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GqPCR‑stimulated dephosphorylation 
of AKT is induced by an IGBP1‑mediated PP2A 
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Abstract 

Background:  G protein-coupled receptors (GPCRs) usually regulate cellular processes via activation of intracellular 
signaling pathways. However, we have previously shown that in several cell lines, GqPCRs induce immediate inac‑
tivation of the AKT pathway, which leads to JNK-dependent apoptosis. This apoptosis-inducing AKT inactivation is 
essential for physiological functions of several GqPCRs, including those for PGF2α and GnRH.

Methods:  Here we used kinase activity assays of PI3K and followed phosphorylation state of proteins using specific 
antibodies. In addition, we used coimmunoprecipitation and proximity ligation assays to follow protein–protein inter‑
actions. Apoptosis was detected by TUNEL assay and PARP1 cleavage.

Results:  We identified the mechanism that allows the unique stimulated inactivation of AKT and show that the 
main regulator of this process is the phosphatase PP2A, operating with the non-canonical regulatory subunit IGBP1. 
In resting cells, an IGBP1-PP2Ac dimer binds to PI3K, dephosphorylates the inhibitory pSer608-p85 of PI3K and thus 
maintains its high basal activity. Upon GqPCR activation, the PP2Ac-IGBP1 dimer detaches from PI3K and thus allows 
the inhibitory dephosphorylation. At this stage, the free PP2Ac together with IGBP1 and PP2Aa binds to AKT, causing 
its dephosphorylation and inactivation.

Conclusion:  Our results show a stimulated shift of PP2Ac from PI3K to AKT termed “PP2A switch” that represses the 
PI3K/AKT pathway, providing a unique mechanism of GPCR-stimulated dephosphorylation.
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Background
The PI3K/AKT is a central signaling pathway that trans-
mits a variety of extracellular signals to induce cellular 
processes such as proliferation, survival, metabolism, 
differentiation, and upon dysregulation also cancer [1–
3]. The mechanism by which the PI3K/AKT pathway is 

activated has been extensively studied. It was shown that 
the activation involves the recruitment of PI3K to the 
plasma membrane [4], where it converts the membranal 
phosphoinositide PIP2 to PIP3 that recruits AKT Ser/Thr 
kinase to its vicinity. This allows the phosphorylation of 
Thr308 and Ser473 and binding to membranes that are 
necessary for the full activation of AKT [5]. Thereafter, 
activated AKT phosphorylates downstream substrates 
that regulate transcription, survival, translation, migra-
tion and metabolism. As in most signaling pathways, the 
activation of the PI3K/AKT pathway is transient, and its 
negative regulators include phospholipid phosphatases 
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(PTEN) at the PI3K level and the protein phosphatases 
PP2A and PHLPP at the AKT level [6–8].

PP2A is a Ser/Thr protein phosphatase that plays a 
role in the regulation of many cellular processes [9, 10]. 
Under most circumstances it acts as a heterotrimer com-
posed of a scaffold (A subunit, PP2Aa), a catalytic (C sub-
unit, PP2Ac) and a regulatory subunit ((B subunit) [11, 
12]). While the A and C subunits are composed of two 
very similar isoforms each, the B subunit consists of up 
to 17 different proteins, which determine PP2A’s specific-
ity. In addition to the classical heterotrimer, PP2A can act 
as heterodimers of PP2Ac and PP2Aa subunits [9, 13], or 
PP2Ac and B subunits [14]. In addition, PP2Ac interacts 
with another protein termed immunoglobulin-α-binding 
protein  1 (IGBP1; also known as α4; [15, 16]), to form 
an active dimer [17, 18]. The ability of PP2Aa to interact 
with this dimer and affect its activity is still controversial 
([15, 19] vs [20, 21]), and needs further clarification.

Importantly, the various PP2A complexes dictate the 
specificity of the phosphatase to act on processes such 
as cell cycle progression, metabolism and survival [11, 
12]. Thus, PP2A can induce apoptosis in some systems 
[22], and was also identified as a tumor suppressor pro-
tein complex [23, 24]. This activity was shown in mouse 
models [11], and aberrant expression, mutations and 
regulation were found in various human malignancies. 
Importantly, some of the effects of PP2A in survival and 
apoptosis are due to regulation of the survival signaling 
protein kinase AKT [25, 26]. Indeed, PP2A dephospho-
rylates both activatory p-Ser473 and p-Thr308 of AKT, 
to induce its full inactivation [25]. The AKT-inactivating 
PP2A in mammals was shown to be composed of the 
B regulatory PR56β and PR56γ [27], as well as B55 [28, 
29] that determine the proper and timely inactivation of 
AKT.

