliferate; the proliferating hepatocyte clusters 
in turn stimulate the proliferation of other cells; the damaged liver returns to its normal structure
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also secrete Wnt protein, which regulates the increase 
of β-Catenin in hepatocytes and rapidly translocates to 
the nucleus. The increase in nuclear β-catenin regulates 
its target genes, such as cyclin D1, which is an important 
driver of liver regeneration [16, 20]. It was found that the 
pro-proliferation effect of LSECs on hepatocytes was 
regulated by the Inhibitor of DNA binding 1 (Id1) pro-
tein, which was confirmed by the decreased expression 
of Wnt after PHx in Id1–/– mouse [13, 16]. Intracellular 
pathways that are activated by shear stress include the 
stimulation of transmembrane proteins, the activation 

of ion channels, the mobilization of intracellular calcium 
ions, the Notch1 signaling pathway, and the activation of 
transcription factors such as Kruppel-like factor 2 (KLF2) 
and vascular cellular adhesion molecule-1 (VCAM-1). 
Moreover, the expression of CD44, c-fos, c-myc and c-jun 
is involved in this process [21–24]. These molecules are 
crucial for the regeneration of hepatocytes. However, 
when PHx is excessive, shear stress damages LSECs and 
may cause hemorrhagic necrosis [17, 25, 26] (Fig. 2). In 
liver transplant recipients, "small-for-size" livers can 
drastically increase portal vein flow (PVF), damage the 

Fig. 2  Cellular crosstalk in self-replication of hepatic epithelial cells. a Hepatocytes and Liver Sinusoidal Endothelial cells. b Hepatocytes and 
Hepatic Stellate cells. c Hepatocytes and Biliary Epithelial cells. d Hepatocytes and Kupffer cells. e Hepatocytes and Hepatocytes. f Liver Sinusoidal 
Endothelial cells and Hepatic Stellate cells. g Hepatic Stellate cells and Kupffer cells. h Hepatic Stellate cells and Biliary Epithelial cells. i Liver 
Sinusoidal Endothelial cells and Biliary Epithelial cells. j Kupffer cells and Biliary Epithelial cells. k Liver Sinusoidal Endothelial cells and Kupffer cells
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liver’s regenerative capacity, and cause "small-for-size" 
syndrome (SFSS) [27]. Previously, our team suggested 
that reducing PVF through somatostatin or a mesocaval 
shunt (MCS) could reduce liver damage and promote 
regeneration [28, 29]. There is evidence that maintain-
ing portal vein inflow to an average of 3.2 times higher 
than the baseline helps to promote hypertrophy in liver 
remnants and reduce cell apoptosis [28]. These results 
suggest that limiting shear stress may be a strategy to 
prevent liver failure due to insufficient liver regenera-
tion after hepatectomy. HGF then stimulates the prolif-
eration of hepatocytes to mediate liver regeneration [11]. 
In addition to HGF, LSECs also secrete angiogenic fac-
tors such as angiopoietin-2, fibronectin extra domain A 
(FEDA) and activin A [16, 30, 31]. In general, hepatocytes 
and LSECs are mutually activated and interdependent in 
liver regeneration. LSECs promote the proliferation of 
hepatocytes. With increasing proportions of hepatocytes, 
these cells subsequently encounter relative hypoxia and 
induce the hypoxia inducible factor (HIF) [32] pathway 
and downstream proangiogenic factors, which in turn 
promote blood vessel growth to bring more nutrients to 
regenerated liver cells (Fig. 1).

