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QR code model: a new possibility for GPCR 
phosphorylation recognition
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Abstract 

G protein-coupled receptors (GPCRs) are the largest family of membrane proteins in the human body and are respon-
sible for accurately transmitting extracellular information to cells. Arrestin is an important member of the GPCR signal-
ing pathway. The main function of arrestin is to assist receptor desensitization, endocytosis and signal transduction. 
In these processes, the recognition and binding of arrestin to phosphorylated GPCRs is fundamental. However, the 
mechanism by which arrestin recognizes phosphorylated GPCRs is not fully understood. The GPCR phosphorylation 
recognition “bar code model” and “flute” model describe the basic process of receptor phosphorylation recognition 
in terms of receptor phosphorylation sites, arrestin structural changes and downstream signaling. These two models 
suggest that GPCR phosphorylation recognition is a process involving multiple factors. This process can be described 
by a “QR code” model in which ligands, GPCRs, G protein-coupled receptor kinase, arrestin, and phosphorylation sites 
work together to determine the biological functions of phosphorylated receptors.

Keywords:  GPCR phosphorylation recognition, Bar code model, Flute model, QR code model, GPCR signaling

Graphical Abstract

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
G protein-coupled receptors (GPCRs) are the larg-
est class of 7-transmembrane receptors on human cell 
membranes and can accurately transmit extracellular 
information, such as from hormones, neurotransmit-
ters and odors, into the cell. GPCRs are an important 
information transmission hub [1–3]. There are two main 

mechanisms that mediate GPCR signaling: the G pro-
tein-dependent pathway and the G protein independent 
pathway [2, 4–10]. The G protein-dependent pathway 
is mainly regulated by guanine nucleotide-binding pro-
teins (G proteins). G proteins are a class of highly con-
served proteins, including Gs, Gi, Gq, and G12, whose 
main function is to transmit GPCR signals [11–14]. For 
example, in cardiomyocytes, catecholamine activates 
β1-adrenoceptor (β1-AR) and activates the Gs-adenylate 
cyclase (AC)-cyclic adenosine monophosphate (cAMP)-
protein kinase A (PKA) pathway to exert positive chrono-
tropic and inotropic effects. In heart failure, the release 
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of a large amount of catecholamine and activation of 
the β2-adrenoceptor (β2-AR)-Gi pathway can inhibit the 
activity of AC and weaken β1-AR-Gs activation [15–18]. 
The G protein-independent pathway is mainly regulated 
by arrestin that recognizes and binds phosphorylated 
GPCRs catalyzed by G protein-coupled receptor kinase 
(GRK). Arrestin binding to a phosphorylated GPCR pre-
vents G proteins from binding the GPCR and promotes 
receptor internalization [11, 19–22]. Arrestin binding to 
GPCRs can also transmit cellular signals. The ability of 
arrestin to recognize and bind phosphorylated GPCRs 
is the basis for achieving GPCR signaling. However, the 
specific mechanism by which this occurs is not com-
pletely clear.

Previous studies have found that rhodopsin phospho-
rylation can enhance arrestin binding [23]. It was further 
found that arrestin mainly recognizes the phosphorylated 
C-terminus of GPCRs [24]. The GPCR C-terminus phos-
phorylated by different protein kinases can transmit dif-
ferent downstream signals. To describe this, a “bar code” 
model [25, 26] has been proposed. The bar code model 
has given new insights into GPCR phosphorylation rec-
ognition, and the theory of the model has been continu-
ously improved in several follow-up studies. Based on 
the bar code model, the “flute” model integrates struc-
tural changes of β-arrestin with GPCR phosphorylation 
recognition patterns. Different GPCR phosphorylation 
sites match different arrestin structures, and this match-
ing determines the resulting signaling [27, 28]. Recently, 
molecular dynamics simulations and amino acid site 
mutations were used to verify the function of the vaso-
pressin type 2 receptor (V2R) phosphorylation site in 
binding and activating β-arrestin. The different combi-
nations of GPCR phosphorylation sites were found to 
directly affect the structural changes of β-arrestin and its 
binding to the receptor. This finding also indicated the 
diversity of the structural changes of β-arrestin [29, 30]. 
In a study of V2R, Qing-Tao He et al. analyzed the struc-
ture of the complex comprising the V2R C-terminus and 
β-arrestin1. The authors found that phosphorylation at 
different sites of V2R causes different structural changes 
in arrestin, which alters β-arrestin1 function [31]. A 
series of recent studies on bar code models and flute 
models have analyzed the phosphorylation recognition 
patterns of GPCRs and arrestin from the perspective of 
protein structure, bringing us closer to a comprehensive 
understanding of phosphorylation recognition patterns.

The purpose of this review was to discuss the mecha-
nism by which arrestin recognizes GPCR phosphoryla-
tion, analyze the effects of the factors involved in this 
process (ligands, GPCR type, GRK, arrestin and GPCR 
phosphorylation sites), and briefly describe the historical 
development of phosphorylation recognition research.

Factors in GPCR phosphorylation recognition
The process of GPCR phosphorylation recognition is 
extremely complex and delicate. Ligands, GPCR types, 
GRK, arrestin, GPCR phosphorylation sites can all influ-
ence or even determine which function the receptor per-
forms. Therefore, we first illustrate the effects of different 
factors on GPCR phosphorylation recognition.