G protein coupled receptors (GPCRs) are the larg-
est group of membranal proteins that mediate cellular 
responses to a wide variety of extracellular agents [30–
32]. GPCRs function via heterotrimeric G proteins, as 
well as G-protein independent mechanisms [33, 34], that 
transmit signals to signaling pathways such as the PI3K/
AKT [35]. The GqPCRs function primarily via activation 
of phospholipase C-β [36], which further produces inosi-
tol 1,4,5 trisphosphate and diacylglycerol. These second 
messengers elevate protein kinase C (PKC) activity, and 
affect the AKT/PI3K [37] and other signaling pathways 
[38] to induce the GqPCR effects [39–42]. Two unex-
pected GqPCR-induced physiological outcomes are cell 
cycle arrest and apoptosis [43]. For instance, cardiac 
hypertrophy is mediated by mediators acting through 
GqPCRs [44]. In addition, gonadotropin-releasing hor-
mone (GnRH) induces apoptosis in granulosa [45] and 
prostate cancer [46] cells, and prostaglandin F2α (PGF2 

α) induces apoptosis of granulosa cells [47], both by 
reduced AKT activity.

In order to further study the mechanism of GqPCR-
induced inactivation of AKT, we previously screened 
21 cell lines and found a stimulated reduction in AKT 
phosphorylation in 10 of them [48]. This effect was 
PKC-dependent, correlated with reduced AKT activity, 
JNK activation, and in some cases led to apoptosis. We 
showed that the apoptosis is mediated by two signaling 
branches, converging at the level of MLK3, upstream of 
JNK. One branch consists of c-Src activation of MLK3, 
and the second includes reduction in AKT activity that 
alleviates its inhibitory effect on MLK3. This study pre-
sented a general mechanism that mediates a GqPCR-
induced, death receptors-independent, apoptosis [48]. 
The mechanism of AKT inactivation downstream of 
GqPCR/PKC, however remained unknown.

Here we show that the main regulator of the stimu-
lated AKT dephosphorylation is PP2A, which switches 
its interaction from PI3K to AKT upon GqPCR stimula-
tion (PP2A switch). In resting cells, PP2A interacts with 
the lipid kinase PI3K to dephosphorylate its inhibitory 
pSer608 of the regulatory p85 subunit (Ser608-p85) [49], 
thus maintaining high basal PI3K/AKT activity. Upon 
GqPCR stimulation, PP2A detaches from PI3K and allow 
its autoinhibition. PP2A then binds to AKT, dephospho-
rylating its activatory sites and inhibiting its activity. This 
switch of PP2A from PI3K to AKT upon stimulation is 
regulated by IGBP1, that directs the PP2Ac to both PI3K 
and AKT. Although PP2Aa can interact with the IGBP1-
PP2Ac complex upon stimulation, it does not seem 
involved in this switch’s activities. Overall, our results 
delineate a mechanism of stimulated inactivation of both 
PI3K and AKT to induce a death-receptors-independent 
apoptosis in various cells.

Methods
The aim, design and setting of the study
The aim of this study was to elucidate the mechanism 
by which GqPCR induces AKT-inactivation mediated 
apoptosis. In order to do so, we followed the activity and 
phosphorylation of AKT, PI3K and identified PP2A as 
the main regulator of the process. We also found that the 
PP2A effect is mainly mediated by IGBP1.