Hepatocytes and HSCs: HSCs have multiple functions
Activated HSCs (aHSCs) are located in the Disse gap 
between sinusoidal endothelial cells and liver epithelial 
cells. These cells are characterized by a long dendritic 
cytoplasm and the storage of vitamin A (retinol), consti-
tuting the largest vitamin A reservoir in the human body 
[33, 34].

aHSCs are the main source of cytokines that drive 
regeneration and the basic conditions for liver regenera-
tion. One of the most critical factors produced by aHSCs 
is HGF, which is stored in large amounts in the extra-
cellular matrix (ECM) and supports liver regeneration 
through interactions with hepatocytes [35]. Initially, HGF 
was identified as the mitogen of adult rat hepatocytes in 
the serum of 70% of rats that underwent hepatectomy 
[36, 37]. HGF is transported to hepatocytes through 
endocrine and paracrine pathways [38, 39]. Under path-
ological conditions, such as tissue damage, pro-HGF is 
converted to its biologically active form by proteolytic 
digestion at specific sites. This proteolytic cleavage may 
be mediated by urokinase plasminogen activator (u-PA) 
[40, 41]. HGF directly binds to the specific receptor 
mesenchymal–epithelial transition factor (c-MET) on 
the surface of hepatocytes to promote hepatocyte pro-
liferation [42]. The binding of HGF to c-MET activates 
downstream signaling pathways, including the mitogen-
activated protein kinase (MAPK) cascade, the PI3K-Akt 
axis and the nuclear factor-κb inhibitor-α (Iκbα)–nuclear 
factor-κb (NF-κb) complex [43–45]. MET can be linked 

directly and indirectly to reactive oxygen species (ROS), 
which activate the MARK cascade [46, 47]. Active extra-
cellular signal-related kinases (ERKs) translocate to the 
nucleus, where they phosphorylate and stabilize several 
transcription factors involved in the early stages of the 
G1-S cell cycle transition. The activation of MET can 
also induce the translocation of STAT dimers and NF-κb 
to the nucleus, where they act as transcription factors to 
regulate the expression of several genes related to cell 
proliferation or differentiation [48, 49].

In addition, during the initial stage of liver regenera-
tion, HSCs can also produce norepinephrine (NP), which 
is known to downregulate the inhibitory effect of trans-
forming growth factor-beta (TGF-β) on mitosis and 
enhance the secretion of HGF and epidermal growth fac-
tor (EGF), affecting mitogenesis in serum-free hepato-
cyte culture [50–53].

In addition to these positive effects, HSCs have nega-
tive effects on liver regeneration. After the liver regen-
erates to the required volume in the body, the liver will 
produce some factors to curb DNA synthesis, and there is 
evidence that this effect is related to HSCs [54]. TGF-β is 
an effective cell proliferation inhibitor that inhibits DNA 
synthesis in rat hepatocytes in  vitro in a dose-depend-
ent manner. In  vivo, serotonin binds to the 5-hydroxy-
tryptamine receptor subtype 2B (5-HT2B) on the surface 
of HSCs to activate the expression of TGF-β1, and TGF-
β1 inhibits hepatocyte proliferation through MAPK1 
signaling and the transcription factor JunD [55, 56]. 
Moreover, during the termination phase of the regenera-
tion response, the reconstruction of ECM by HSCs allows 
for the isolation of excess growth factors (HGF and FGF), 
prompting hepatocytes to exit the cell cycle and return 
to a resting state [57]. These descriptions have explained 
the multifaceted nature of HSCs, which are involved in 
the initiation and termination of regeneration, as well as 
ECM remodeling (Fig. 2).