Ligands
Ligands are the drivers of GPCR signaling. Light, odors, 
peptides, ions, hormones and antibodies are all become 
GPCR ligands [32, 33]. For example, light can activate 
rhodopsin in rod cells [34]. Angiotensin II type I recep-
tor (AT1R) autoantibodies (AT1-AA) can continuously 
activate AT1R in vascular smooth muscle cells [35], and 
catecholamines can activate adrenaline receptors in car-
diomyocytes [36]. GPCRs are also the target of many 
drugs. Some drugs, such as atropine, scopolamine (ace-
tylcholine muscarinic receptor blocker), propranolol 
(β-adrenoceptor blocker), losartan (AT1R blocker) and 
phentolamine (alpha-adrenoceptor blocker), act by bind-
ing to GPCRs [37]. These are examples of drugs that are 
commonly used in the clinic [38–41].

Ligand classification is a complex matter. Based on the 
effect of GPCRs active state, ligands can be divided into 
agonists and antagonists (Fig. 1) [37]. According to their 
degree of GPCR activation, agonists can be divided into 
complete agonists and partial agonists. Complete ago-
nists maximize the activation of GPCRs and result in the 
strongest signal transduction. PNU282987, a complete 
agonist of α7 nicotinic receptor (α7 nAChR), reverses 
depressive symptoms in Sprague Dawley (SD) rats 
induced by chronic mild stress [42]. Formoteru, a com-
plete agonist of β2-AR, is used to treat asthma because 
of its bronchodilation effect [43]. Partial agonists partly 
activated a certain pathway when compared with the 
efficacy of a complete agonist. Δ9-Tetrahydrocannabinol 
(Δ9-THC) is a partial agonist of cannabinoid receptor 1 
(CB1). It plays a role in the treatment of mental illnesses 
by activating CB1 [44, 45]. Antagonists are divided into 
inverse agonists and neutral antagonists. Inverse ago-
nists inhibit basal activation of the receptor, reducing 
activation to lower than the basal level. Basal activation 
is inherent in some GPCRs and does not require ligand 
involvement. Neutral antagonists inhibit the effect of 
agonists but do not affect basal activation [37, 46].

However, the same ligand that plays a role of agonist 
in a response may become antagonist or inverse agonist 
in another response. This complicacy is the pluridimen-
sional efficacy of a ligand [47]. For inverse agonist, the 
efficacy defined the ability to change receptor behav-
ior become vectorial [48]. For example, carvedilol, as 
inverse agonist for β-adrenergic receptor, inhibited 
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the production of cAMP medicated by Gs in conges-
tive heart failure. However, carvedilol played the role of 
partial agonist for the activation of extracellular regu-
lated protein kinases (ERK)1/2 mediated by β-arrestin 

[49, 50]. Similarly, [D-Trp12, Tyr34]-bPTH, the ligand 
of parathyroid hormone (PTH) receptor, was classi-
fied as antagonist of calcium signaling and an inverse 
agonist for cAMP production. However, it was also 

Fig. 1  Classification of GPCR ligands based on the effect of GPCRs active state. Complete agonists can maximize GPCR activation and signal 
transmission. Partial agonists can activate receptors but cannot maximize receptor activation. Inverse agonists inhibit the basal activation of the 
receptor. Neutral antagonists inhibit receptor activation but do not affect basal activation
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classified as partial agonist for ERK1/2 signaling [51, 
52].

Topographically, according the variant of binding sites, 
the GPCR ligands are divided into orthosteric ligands 
and allosteric ligands (also named allosteric modulators) 
[53]. The ligands that bind to the endogenous ligands 
(hormone or neurotransmitter) binding sites (orthosteric 
sites) are orthosteric ligands [54]. Allosteric ligands bind 
to recognition sites that are distinct from the orthosteric 
sites [55]. The allosteric ligands are divided into four cate-
gories, including negative allosteric modulators (NAMs), 
positive allosteric modulators (PAMs), allosteric ago-
nists and silent allosteric modulators (SAMs). Ligands 
that bind to an allosteric site of the receptor resulting in 
inhibition of receptor function are considered NAMs. 
Because NAMs decrease the affinity of orthosteric ago-
nist ligands by changing receptor conformation. PAMs 
have the opposite effect to NAMs. In the absence of 
orthosteric agonist, allosteric agonist can active GPCR by 
itself. SAMs bind to allosteric sites on the receptor but 
do no affect receptor function [56]. In the development 
of GPCR drugs, allosteric ligands have drawn more and 
more attention, especially for small molecules [57, 58]. 
For example, maraviroc was the allosteric modulator 
for chemokine receptor CCR5. The function of maravi-
roc was to treat Acquired Immune Deficiency Syndrome 
(AIDS) by allosteric inhibition of CCR5 chemokine sign-
aling and the prevention of human immunodeficiency 
virus type 1 (HIV-1) entry [59].

The ligand is the initiating factor in GPCR signaling. 
The type and characteristics of a ligand will specifically 
change the structure of a GPCR, impacting the final 
biological results [60]. The complex and diverse array 
of ligands are the initial factors affecting the process of 
receptor phosphorylation.

GPCR type
Based on the homology of the GPCR sequence, receptors 
can be divided into class A (rhodopsin family), B (secre-
tin family), C (glutamate family), the adhesin family, and 
class F (frizzled family) [61]. This large number of GPCRs 
constitutes a broad signal regulation network throughout 
the body that transforms external information into bio-
logical information and transmits it through signaling 
pathways [62].

GPCRs are widely distributed throughout the body, 
and their signal regulation, including phosphorylation, 
is extremely complex. The phosphorylation of GPCRs 
is the key to ensuring accurate receptor function. In the 
heart, catecholamines activate β1-AR to exert positive 
chronotropic and positive inotropic effects through the 
cAMP/PKA pathway. To avoid the overactivation of β1-
AR, β1-AR is phosphorylated by GRK in a timely manner. 