Reagents and antibodies
GnRH analog (GnRH-a), Tetradecanoylphorbol ace-
tate (TPA), Okadaic Acid, Polyethylenimine (PEI), 
4′6-diamino-2-phenylindole (DAPI) and PLA kit were 
obtained from Sigma (Rehovot, Israel). GF109203x was 
obtained from Calbiochem (Darmstadt, Germany). Pro-
tein A/G beads were obtained from Santa Cruz Biotech-
nology (Santa Cruz, CA, USA). Dharmafect was obtained 
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from Thermo Scientific (Lafayette, CO, USA). 8-iso PGF2 
α was purchased from Cayman Chemical (Ann Arbor, 
MI, USA). Monoclonal anti-PP2A Ab was obtained from 
BD Transduction Laboratories (New Jersey, USA). Anti-
IGBP1 and monoclonal anti-PI3K Abs were obtained 
from Abcam (Cambridge, UK). Anti-GFP and anti-HA 
Abs were obtained from Roche Diagnostics (Mannheim, 
Germany). Monoclonal anti-AKT, Tubulin, GAPDH, and 
PKC α were obtained from Santa Cruz Biotechnology 
(CA, USA). Abs to phosphorylated JNK (pJNK), general 
JNK1/2 (gJNK), general AKT (gAKT) and histone H1 
were from Sigma (Rehovot, Israel). Anti-phospho AKT 
(pS473AKT) was obtained from Cell Signaling Technol-
ogy (Boston, MA, USA). Anti-PI3K was purchased from 
Upstate (Lake Placid, NY New York), or Millipore (Biller-
ica, MA). The anti-phosphorylated PI3K (P85-S608) Abs 
was prepared by the Ab unit of the Weizmann Institute of 
Science (Rehovot Israel as previously described [50, 51]). 
Secondary Ab conjugates were from Jackson Immunore-
search (West Grove, PA, USA).

Buffers
Buffer A: 50  mM β-glycerophosphate (pH 7.3), 1.5  mM 
EGTA, 1  mM EDTA, 1  mM dithiothreitol, and 0.1  mM 
sodium vanadate. Buffer H: 50 mM β-glycerophosphate, 
pH 7.3, 1.5  mM EGTA, 1  mM EDTA, 1  mM DTT, 
0.1 mM sodium vanadate, 1 mM benzamidine, 10 µg/ml 
aprotinin, 10 µg/ml leupeptin, and 2 µg/ml pepstatin A. 
Coimmunoprecipitation (CoIP) buffer: 20  mM HEPES 
pH 7.4, 2 mM MgCl2, 2 mM EGTA, 150 mM NaCl and 
0.1% Triton.

Plasmids
PP2Ac plasmid was cloned from mRNA from HeLa cells 
into HA-pCDNA3 between the HindIII and BamHI sites. 
PP2Aa cDNA in pMIG was obtained from Addgene, 
and transferred into pEGFPC1 between EcoRI and KpnI 
with FLAG preserved.  The mutants was prepared using 
Quickchange method. IGBP1 was cloned from HeLa cells 
and the GFP-IGBP1 plasmid was created in pEGFP plas-
mid using BamH1 sites in both sides.

Cell culture and transfection
αT3 cells were obtained and cultured as previously 
described [52]. Briefly, the cells were cultured in Dul-
becco’s modified Eagle’s medium (DMEM) supplemented 
with 2  mM L-glutamine, 1% pen/strep and 10% fetal 
bovine serum (FBS). SVOG4 cells from N. Auersperg 
(University of British Columbia, Vancouver, Canada) 
were cultured in the same medium combination with the 
addition of hydrocortisone (0.5  mg/ml), and Gentamy-
cin Hydrochloride. PC3 cells from ATCC were cultured 
in RPMI supplemented with 2 mM L-glutamine, 1% pen/

strep and 10% FBS. Cells were transfected using polyeth-
ylenimine (Sigma; Rehovot Israel [53]). Si-RNAs were 
transfected using Dharmafect (Dharmacon) according to 
the manufacturer’s instructions.

Cell extraction and western blotting
Cells were grown to subconfluency and then serum-
starved (0.1% FBS for 16  h, as described [54, 55]. After 
stimulation or other treatments, cells were rinsed twice 
with ice-cold phosphate buffered saline (PBS), which 
was replaced with Buffer H. The cells were then scraped 
into Buffer H (0.5  ml/plate), sonicated (50  W, 2 × 7  s), 
and centrifuged (20,000 × g, 15  min). Aliquots of cellu-
lar extracts were subjected to SDS-PAGE and transferred 
onto nitrocellulose membranes (Tamar, Jerusalem, Israel) 
by electroblotting. Membranes were incubated with the 
corresponding primary Ab (60  min, 23  °C), followed by 
washes and incubation with horseradish peroxidase con-
jugated secondary Ab. The phospho and general Abs 
were probed on distinct blots with equal amount of load-
ing. Blots were developed using the ChemiDoc (BioRad, 
Hercules, CA USA). Each experiment was performed at 
least three times to obtain significant data. Quantifica-
tion of the band intensities was performed using BioRad 
analysis tool (Madison WI, USA).