Hepatocytes and KCs: role of the immune system
KCs are macrophages located between the sinusoi-
dal endothelium and hepatocytes. KCs are the larg-
est population of resident macrophages in the body, 
accounting for approximately 80% of the total number 
of macrophages [58]. Liver injury is sensed by KCs and 
triggers their activation, and they then release a large 
number of cytokines that interact with hepatocytes, pro-
moting cell cycle transition in hepatocytes and activating 
a series of signaling pathways in hepatocytes to regulate 
liver regeneration [59–61]. During the development of 
liver regeneration, macrophages are highly plastic and 
have synergistic or opposing functions that depend on 
the cues they receive from the microenvironment.
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The role of the immune system in liver regeneration 
has attracted increasing interest. KCs are considered to 
be the most important type of immune cells associated 
with liver regeneration. During the interaction between 
KCs and hepatocytes, the cytokines secreted by KCs, 
such as tumor necrosis factor-α (TNF-α) and interleukin 
6 (IL-6), transform hepatocytes from the resting state to 
the dividing state [2, 62–64]. Once the liver is damaged, 
KCs may be activated by inflammatory factors such as 
lipopolysaccharide (LPS), C3a, C5a, and intercellular cell 
adhesion molecule (ICAM) and begin to produce and 
secrete TNF-α [65–67]. TNF-α acts in an autocrine man-
ner and further activates NF-κB, which in turn stimulates 
the secretion of TNF-α and IL-6. IL-6 binds to receptors 
on hepatocytes, activates the STAT3 signaling pathway, 
and promotes hepatocyte proliferation [66]. The IL-6/
STAT3 signaling pathway, which includes IL-6 receptor, 
gp130, receptor-associated Janus kinase (Jak) and STAT3. 
After gp130 recognizes IL-6, it immediately transmits 
IL-6 signals to hepatocytes, and gp130 is recognized by 
the Src homology 2 (SH2) domain of STAT3 [68]. Acti-
vated STAT3 forms a homodimer. The STAT3 dimer then 
translocates to the nucleus and regulates the expression 
of its target genes [69]. STAT3 regulates the G1/S transi-
tion of hepatocytes by controlling cyclin D1 expression. 
The target genes of STAT3 include FLICE inhibitory pro-
tein (FLIP), B-cell lymphoma-2 (Bcl-2) and Bcl-xL; there-
fore, STAT3 may have antiapoptotic effects [70].

In contrast, some studies have suggested that KCs have 
an inhibitory effect on liver regeneration [61, 71]. In addi-
tion to being secreted by HSCs, TGF-β is also secreted 
by KCs [72]. In short, KCs cannot be regarded as a sin-
gle factor that hinders regeneration. In fact, during the 
regeneration process, macrophages are multifunctional 
cells [73, 74] (Fig. 2). A deeper understanding of this con-
cept will also be the focus of our discussion.

Hepatocytes and BECs: bile as a pivotal mediator
Cholangiocytes, one of the main epithelial cells that con-
stitute the liver parenchyma, are highly specialized cells 
that line the intrahepatic and extrahepatic bile ducts, 
participate in the production and homeostasis of bile 
[75]. Although the mechanism of interaction between 
hepatocytes and BECs in the PHx context is not fully 
understood, bile may be a pivotal mediator. Hepato-
cytes produce most of the bile, and BECs determine the 
final bile composition through a series of hormone- and 
neuropeptide-regulated secretion and absorption pro-
cesses [76]. During injury and the resulting regenera-
tion, the remnant liver faces a large potential overload 
of bile acids (BA), which exerts hepatoprotective effects 
through nuclear (mainly Farnesoid X receptor, FXR) and 
membrane (mainly G protein-coupled BA receptor 1, 

TGR5) receptors. On the one hand, hepatocyte cell cycle 
progression is also mainly promoted by the activation of 
the FXR-dependent transcription factor FoxM1b. On the 
other hand, TGR5 may be involved in the fine-tuning of 
cytokine production and release after PH, in a balanced 
manner that both protects the liver cells and promotes 
their growth factor-dependent progression into the cell 
cycle [77]. Vice versa, studies have shown that Yes-asso-
ciated protein (YAP) signaling can promote the prolifera-
tion of BECs during regeneration after BA induction [78]. 
The above studies are of great significance for guiding 
clinical work, from a clinical point of view, extrabiliary 
drainage in human patients has been reported to be det-
rimental to the regenerating liver [79].

Communication between hepatocytes: autocrine cells 
and exosomes
In mammals, hepatocytes account for more than 80% of 
the liver mass and are one of the most effective cell types 
for maintaining homeostasis [1, 80]. During the regen-
eration process, hepatocytes not only crosstalk with non-
hepatocytes but also communicate with each other by 
secreting cytokines or exosomes.