β-Arrestin binds to phosphorylated β1-AR to assist 
receptor desensitization and endocytosis [16]. If GPCRs 
are not phosphorylated or if they are hyperphosphoryl-
ated, their signal can be disturbed, leading to the occur-
rence and development of disease. For example, GRK2 
was a phosphatase in M2 macrophages. The downregula-
tion of GRK2 expression overactivated the β2-AR/cAMP/
PKA pathway in hepatocellular carcinoma, thereby pro-
moting the growth of cancer cells [63]. GRK4-induced 
hyperphosphorylation of adiponectin receptors can lead 
to the development of hypertension [64]. These stud-
ies suggest that timely and appropriate phosphorylation 
ensures the accurate transmission of extracellular infor-
mation by GPCRs and maintains homeostasis.

GRK
As an integral part of GPCR phosphorylation, the func-
tion of GRK is to phosphorylate the receptor. GRK 
catalyzes receptor phosphorylation, which enables the 
receptor to bind to arrestin and carry out its biological 
function. GRK is serine/threonine protease [65]. GRK 
was initially elucidated as an enzyme that promotes rho-
dopsin phosphorylation in a light-dependent manner. 
This enzyme was termed rhodopsin kinase (GRK1) [66]. 
Subsequently, β2-adrenoceptor kinase (GRK2) was found 
in a study of β2-AR [67]. To date, researchers have discov-
ered seven GRKs (GRK1-GRK7) [66–73]. Among them, 
GRK2, 3, 5, and 6 are widely distributed throughout the 
body and regulate the phosphorylation process of most 
GPCRs [65, 74]. GRK1 and 7 are mainly distributed in 
the visual system and function in visual regulation. GRK1 
is distributed in cones and rods, while GRK7 is mainly 
distributed in cones [75]. GRK4 is found in the testis [74].

The differences in GRK distribution means that dif-
ferent GRKs can only interact with tissue distribu-
tion-specific GPCRs. GRK1 mainly phosphorylates 
rhodopsin in rod cells [76]. GRK7 mainly compensates 
for the deficiency of GRK1 function in Oguchi patients 
[75]. Although GRK2, 3, 5, and 6 can interact with the 
vast majority of GPCRs, the effect of GPCR phosphoryla-
tion is not consistent. For example, GRK2 and GRK3 pro-
mote the desensitization of phosphorylated V2R, while 
GRK5 and GRK6 catalyze V2R phosphorylation and 
continue to transmit information to the ERK signaling 
[77]. Similarly, GRK2 and GRK3 catalyze AT1R phospho-
rylation to promote receptor desensitization and endo-
cytosis, while GRK5 phosphorylates AT1R, leading to 
β-arrestin-dependent ERK activation [78]. The reason for 
this phenomenon may be related to the phosphorylation 
of different sites in GPCRs being catalyzed by different 
GRKs [27]. Thirteen serine (Ser)/threonine (Thr) residues 
(Ser246, Ser261, Ser262, Ser345, Ser346, Ser355, Ser356, 
Thr360, Ser364, Ser396, Ser401, Ser407, and Ser411) of 
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β2-AR were identified by small interfering RNA (siRNA) 
and quantitative mass spectrometry. GRK2 mainly phos-
phorylated Thr360, Ser364, Ser396, Ser401, Ser407, and 
Ser411, while GRK6 phosphorylated only Ser355 and 
Ser356. This difference in phosphorylation sites eventu-
ally leads to the β2-AR-β-arrestin-ERK1/2 pathway being 
catalyzed by GRK6, while the phosphorylation of β2-AR 
catalyzed by GRK2 inhibits this signaling pathway [79]. 
These results suggest that different GRKs have different 
preferred phosphorylation sites and relatively fixed func-
tions. GRK2-catalyzed receptor phosphorylation tends 
to promote endocytosis, while GRK6-catalyzed receptor 
phosphorylation tends to induce β-arrestin-dependent 
signal transduction.

The rich combination of seven GRKs, different tissue 
distributions and different preferences for phosphoryla-
tion sites allows a complex array of signaling that is regu-
lated by GPCR phosphorylation. This complexity can 
accurately meet the signaling requirements of the body 
(Fig.  2). The diversity of phosphorylation site combina-
tions also leads to different binding patterns of arrestin.

Arrestin
There are four types of arrestin: arrestin1, arrestin2, 
arrestin3, and arrestin4. Similar to GRK, the distribu-
tion of arrestin is tissue-specific. Arrestin1 and 4, also 
known as visual arrestins, are mainly distributed in the 
visual system; arrestin2 and 3 (β-arrestin1 and 2) are also 
widely distributed in the visual system [80]. Four types 
of arrestin have similar structure. Briefly, two crescent-
shaped beta-sandwiches (N-and C-terminal domains, 
respectively) made up the structure of arrestin. The cen-
tral crest, including finger loop, middle loop and C-loop, 
formed between the above domains. Figure loop was a 
key receptor-binding element. In the inactive state, the 
structure of finger loop was irregular. However, by inter-
acting with the GPCR, α helix was formed in finger loop 
to assist arrestin to interact with phosphorylated GPCR 
easily [81]. The function of middle loop and C-loop was 
to stabilize the inactive basal-state arrestin. Besides, the 
basal structure of arrestin was also stabilized by the gate 
loop which consisted of C-terminal and polar core [81, 
82].