Non‑denaturing gel electrophoresis
Cells were grown to subconfluency, starved (0.1% serum) 
for 16 h, harvested in Buffer H not containing DTT, soni-
cated and centrifuged (20,000 × g, 15  min, 4  °C). Sam-
ples were resuspended in non-denaturing sample buffer 
(62.5  mM Tris–HCl, pH 6.8, 25% glycerol, 1% Bromo-
phenol Blue) and resolved on 8% native gel (without SDS 
and DTT in both the polyacrylamide gel and the running 
buffer). Western blot was performed as described above. 
Molecular weight markers were resolved in the gel were 
the same as those used for SDS gels.

Coimmunoprecipitation
Cells were grown to subconfluency, serum-starved as 
above, and treated as indicated. Cell extracts were pro-
duced as previously described [55] and incubated for 2 h 
at 4 °C with Protein A/G-agarose beads (Santa Cruz Bio-
technology, CA, USA) pre-linked with specific Abs (1 h, 
23  °C). The bound A/G beads were washed three times 
with ice-cold washing buffer containing 10 mM Tris, pH 
7.4, 1 mM EDTA, 1 mM EGTA, pH 8.0, 150 mM NaCl, 
and 0.5% Triton X-100. Beads were then resuspended 
with 1.5X sample buffer and boiled; the resolved proteins 
were analyzed by Western blotting with the indicated 
Abs.
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PI3K activity
PI3K activity was determined as previously described 
[56]. Briefly, serum-starved cells were stimulated, washed 
and then lysed in PI3K lysis buffer (20 min on ice). The 
lysates were then, centrifuged (15,000xg, 15  min, 4  °C), 
and incubated with immobilized (Protein A/G-agarose 
beads) anti-p85α Ab (1 h, 37 °C). Co-IP (2 h at 4 °C), fol-
lowed by two washes with lysis buffer and one with Tris-
buffered saline: 50 mM Tris–HCl, pH 7.4, 150 mM NaCl. 
PI3K activity was assayed by resuspending the IP in the 
same buffer (50  μl) with sonicated phosphoinositides 
(L-α-phosphatidyl-D-myo-inositol; final concentration, 
0.2 mg/ml) and [γ-32P]ATP (Amersham Biosciences, UK; 
40 μM; 12,000 cpm/pmol). The kinase reactions (10 min, 
37 °C) were stopped by 200 μl of 1 N HCl and 400 μl of 
CHCl3/MeOH (1:1). The organic phase was collected and 
re-extracted with 40 μl of MeOH/HCl (1:1). The samples 
were then dried, resuspended in 30 μl of CHCl3/MeOH 
(1:1), and spotted onto Silica Gel 60 TLC (GE, Pittsburgh, 
PA USA). The plates were developed in propanol/2  M 
acetic acid (65:35), and autoradiographed. Phospholipid 
markers (Sigma Chemicals Co., St. Louis, MO) were used 
for the identification of the products.

TUNEL
Apoptosis analysis was done as previously described [57]. 
Subconfluent PC3 and αT3-1 cells were plated on glass 
coverslips in 12 well plates under the standard culture 
conditions as described above. Twenty-four hr after the 
initial seeding, cells were serum-starved and then treated. 
At different times after treatment the cells were fixed 
with paraformaldehyde solution (4% in PBS (pH 7.4) for 
1 h at 23 °C), washed with PBS and then incubated with 
0.1% Triton X-100 in 0.1% sodium citrate (2 min, 4  °C), 
washed again with PBS, and incubated with terminal 
deoxynucleotidyltransferase-mediated nick end labeling 
(TUNEL) reaction mixture containing fluorescein-dUTP 
and terminal deoxynucleotidyltransferase (Roche Molec-
ular Biochemicals, Germany) for 30 min at 37 °C. Prepa-
rations were analyzed by fluorescence microscopy.

Proximity ligation assay
Protein–protein interactions were detected with 
Duolink PLA Kit (Olink Bioscience), according to the 
manufacturer’s protocol as described [58]. Briefly, cells 
were grown, fixed and permeabilized as described for 
immunofluorescence staining. The samples were then 
incubated with primary Abs against two proteins sus-
pected to interact (60 min, 23  °C), and then incubated 
with specific probes according to manufacturer’s proto-
col, followed by DAPI staining to allow visualization of 
nuclei. The signal was visualized as distinct fluorescent 

spots by fluorescence microscopy (Olympus BX51, or 
spinning disc confocal Zeiss microscope both at × 40 
magnification). Background correction, contrast adjust-
ment and quantification were performed using Photo-
shop (Adobe) and ImageJ.