Transforming growth factor-alpha (TGF-α) is a growth 
factor secreted by hepatocytes that acts on hepatocytes 
[81]. It is a medium for communication among hepato-
cytes and is a ligand of epidermal growth factor recep-
tor (EGFR). TGF-α is produced by hepatocytes and has 
30% homology with EGF, which may trigger paracrine 
effects on hepatocyte stimulation, thereby promoting 
the proliferation of neighboring hepatocytes [1]. Nota-
bly, the elimination or knockdown of the TGF-α gene 
did not significantly affect liver regeneration. This may 
be because the receptor for TGF-α is EGFR, and there 
are many ligands for EGFR, including EGF, amphiregu-
lin (AR), epiregulin (EREG), and heparin-binding EGF 
(HB-EGF) [82, 83]. Since these ligands bind to the same 
receptor, they may have complementary effects with each 
other, thereby offsetting the effects of TGF-α knockdown. 
Acidic fibroblast growth factor (aFGF), also known as 
HB-EGF, can act on hepatocytes in an autocrine man-
ner to promote mitosis. The specific mechanism may be 
that aFGF reduces the inhibitory effect of TGF-β on DNA 
synthesis [84, 85].

In addition, hepatocytes can also secrete exosomes 
to regulate the proliferation of target hepatocytes. 
Exosomes can be secreted by a variety of cells, including 
hepatocytes, KCs, and endothelial cells [86–88]. Some 
researchers have found that exosomes derived from 
hepatocytes can induce hepatocyte proliferation, and the 
results are consistent in vivo and in vitro. In contrast, this 
phenomenon is not observed in response to exosomes 
derived from KCs or endothelial cells [89]. Sphingosine 
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kinase 2 (SK2), which is unique in hepatocyte exosomes, 
is delivered to target hepatocytes and can induce the pro-
liferation of target hepatocytes by inducing the synthesis 
of intracellular sphingosine-1-phosphate (S1P) [89]. This 
finding suggests that exosomes can be used as a means 
of communication between cells and play a role in liver 
repair and regeneration (Fig. 2).

Crosstalk between nonhepatocytes cannot be ignored
HSCs and LSECs: indispensable to each other
HSCs and LSECs are closely connected anatomically, so 
they are closely related in function. HSC activation can 
regulate changes in the structure of endothelial cells and 
HSC proliferation. This process includes the recruitment 
of HSCs to endothelial cells and the secretion of angio-
genic factors by HSCs to attract endothelial cells [90, 91].

During the revascularization process of liver regen-
eration, there are many signaling pathways that may be 
involved in mediating the recruitment of HSCs to blood 
vessels, and platelet-derived growth factors (PDGF) 
may be the most critical growth factor [91, 92]. PDGF 
is expressed by sprouting endothelial cells and binds to 
the PDGF receptor on HSCs, thereby inducing HSCs to 
accumulate near endothelial cells. In addition, TGF-β, 
angiopoietins, and NO are all involved in the recruitment 
of HSCs by endothelial cells [91].

After being recruited and activated by LSECs, HSCs in 
turn secrete factors to promote vascular remodeling dur-
ing regeneration. The most important factor that HSCs 
first secrete and that acts on LSECs is VEGF. In addition 
to hepatocytes, HSCs are also an important source of 
VEGF. VEGF can promote the proliferation of endothe-
lial cells, which indicates that crosstalk between LSECs 
and HSCs can promote the remodeling of blood vessels 
during regeneration (Fig. 2).

Additionally, from a structural and functional point of 
view, a single stellate cell wraps 4 sinuses and then con-
trols sinus blood flow during regeneration by controlling 
the sinus [93]. This finding shows that the interaction 
between LSECs and HSCs has a potential regulatory 
effect on liver regeneration.

KCs and HSCs: bilateral regulation
Both KCs and HSCs are important nonhepatocytes in the 
liver. Interestingly, HSCs were first described and studied 
by Kupffer in 1876 [94]. The interaction between KCs and 
HSCs requires more in-depth research and has practical 
clinical significance.