Arrestins are multifunctional regulators of GPCR. 
When arrestin was discovered, its only function was 
identified as assisting in the desensitization of activated 
GPCRs [83, 84]. Further research has gradually discov-
ered additional functions of arrestin. At present, it is 
believed that arrestin has three main functions: (1) assist-
ing in the desensitization of activated receptors; (2) medi-
ating receptor endocytosis; (3) signaling [85]. The basis 
for the above regulatory functions of arrestin lies in the 
changes in the structure of arrestin and the conformation 

with which it binds to the GPCR [86]. In the process of 
receptor desensitization, arrestin binds to GPCR trans-
membrane core, putting itself in a conformation named 
“core” conformation. G protein is excluded from the 
receptor by arrestin, thereby terminating the signal trans-
duction of the G protein pathway [20]. In the process of 
receptor endocytosis, arrestin binds to phosphorylated 
GPCR C-terminal with “tail” conformation [21]. Arres-
tin recruits intracellular clathrin and β2-adaptin (AP2) 
in the form of cytoskeletal proteins to form endosomes 
and promote receptor internalization. Endocytosis recep-
tors enter the lysosome and are either degraded, or they 
returned to the cell membrane to again carry out their 
function [87]. Arrestin can be considered as a transit 
point for GPCR signaling. During the signaling process, 
arrestin remains bound to the GPCR by “tail” conforma-
tion. Typically, activation of the SRC is seen in GPCR 
signaling via arrestin. Compared with the administration 
of β-arrestin1 alone, β-arrestin1 binding to phosphoryl-
ated β2-AR significantly increased the phosphorylation of 
SRC [9]. Biased activation of AT1R-β-arrestin1 promotes 
acute catecholamine secretion by recruiting transient 
receptor potential cation channel subfamily C 3 [88]. 
Besides, the mitogen-activated protein kinase (MAPK), 
tyrosine kinase Ser-Thr kinase Akt pathways are also 
transmitted by GPCR bound to arrestin and are used to 
regulate cell proliferation, migration, and apoptosis [89].

Regardless of which function arrestin performs, the 
specific combination of phosphorylated GPCRs is a pre-
requisite. The four classes of arrestin and their distribu-
tion characteristics form the basis of its finely tuned 
regulation of the GPCR signaling pathway. The four 
types of arrestin have similar structures and amino acid 
sequences [87, 90], but their differences in distribution 
and function suggest that there may be differences in 
the process of phosphorylation recognition. In the visual 
system, the homology between arrestin1 and arrestin4 
is approximately 58%. Arrestin1 is mainly distributed 
in rod cells and binds to light-activated phosphorylated 
rhodopsin, while arrestin4 is only found in cones and has 
the highest affinity for human green cone opsin [91, 92]. 
Arrestin1 can inactivate both rhodopsin and cone pig-
ment, while arrestin4 can inactivate only cone pigment 
[93–95]. Although arrestin2 and arrestin3 have high 
homology (76% identical) [92], they have different affini-
ties for different combinations of GPCR phosphorylation.

According to their differences in affinity for arrestins, 
GPCRs can be divided into two types: type A and type 
B. Type A GPCRs do not interact with visual arrestin, 
and their affinity for β-arrestin2 is higher than that for 
β-arrestin1. Examples of type A GPCRs include β2-AR, μ 
opioid receptors, endothelin receptor A, dopamine D1A 
receptor, and α1 adrenoceptor. Type B GPCRs interact 
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with visual arrestin, and there is no difference in affin-
ity for β-arrestin1/2; examples of type B GPCRs include 
AT1R, neurotensin receptor 1, V2R, and thyrotropin 
releasing hormone receptor [96]. Although arrestins 
have similar structure and function in a broad sense, 

the difference between them may be the crux to affect 
the different functions for each type of arrestin. How-
ever, at present, the understanding of GPCR-arrestin 
phosphorylation coding is mainly based on arrestin2 
(β-arrestin1) [27, 29, 97]. Therefore, our understanding of 

Fig. 2  Ligand-GPCR-GRK-arrestin information transfer process. After the ligand activates the GPCR, GRK phosphorylates the activated receptor. 
Arrestin recognizes the phosphorylated receptor and binds to it, thereby causing receptor desensitization, endocytosis or the continuation of signal 
transmission. In this process, different GRKs phosphorylate different sites on the receptor. Arrestin recognizes these differences in phosphorylation 
sites and binds to the receptor in different structural conformations to perform different functions. The orange shapes represent different ligands, 
the gray dots represent sites that are not phosphorylated, and the red dots represent sites that are phosphorylated.
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the phosphorylation recognition pattern needs to be fur-
ther clarified.

Recently, Latorraca et al. and Dwivedi-Agnihotri et al. 
found that when binding different phosphorylation sites 
at the C-terminus of GPCRs, arrestin undergoes dif-
ferent structural changes, and the structural changes of 
one region are not necessarily accompanied by structural 
changes in other regions [29, 30]. For example, the phos-
phorylation of Ser350 in V2R caused structural changes 
in the β-arrestin1 gate loop and finger loop but had little 
effect on the C-terminal structure of β-arrestin. However, 
during the phosphorylation of Ser360 in V2R, the change 
in the C-terminal structure of β-arrestin was significantly 
greater than that of the gate loop and finger loop [29]. 
This discovery contrasted with the original view that the 
structural changes of arrestin switch between an acti-
vated state and an inactive state [26, 29]. The diversity of 
structural changes may be one of the reasons why only 
four types of arrestin are needed to regulate the function 
of more than 800 GPCRs.

In summary, although there are only four types of arres-
tin, they can sufficiently and accurately transmit complex 
information to cells. This is mainly due to the diversity 
in the distribution, function, and structural changes of 
arrestins (Fig. 2). This diversity is fundamental to the pro-
cess of arrestin’s recognition of phosphorylation.

GPCR phosphorylation sites
The phosphorylation sites of GPCRs are mainly located 
in the third intracellular loop and at the C-terminus. 
The arrestin binding sites are primarily found in the 
C-terminus of GPCRs. At these sites, serine (Ser, S) 
and threonine (Thr, T) form the S/T amino acid cluster. 
The function of the S/T cluster is to stabilize the bind-
ing between GPCRs and arrestin [98, 99] and to promote 
GPCRs to complete arrestin-clathrin-dependent endo-
cytosis [100]. However, the number of phosphorylation 
sites differs among GPCRs. For example, neurotensin 
receptor subtype 1 (NTS1) has six phosphorylation sites 
in the C-terminus; AT1R, CXCR2 and CXCR5 all have 
seven phosphorylation sites; and CXCR3 and CCR7 have 
eight phosphorylation sites [98].

In the process of GPCR–arrestin interaction, different 
phosphorylation sites have different functions (Fig.  2). 
There are eight phosphorylation sites at the C-terminus 
of V2R. Using molecular dynamics simulation, research-
ers found that the Ser350 phosphorylation site promotes 
the activation of β-arrestin1, while the Thr360 site con-
tributes to the binding of β-arrestin1 to V2R. However, 
when Ser350 and Ser362 were jointly phosphorylated, 
the binding ability of β-arrestin1 decreased significantly. 
Similarly, when Ser357 and T360 were jointly phos-
phorylated, the activation ability of β-arrestin1 also 

decreased significantly [29]. This suggests that the qual-
ity of a phosphorylation site might be more important 
to the interaction between a GPCR and arrestin than the 
number of phosphorylation sites. This conclusion was 
supported by experiments that investigated the phos-
phorylation sites of V2R by amino acid mutation [30]. 
Thr347 and Ser350 were not necessary for the recruit-
ment of β-arrestin. Ser357 affected the recruitment and 
migration of β-arrestin but had no effect on the activa-
tion of ERK. Both Ser362 and Ser363 affected the recruit-
ment of β-arrestin, and the common influence of these 
two sites was significantly stronger than that of each 
single site alone. When S362 and S363 were mutated to 
alanine (Ala, A), V2R lost its ability to recruit β-arrestin 
and become a G protein-biased receptor. Thr360 played 
a key role in recruiting V2R and β-arrestin, determining 
β-arrestin migration, and activating ERK, but the role of 
Thr359 in these functions was much smaller.

The phosphorylation of different sites is mainly affected 
by GRK. GRK2 and GRK6 can cause V2R to form differ-
ent phosphorylation combination patterns. Β-Arrestin1 
recognizes difference in phosphorylation patterns and 
determines downstream signaling [27].

Exploration of GPCR phosphorylation recognition 
by arrestin
Early exploration
The C-terminal phosphorylation of GPCRs is the basis of 
arrestin binding [101, 102]. However, this was not clear 
in the early stages of elucidating the function of arrestin. 
In 1984, researchers found that the binding of arrestin to 
rhodopsin is strictly based on the light-dependent mode, 
that is, rhodopsin is phosphorylated and binds arrestin 
as a result of light activation. However, in the absence of 
light activation, the two proteins do not bind. This sug-
gested that the phosphorylation of rhodopsin enhances 
arrestin binding. This was also the initial understand-
ing of GPCR phosphorylation and arrestin binding [23]. 
Using limited proteolysis and other methods, Krzysztof 
Palczewski and colleagues found that the 163–182 amino 
acid residues of arrestin constitute a region that recog-
nizes phosphorylated rhodopsin [103]. This was basically 
consistent with the findings of Vsevolod V. Gurevich and 
Jeffrey L. Benovicarrestin who used arrestin complemen-
tary deoxyribo nucleic acid (cDNA) truncation to modify 
arrestin expression and found that the region in arrestin 
that recognizes the C-terminus of phosphorylated rho-
dopsin is composed of amino acid residues 158–185 [24].

In 1987, with the discovery of visual arrestin ana-
logs, the understanding of arrestin gradually expanded 
from rhodopsin to all GPCRs and made it clear that 
arrestin binding requires GPCR phosphorylation 
[104]. Using amino acid mutation techniques, Sergey 
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A. Vishnivetskiy and others found that the polar core 
in arrestin plays an important role in the recognition 
of phosphorylated rhodopsin. The polar core is com-
posed of Arg175, Asp30, Asp296, and Asp303, in which 
the function of Arg175 is a phosphorylation-sensitive 
trigger. The role of the polar core is to stabilize arres-
tin in the inactive state. The phosphorylated rhodopsin 
can bind to Arg175 and break the electrostatic stability 
of the polar core, which promotes the transformation 
of arrestin from an inactive state to an activated state 
[105].

These studies suggest that GPCR phosphorylation is 
a prerequisite for arrestin binding and the transduction 
of signal through the G protein-independent pathway. 
In this context, the role of GPCR phosphorylation rec-
ognition patterns in signal transduction must be clari-
fied. With a further in-depth understanding of GPCR 
phosphorylation and arrestin binding, researchers have 
proposed and refined the GPCR phosphorylation rec-
ognition bar code model and flute model.