HSCs secrete many factors that regulate cell prolifera-
tion and division and participate in all aspects of regener-
ation, including initiation, maintenance and termination 
[33, 95, 96]. Furthermore, there have been reports in the 
literature that HSCs are involved in ECM remodeling 

during regeneration [33]. This remodeling is very impor-
tant for liver regeneration and can maintain the three-
dimensional structure of regenerated cells [57]. KCs are 
essential for the recruitment of HSCs and the subsequent 
repair of the damaged liver [97]. HSCs are the main 
source of matrix metalloproteinases (MMPs) and their 
inhibitors [57, 98]. These cells participate in the regula-
tion of ECM components, such as collagen, proteogly-
cans, glycosaminoglycans and glycoproteins, to produce 
temporary scars and prevent further damage [33]. Stud-
ies have shown that the mechanism by which HSCs regu-
late matrix remodeling involves inflammatory cytokines 
released by KCs [99]. The combined use of TNF-α and 
IL-1a in HSCs can enhance the expression of MMP1 and 
α-smooth muscle actin, which may be important regula-
tors of tissue regeneration [99].

Notably, the interaction between KCs and HSCs is 
not unidirectional. HSCs also have regulatory effects 
on the recruitment and activation of immune cells dur-
ing regeneration [100, 101]. Monocyte chemotactic pep-
tide (MCP-1), which is secreted by HSCs, can stimulate 
KC infiltration [100, 102]. These recruited KCs or other 
immune cells not only have regulatory effects on liver 
regeneration but also provide additional signals, such as 
IL-13, to enhance the fibroblast activity of stellate cells to 
protect the liver [100] (Fig. 2).

HSCs and BECs: mesenchymal–epithelial interaction
In normal and regenerated livers, stellate cells exist in 
the progenitor cell niche near the Canals of Hering and 
are in close contact with BECs [103, 104]. The paracrine 
interactions between HSCs and BECs continues into 
adulthood, and the conditioned medium of adult HSCs 
promotes the growth of BEC lines to verify this view 
[105]. Therefore, it is reasonable to explore the mutual 
communication and interaction between HSCs and BECs 
during liver regeneration.

It has been demonstrated that BECs can attract lobu-
lar HSCs into portal tracts, and PDGF-BB is a key factor 
regulating this chemotaxis. Bile duct segments isolated 
from cholestatic rats increased the migratory capacity of 
HSCs, and this stimulation was significantly more effec-
tive than that of normal bile ducts. This suggests that 
BECs can attract the migration of HSCs in the context 
of cholestatic liver injury [105, 106]. Subsequently, the 
researchers further found that PDGF-BB released from 
tubular cells during bile duct injury promoted the acti-
vation and proliferation of HSCs. Therefore, early HSCs 
proliferation may be considered as an important defense 
mechanism aimed at alleviating liver damage and pro-
moting liver regeneration [105, 107].

The flip side of things is how mesenchymal–epithe-
lial interactions. Co-culture of HSCs and BECs showed 
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that HSCs could produce Hedgehog (Hh) ligands, which 
enhanced the viability and proliferation of BECs [105]. 
The Hh signaling pathway leads to the activation of its 
downstream transactivators, including transcription fac-
tors of the Gli family, which regulate Hh target genes 
[105, 108].

LSECs and BECs: regulation of peripheral blood vessels
After liver parenchymal reduction, mature BECs can pro-
liferate to restore the structure of the biliary tree, thereby 
regulating the evolution of liver injury. Proliferating BECs 
communicate and interact with other cells by secreting 
mediators that stimulate and activate multiple cell sub-
types. BECs secrete vasoactive substances that regulate the 
remodeling of blood vessels supplying bile ducts to main-
tain desired nutritional and functional requirements [109]. 
When VEGF was blocked with a specific neutralizing anti-
body, peribiliary vascular plexus (PBP) proliferation did 
not occur after bile duct ligation (BDL), suggesting that 
VEGF secreted by BECs drives the proliferative adaptive 
response of PBP to cholestasis [110]. Another vasoactive 
substance secreted by proliferating BECs is endothelin-1 
(ET-1), which is involved in the regulation of vascular 
bed function and plays an epicenter role in experimental 
hepatopulmonary syndrome after BDL [111].