GPCR phosphorylated bar code model
Previous studies have found that GPCRs phosphoryl-
ated by different protein kinases can have different bio-
logical functions. For example, β2-AR phosphorylation 
catalyzed by GRK promotes β-arrestin binding to the 
receptor, while phosphorylation by PKA does not result 
in β-arrestin recruitment. However, both kinases cause 
β2-AR desensitization [106–110]. Protein kinase CK2 
activates the ERK and Jun kinase pathways after the 
phosphorylation of M3 muscarinic receptors [111]. To 
explain these phenomena, Andrew B. Tobin et  al. pro-
posed a phosphorylated bar code model (Fig. 3) to elabo-
rate the relationship between GPCR phosphorylation and 
downstream signaling. The bar code model proposes that 
different protein kinases catalyze the phosphorylation 
of GPCRs at different sites, resulting in the activation of 
different signaling pathways [25, 26]. When the bar code 
model was initially proposed, receptor phosphorylation 
was not limited to the activity of GRK, and the signal 
transduction process did not only occur through arrestin. 

Fig. 3  Bar code model diagram. This picture is from the review by Tobin et al. [25]
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In later research, the phosphorylation recognition model 
tended to state that GRK catalyzed receptor phosphoryl-
ation, and signal transduction was mediated by arrestin.

In 2017, X. Edward Zhou et  al. reported an activated 
rhodopsin-arrestin complex. Two phosphorylation cod-
ing modes for the combination of GPCR and arrestin, 
namely, “PXPXXP/E/D” and “PXXPXXP/E/D”, were 
identified. P represents phosphorylated serine or threo-
nine, X represents any amino acid residue, except that 
proline cannot be present at either of the second XX 
sites. When the GPCR C-terminus exhibits this pattern 
of phosphorylated amino acids, it is recognized by arres-
tin, which then binds to it. In an analysis of 825 GPCRs, 
one or two phosphorylation coding modes were found in 
436 GPCR C-termini. These two phosphorylation cod-
ing patterns may therefore be universal arrestin recogni-
tion codes of phosphorylated GPCRs [97]. This finding 
defined the environment of GPCR phosphorylation sites 
recognized by arrestin.

Recently, researchers have used molecular dynamics 
simulations and site-directed spectroscopy to analyze 
phosphorylated V2R binding to activated β-arrestin1 
[29]. The results revealed several aspects of GPCR–
arrestin binding. (1) The binding of arrestin to GPCRs 
depended on the spatial arrangement of phosphorylated 
amino acids rather than on the number of phosphoryl-
ated amino acids. Simulating the phosphorylation of all 
8 phosphorylation sites at the V2R C-terminus (Thr347, 
Ser350, Ser357, Thr359, Thr360, Ser362, Ser363, Ser364) 
promoted the binding and activation of β-arrestin1. The 
same effect could be achieved by phosphorylating the 
second site (pSer350, p2) alone. However, phosphoryla-
tion of the third site (pSer357, p3) alone or the simul-
taneous phosphorylation of the third and fifth sites 
(pSer357 + pThr360, p3, 5) did not induce β-arrestin 
binding and activation. (2) The phosphorylation patterns 
of GPCRs that favor arrestin binding were different from 
the phosphorylation patterns of GPCRs that favor arres-
tin activation. Among the eight phosphorylation sites of 
V2R, pThr360 (p5) simultaneously favored β-arrestin1 
binding and activation. pSer350 (p2) and pThr359 (p4) 
mainly favored β-arrestin1 activation. pSer363 (p7) 
mainly favored β-arrestin1 binding. (3) Arrestin has a 
complicated spatial structure, and the structural changes 
of each part were not synchronized upon GPCR binding 
and activation. When the gate loop of β-arrestin1 was 
in an inactive state, the finger loop was able to be in an 
activated state that bound to V2R. (4) Different patterns 
of phosphorylation led to a variety of arrestin structures. 
The study found that arrestin has multiple forms after 
binding to GPCRs, and the form depends on the spatial 
arrangement of the phosphorylation sites and charge 
attraction. These findings enrich our understanding of 

the active and inactive states of arrestin. This research 
extended the study of the bar code model from two-
dimensional space to three-dimensional space and clari-
fied the structural basis of the bar code model. However, 
the way in which complex phosphorylation coding and 
arrestin spatial structures correspond to downstream 
signaling requires further study.

GPCR phosphorylation flute model
The bar code model explains the diversity of GPCR phos-
phorylation signaling. However, it is not clear how only a 
few arrestins and GRKs can transmit thousands of GPCR 
phosphorylation signals. In 2015, Fan Yang et  al. pro-
posed a flute model of GPCR phosphorylation signaling 
(Fig.  4) [27]. Using unnatural amino acid incorporation 
and fluorine-19 nuclear magnetic resonance (19F-NMR) 
spectroscopy, the researchers described the diverse phos-
phorylation signals of GPCRs from the perspective of 
molecular structure. Different GRKs catalyze phospho-
rylation at distinct sites, and β-arrestin recognizes phos-
phorylated sites in different structures, finally achieving 
specific signaling pathways. Seven phosphorylation sites 
(p1–p7) were detected in the V2R/β-arrestin1 crystal 
complex. GRK2 mainly catalyzes p1, p4, p6 and p7 phos-
phorylation. Β-Arrestin1 could identify these sites and 
recruit clathrin. GRK6 catalyzes p1 and p5 phosphoryla-
tion, enabling β-arrestin1 to attract SRC. The main role 
of clathrin is to mediate receptor endocytosis [112]. As a 
protein kinase, SRC plays an important role in cell mor-
phology, proliferation, movement and survival [113].