KCs and BECs: the immunophysiology of biliary epithelium
During liver injury and the resulting regeneration, BECs 
interacted with inflammatory cells in  vivo, suggest-
ing that the immune system plays a pivotal role in liver 
regeneration. BECs secrete and transport immunoglobu-
lins and produce cytokines and chemokines (IL-1, IL-6, 
IL-8, IFN-γ), recruit Kupffer cells to the portal vein [109]. 
The interaction mechanism between BECs and KCs is 
still not fully investigated, but the role of the immune sys-
tem on BECs during liver regeneration will be the direc-
tion of future research.

KCs and LSECs: tightly connected
KCs reside in hepatic sinusoidal blood vessels, which are 
composed of LSECs, and attach to the surface of LSECs. 
The crosstalk between these two types of cells during 
regeneration influences the recruitment of KCs and the 
activation of LSECs [112]. Although the mechanism has 
not been fully explored, studies have shown that KCs are 
essential for the activation of LSECs and can make LSEC 
capillaries.

Cellular crosstalk in transdifferentiation of hepatic 
epithelial cells
During liver regeneration, alternative regenerative mech-
anisms can occur once proliferation of resident epithelial 
cells is impaired. As shown in the ancient Chinese Taiji 

map, hepatic epithelial cells function as facultative stem 
cells and transdifferentiate into each other to restore 
normal liver structure (Fig. 3). There are still many unan-
swered questions surrounding the transformation of 
bipotential BECs into hepatocytes. Subsequently, we 
will discuss how various cells crosstalk with bi-potent 
BECs in the context of bipotential BECs -mediated liver 
regeneration.

Hepatocytes and BECs: alternative regenerative pathways
Unlike the epidermis or blood, which have stem cells that 
constantly differentiate and replenish dead cells, hepato-
cytes and BECs can repair the lost liver through their 
own proliferation and division [113]. However, when 
the proliferation of a certain cell is damaged, additional 
cell expansion is needed [114, 115]. BECs or hepatocytes 
have specific markers. For example, cytokeratin 7 (CK7) 
or cytokeratin 19 (CK19) have been used to identify 
BECs, and hepatocyte nuclear factor 4 alpha (HNF4α) is 
also commonly used to label hepatocytes [114].

Transdifferentiation is a complete and stable change 
in cell identity that acts as an alternative to stem cell-
mediated organ regeneration. By reducing the prolifera-
tion of hepatocytes during liver injury, the contribution 
of nonhepatocytes to parenchymal regeneration can 
be assessed. He et  al. showed that almost all BECs in 
zebrafish (an animal model for studying liver regenera-
tion) stably lost their tubular morphology, proliferate and 
expressed hepatocyte-specific markers after the extreme 
loss of hepatocytes, and this process requires transduc-
tion of Notch signaling, which activates SOX9b tran-
scriptional factor in cholangiocytes [116]. In addition, 
FXR, β-catenin, bone morphogenetic protein (Bmp), 
YAP and mechanistic target of rapamycin complex 1 
(mTORC1) [117–120] signaling all participate in BECs 
supplementation when hepatocyte proliferation is weak-
ened. These results confirmed that once hepatocyte pro-
liferation is inhibited, labeled BECs are directly involved 
in hepatocyte regeneration (Fig. 3).

In addition to biliary cell-driven liver regeneration, 
hepatocyte-driven biliary epithelial regeneration is 
also being studied. After preconditioning induced BEC 
damage, lineage tracking showed that the BECs were 
DPPIV + , suggesting that hepatocytes transdifferenti-
ated into BECs during severe bile duct damage [121, 122]. 
BDL-induced injury of rat BECs showed that OV6/CK19 
and SOX9/CK19 were increased and that the expres-
sion levels of Notch receptors and their ligands were 
also increased, suggesting that the Notch pathway plays 
an important role in this process [123]. Further research 
found that Notch-dependent hepatocyte-to-cholangi-
ocyte reprogramming is regulated by signaling such as 
Hippo/YAP and TGF-β [124–126]. There is some overlap 
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in the mechanisms of the two types of transdifferentia-
tion, but this is not contradictory. Because both direc-
tions of transdifferentiation involve dedifferentiation of 
epithelial cells to form bipotential intermediates, Notch 
may be a key signaling pathway [116]. In addition, the 
HGF/c-Met pathway may also be related to the transdif-
ferentiation of hepatocytes into BECs [127]. This can be 
evidenced by the inhibition of PI3-K (the downstream 
target of HGF/c-Met signal transduction) (Fig. 3).

Although the mechanism of BEC regeneration is not 
fully elucidated, it is critical to clinical patients. It is well 
known that in end-stage chronic liver disease, the ability 
of hepatocytes to proliferate is lost. If the compensatory 
ability of BECs could be stimulated, it would provide a 

new treatment strategy for clinical patients. Of course, 
this strategy also faces many challenges. For example, it 
is not clear how to more safely stimulate the regenera-
tion potential of BECs or whether regeneration through 
transdifferentiation can rebuild the structure of the liver. 
These are the obstacles we will encounter in the future.

LSECs and bipotential BECs: promote transdifferentiation 
of bipotential BECs
LSECs interact not only with blood components and 
form a sinusoidal barrier [93] but also with other cells 
in the liver to play a regulatory role in regeneration. In 
the early stage of regeneration, hepatocytes and BECs 
self-renew to form avascular cell clusters, which then 

Fig. 3  Cellular crosstalk in transdifferentiation of hepatic epithelial cells. Mechanisms required for reciprocal transdifferentiation of hepatocytes and 
cholangiocytes partially overlap; LSECs promote the transdifferentiation of LPCs by secreting cytokines; HSCs provide a specific microenvironment 
for the transdifferentiation of bipotential BECs by tightly cooperating with the ECM and cytokines/growth factors; KCs chemotactic by BECs can 
promote the transdifferentiation of liver epithelial cells by secreting cytokines
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stimulate the proliferation of LSECs to form blood ves-
sels to transport nutrients.

The specific mechanism of the bidirectional regulation 
between LSECs and BECs during liver regeneration is 
still not fully understood. Studies have shown that LSECs 
can regulate Notch signaling, which is essential for biliary 
tract differentiation and bile duct formation [128, 129]. 
This finding suggests that LSECs are closely related to 
BECs during regeneration.

In addition, LSECs are also believed to interact closely 
with the Canals of Hering, which are located at the end 
of BECs. Studies have combined mouse liver progenitor 
cells (LPCs) with mouse LSECs to generate hepatobiliary 
organs with a liver-specific vascular system [130]. These 
studies show improved differentiation of hepatobiliary 
tissue and survival after transplantation (Fig. 3).

HSCs and bipotential BECs: activation of bipotential BECs
In addition to their roles in the context of the self-rep-
lication of hepatocytes and cholangiocytes described 
above, HSCs are closely anatomically and physiologi-
cally linked to the intralobular tubule system and biliary 
tree, and can secrete a variety of growth factors, includ-
ing TGF-α, HGF, FGF and TNF, which are required for 
bipotential BECs growth and proliferation [131, 132]. 
The collection of conditional medium (CM) from HSCs 
to 2-acetylaminofluorene in conjunction with PHx oval 
cell proliferation model demonstrated that HSCs pro-
moted bipotential BECs DNA synthesis by paracrine 
HGF in the early stage of liver regeneration, and exerted 
an antagonistic effect through TGF-β1 in the later stage 
of liver regeneration [132]. Moreover, aHSCs can express 
Jagged 1 to promote Notch signaling in bipotential BECs, 
thereby promoting biliary specificity to their BECs [133].