Recently, Qing-Tao He et al. designed four V2R C-ter-
mini with different phosphorylation sites and analyzed 
the binding ability, structural changes and functional 
differences in relation to β-arrestin1 [31]. V2Rpp-1, 
V2Rpp-3, V2Rpp-4, V2Rpp-6, and 7 short peptides were 
designed according to the 7 phosphorylation sites 
(Thr347, Ser350, Ser357, Thr360, Ser362, Ser363, Ser364) 
at the C-terminus of V2R. The suffixed number repre-
sents the position of the C-terminal phosphorylation site. 
V2Rpp-1 not only activated β-arrestin but also recruited 
c-Raf-1 kinase to the V2Rpp-1-β-arrestin1 complex. The 
V2Rpp-3-β-arrestin1 complex interacted with MEK1. 
Both c-Raf-1 and MEK1 are effectors of V2R. V2Rpp-6,7 
was mainly responsible for regulating the nuclear locali-
zation sequence (NLS) structure in the N-terminal 
domain of β-arrestin1. An analysis of the structure of 
V2Rpp-4 and β-arrestin1 showed that this complex causes 
the rearrangement of C-terminal pS357 and pT359 and 
causes β-arrestin1 and pT359 to form phospho interac-
tions. In the study of V2R C-terminal phosphorylation 
sites, T359 was not included as one of the seven phos-
phorylation sites studied by the flute model [27, 28, 31]. 
However, this site was included in the bar code model 
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studies [29, 30]. This is a primary difference between the 
two models in the study of V2R.

The flute model is similar to the bar code model; how-
ever, the flute model not only enriches the bar code 
model theory but also explains the GPCR phosphoryla-
tion recognition theory from the perspective of struc-
tural changes.

GPCR phosphorylation QR code model
There are more than 800 known GPCRs in the human 
body, but research on receptor phosphorylation recog-
nition patterns has mainly focused on rhodopsin and 
V2R [27, 29, 30, 97]. Ligands, GPCR type, GRK, arrestin, 
the phosphorylation sites may all affect phosphoryla-
tion recognition. These factors play a combined role to 
ultimately determine the biological impact of phospho-
rylation (Table  1). For instance, angiotensin II (Ang II) 
is the agonist for AT1R. Under the stimulation of Ang 
II, the activation of AT1R is maintains operational for 
only a short period of time. β-arrestin recruited to the 

AT1R phosphorylated by GRK2/3 and promoted AT1R 
endocytosis; however, ERK activation mediated by 
β-arrestin was enhanced when AT1R was phosphoryl-
ated by GRK5/6 [78]. AT1-AA was another agonist for 
AT1R. Under the stimulation of AT1-AA, AT1R was sus-
tained activation, making the recruitment of β-arrestin 
restricted and the endocytosis of AT1R thus limited [35].

A similar phenomenon exists in the β1-AR. The 
β-adrenergic receptor agonist isoproterenol (ISO) acti-
vates receptors and signals via the Gs pathway [17]. Phos-
phorylated β1-AR recruits β-arrestin and drives receptor 
desensitization and endocytosis [114]. Meanwhile, the 
presence of β1-adrenergic receptor autoantibody (β1-
AA) in patients with cardiovascular disease, although 
also an agonist of β1-AR, allows for sustained activation 
of β1-AR. Although it increases β1-AR phosphorylation, 
it inhibits the recruitment of the receptor to β-arrestin 
[115]. The reason for this needs further investigation. We 
speculate that it may be related to a mismatch of phos-
phorylation sites. That is, the β1-AR phosphorylation 

Fig. 4  Flute model diagram. This picture is from the review by Yang et al. [28]
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site is not efficiently recognized by β-arrestin under 
the action of β1-AA. Carvedilol as a representative of 
β-blocker could biased active β1-AR-Gi-β-arrestin path-
way. Activation of this pathway could then exert car-
dioprotective effects by transactivating the epidermal 
growth factor receptor (EGFR)- extracellular signal-regu-
lated kinase (ERK) pathway [49, 116]. The above evidence 
illustrates the phosphorylation of GPCR and its complex 
and variable functions. Therefore, only the precise regu-
lation of the multiple factors involved in this process can 
ensure the accuracy of signaling.

This modulation is similar to a “QR” code (Fig.  5), 
which produces the final information after integrat-
ing various components. Ligands, the GPCR type, the 
GRK, arrestin and GPCR phosphorylation sites can all 
be thought of as information that is integrated into a QR 
code. Receptor desensitization, endocytosis, signaling 
and other functions represent information that is gener-
ated by the QR code.

Conclusion
Accurately understanding the process of GPCR phospho-
rylation recognition will help to fully describe the way 
in which arrestin binds to receptors and its functional 
mechanism. It will also help us to better understand the 
physiological state of the body and provide potential tar-
gets and ideas for disease prevention and treatment. At 
present, research on the mode of GPCR phosphorylation 
recognition mainly focuses on the bar code model and 
the flute model [28–30, 62, 79]. These two models show 
the process of receptor phosphorylation recognition 

from the perspective of GPCRs, GRK, and arrestin, laying 
the foundation for GPCR phosphorylation recognition.

Analysis of the barcode model and the flute model 
revealed that the detection of the phosphorylation recog-
nition process by these two models was mainly between 
GPCR and GRK or GPCR and arrestin [28, 29], with less 
detection of the mutual recognition between the three 
[79]. Our knowledge of the two recognition models is 
mainly focused on V2R and rhodopsin, with V2R being 
the most studied receptor carried out [27, 29, 30, 97]. But 
this is less than one fourth of one percent compared to 
the more than 800 GPCRs in the human body. This indi-
cates that our recognition of GPCR phosphorylation pat-
terns is still lacking. During receptor phosphorylation, 
factors such as ligand, receptor, GRK, arrestin, and phos-
phorylation site all affect the final function of the recep-
tor. Therefore, we are proposing the QR code model to 
theoretically explain the effect of multiple factors acting 
together on receptor function.