Furthermore, aHSCs are involved in ECM remod-
eling during regeneration, which is tightly coupled with 
cytokines/growth factors to provide a specific microen-
vironment for bipotential BECs migration and anchor-
ing [131]. Infiltration of liver parenchyma by bipotential 
BECs chaperoned by α-SMA-positive cells suggests that 
HSCs may be the major cellular source of ECM required 
for bipotential BECs proliferation and lobular invasion 
[134] (Fig. 3).

KCs and bipotential BECs: the biliary tract and the immune 
system
Macrophages, which are represented by KCs, play a 
complex and contradictory role in the regeneration pro-
cess, which may be related to the heterogeneity of mac-
rophages and different stages of regeneration [74, 112]. 
BECs are also an important epithelial cell in the liver. The 
ability of BECs to supplement hepatocyte proliferation 
has been described in detail [114–116].

Regarding the localization of KCs in the biliary 
tract, C-X-C chemokine receptor 4 (CXCR4+) cells are 
recruited to the biliary tract via SDF-1 [135]. Duct-local-
ized hepatic macrophages express TWEAK, whereas 
BECs express Fn14, which has been shown to mediate 
duct proliferation through NF-κB activation. This sug-
gests that the TWEAK/Fn14 signaling pathway is a key 
component of macrophage-stimulated ductular reactions 
(DR) activation [136].

During the process of liver regeneration, bipotential 
BECs, which are typically wrapped in a thick layer of 
myofibroblasts and type I collagen, are exposed and come 
into contact with macrophages [133, 137, 138]. Subse-
quently, KCs phagocytosis of hepatocyte debris induces 
Wnt3a expression, which leads to the canonical Wnt 
signaling in bipotential BECs, thereby maintaining Numb 
expression (a cell fate determinant) within these cells and 
promoting their specification to hepatocytes [133, 139]. 
Here, we summarize the mechanism by which bipotential 
BECs are able to respond to diverse cellular microenvi-
ronments for divergent cell fates (Fig. 3).

Bipotential BECs and surrounding cells: awaiting 
exploration
Compared with studies on the effect of surrounding cells 
on the transdifferentiation of bipotential BECs, there 
are still unanswered questions about the mechanism 
of crosstalk between surrounding cells in the context of 
transdifferentiation. Studies have shown that the interac-
tion between HSCs and KCs plays a regulatory role in the 
differentiation of LPCs [133]. In the future, the interac-
tions among other cells are still waiting for researchers to 
explore.

Conclusions
Although the liver rarely undergoes regeneration under 
physiological conditions, under pathological condi-
tions, such as hepatectomy and liver failure, the liver 
can restore its volume and function through its power-
ful regenerative capacity. The process of liver regenera-
tion is attributed to the interaction of both independent 
and interrelated cells in the liver. Hepatocytes are in a 
multicellular environment, and the effects of other cells 
can change their regenerative capacity. Moreover, cross-
talk exists among nonhepatocytes in the liver. There have 
been few studies on this aspect of the interaction, and 
this is one of the highlights of the present article.

In the present review, we mainly described the intra-
hepatic crosstalk network during liver regeneration. 
Indeed, the liver is not an isolated organ, and stud-
ies have reported that extrahepatic organs also have a 
regulatory effect on the regenerated liver, including 
the thyroid, adrenal gland, pancreas, duodenum, and 
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autonomic nervous system [69]. Moreover, the infil-
tration of immune cells (especially T lymphocytes and 
NK cells) plays an important role in regulating regen-
eration [140–142], such as preventing liver damage and 
removing damaged cells. The interaction between the 
symbiotic bacteria in the intestine and the liver can also 
regulate liver regeneration [143]. These results demon-
strated that further understanding of the regulation of 
liver regeneration by the extrahepatic system is also a 
promising direction, which will be our focus in a future 
study.

The exact mechanism underlying liver regeneration 
is complicated and still not well defined. However, with 
emerging technologies such as genetic lineage track-
ing, we believe a comprehensive mechanism will be 
illustrated, which will contribute to the recovery of 
hepatectomy patients and improve therapeutic options 
among patients with liver failure.
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