The difference between the QR code model and the 
barcode model or the flute model is that the QR code 
model integrates the factors influencing the whole pro-
cess from GPCR activation to arrestin function, such as 
ligands, GRK, etc. This model is developed on the exist-
ing theory and is based on the two existing recognition 
models. Based on our re-thinking on the recognition 
model of GPCR phosphorylation, we find both of the 
earlier models hold their own strengths, but limited. 
The barcode model and the flute model can determine 
the interactions between GPCR and GRK or arrestin 
with experimental precision, while the QR code model 

Table 1  Examples of multiple factors affecting GPCR phosphorylation recognition

Ligand GPCR GRK Arrestin Sites Function References

ISO β2-AR GRK2 β-arrestin2 T360, S364, S396, S401, S407, 
S411

Receptor desensitization and 
internalization;
ERK activation

[79]

GRK6 S355, S356

Angiotensin II AT1R GRK2/
GRK3

β-arrestin – Receptor internalization [78]

GRK5/
GRK6

ERK activation

Arginine-vasopressin V2R – β-arrestin2 S357 Receptor trafficking [30]

S362, S363 Receptor trafficking;
ERK activationT360

Dopamine D2 dopamine receptor GRK2/
GRK3

β-arrestin S285, S286, T287, S288, T293, 
S311, S317, S321

Receptor trafficking and 
recycling

[128]

Carbachol m2 Muscarinic acetylcholine 
receptors

GRK2 β-arrestin Cluster S286-S290 Receptor internalization [129–131]

Cluster T307-S311 Receptor desensitization and 
internalization

Carbachol m3 Muscarinic acetylcholine 
receptors

GRK2 – Cluster S331-S333, Cluster 
S348-S351

Receptor internalization [132]

Methacholine – β-arrestin S384 [133]
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considers the receptor phosphorylation process macro-
scopically and is more theoretically oriented.

We are also conscious of the fact that the QR code 
model still has limitations and does not fully explain 
some specific phenomena of the GPCR phosphoryla-
tion recognition process. (1) Phosphorylation of some 
receptors is not involved in receptor endocytosis. Human 
lutropin receptor belongs to the class A GPCRs [117]. 
Although its agonist, human chorionic gonadotropin, 
can cause β-arrestin2-mediated receptor endocytosis, it 
is the receptor activity rather than the phosphorylation of 
the receptor that determines receptor endocytosis [118]. 
It is showed that mutations in the extracellular second 
loop of the receptor, F515A and T521A, enhance agonist-
induced receptor endocytosis, while mutations in S512A 

and V519A impair agonist-induced receptor endocyto-
sis. However, agonists have no effect on phosphorylation 
of either mutant receptor [119]. A comparative study of 
mutant receptors with impaired activity and impaired 
phosphorylation revealed that it is the activity of the 
receptor, but not the impaired phosphorylation, that that 
lengthens the time of receptor endocytosis [120]. (2) The 
presence of basal activation state of some receptors. The 
basal activation state of β2-AR in cardiomyocytes main-
tains cardiomyocyte beating without the involvement of 
ligands [17, 121]. (3) Intracellular activation of GPCR. β1-
AR is distributed in both cell and organelle membranes 
and both can signal through the cAMP-PKA pathway 
[122, 123]. However, how the activated GPCR on the 
organelle membrane is desensitized and endocytosed 

Fig. 5  QR code model for GPCR phosphorylation recognition. Schematic diagram of the QR code model: ligands, GPCR type, GRK, arrestin, 
GPCR phosphorylation sites and other factors work together to determine the fate of phosphorylated receptor desensitization, endocytosis, the 
continuation of signal transmission, or other functions
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remains to be further investigated. The above phenom-
ena again illustrate the complexity of the GPCR signal-
ing process. The existing theories or hypotheses are only 
summaries of known experimental results and specula-
tions on the unknown. Our knowledge and understand-
ing of GPCR phosphorylation recognition patterns still 
need to be further improved.

GPCR signal recognition, including phosphorylation, is 
the basis for the development of biased drugs. The pres-
entation of allosteric microprocessors theory elaborated 
the mechanism of GPCR biased signaling. In this theory, 
biased ligands, GPCRs, transducers such as GRKs, G pro-
teins and arrestins interacted allosterically. Biased ligands 
transmitted distinct GPCRs structural information that 
was processed into distinct biological outputs [124]. A 
biased agonist is a ligand that preferentially activates one 
receptor signaling pathway over another [37]. Oliceridine, 
a biased agonist of opioid receptors, specifically activates 
the μ-opioid receptor-G protein pathway and inhibits the 
binding of β-arrestin to the receptor, thereby achieving 
an analgesic effect. Unlike morphine, another agonist of 
μ-opioid receptors, the biased activation of oliceridine 
achieves an analgesic effect while avoiding adverse reac-
tions such as respiratory depression caused by β-arrestin 
activation [125, 126]. Recent studies have also found that 
carvedilol, which has biased characteristics to activate 
the β2-AR-β-arrestin pathway, enhanced skeletal mus-
cle contractility in mice without causing skeletal muscle 
cell hypertrophy. This feature might have therapeutic 
value for patients with sarcopenia and frailty. Although 
clenbuterol, another agonist of β2-AR, also enhanced 
the contractility of skeletal muscle cells, it caused cell 
hypertrophy and caused side effects such as arrhythmia 
[127]. Biased activation of the desired signaling pathway 
can minimize side effects while achieving the therapeu-
tic effect, which is a characteristic of biased drugs. GPCR 
signaling pathways have been intensely studied for drug 
research and development owing to their characteristics 
of phosphorylation, and select pathways can be accu-
rately activated or blocked to treat diseases.
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