Statistical analysis
Data are expressed as mean ± S.E, carried out using 
Student’s t test (two-tailed) to test for differences 
between the control and experimental results.

Results
PP2A regulates the PKC‑dependent AKT inactivation
We have previously shown that in several cell types, 
activation of PKC, either by GqPCR or directly by 
phorbol ester (TPA) results in an inhibition of AKT 
phosphorylation on its activatory residues Thr308 
and Ser473 [48]. PGF2α and GnRH-a were shown to 
decrease basal AKT phosphorylation and activity. We 
undertook to study the mechanism of this unique sign-
aling event, and for this purpose chose three cell lines 
that demonstrated stimulation-dependent decrease in 
AKT phosphorylation: the pituitary αT3-1, granulosa 
SVOG-40 and prostate cancer PC3. Most of the experi-
ments below were performed on two out of these three 
cell lines. As expected [48], PKC activation by either 
TPA (Fig.  1a, b) or GqPCR ligand (PGF2α; Additional 
file  1: Fig. S1A,B) reduced the phosphorylation of the 
activatory pThr308 and pSer473 residues of AKT in a 
time dependent manner. The dephosphorylation of 
both phosphorylated residues was very similar to each-
other, which is in agreement with our previous finding 
in which we found that Ser473 and Thr308 are phos-
phorylated/dephosphorylated simultaneously under 
all conditions used [48]. Throughout the rest of the 
study we show mainly the effect on pSer473, which 
generally represents pThr308 as well. As expected, 
inhibition of PKC activation using the pan-inhibitor 
GF109203x (GFx) prevented the reduction in phos-
phorylation (Fig. 1c, d, and Additional file 1: Fig. S1A). 
This dephosphorylation of AKT may be catalyzed by  
PTEN, PP2A, or PHLPP  [6–8, 59]. Preincubation with 
the PP2A inhibitor okadaic acid prevented the dephos-
phorylation of AKT (Fig. 1c, d and Additional file 1: Fig. 
S1B), and the effect of PP2A was confirmed by knock-
down of the PP2Ac in αT3-1 cells (Fig. 1e). No effects 
were observed with SiRNA of the lipid phosphatase 
PTEN (Fig.  1f ). These results, together with the fact 
that PC3 are PTEN-null cells [60], indicates that PTEN 
or PHLPP, which is not sensitive to okadaic acid, are 
not major regulators of this process.
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PP2A‑regulated PI3K inactivation plays a role in AKT 
dephosphorylation
In view of the dephosphorylation of AKT upon stimu-
lation, we undertook to elucidate the upstream com-
ponents that may contribute to the effect. Since PI3K 
is the main activator of AKT [61], we first examined 
its involvement. To our surprise, we found that in rest-
ing cells, PI3K has a pronounced basal activity, which 
is decreased shortly after stimulation with PGF2α or 
GnRH-a and abolished within 30 min (Fig. 2a, b). Due to 
their involvement in AKT regulation, we then examined 

whether PKC and PP2A are involved in the downregula-
tion of PI3K activity as well. Indeed, we found that GFx 
prevented the stimulus-induced inactivation (Fig. 2c, d), 
suggesting that unlike most systems, PKC is involved in 
the PI3K regulation. More surprising, however, was the 
finding that treatment of quiescent SVOG-40 and αT3-1 
cells with okadaic acid results in a significant reduction of 
the basal catalytic activity of PI3K (Fig. 2c, d). This effect 
was not changed upon stimulation, suggesting that PP2A 
plays a role in the maintenance of the relatively high basal 
PI3K activity, without much effect on the stimulated 
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acid (OA, 0.5 µM, 20 min), treated with 0.1 µM GnRH-a or 10 μM PGF2α for 30 min, and then subjected to lipid phosphorylation assay as in a, b. 
e, f Anti-phospho Ab reveals a PKC dependent phosphorylation of Ser608-p85. Serum starved αT3-1 (e) or PC3 (f) cells were stimulated with TPA 
(250 nM) for the indicated time, cells were harvested and analyzed by Western Blotting with the newly developed anti-pPI3K (pSer608-p85) and 
anti-p85 Abs. The graphs in the bottom panels represent means ± standard errors of three experiments. * p < 0.01
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activity. Interestingly, it has previously been shown that 
the catalytic 110 kDa subunit of PI3K is not just a lipid 
kinase, but has an intrinsic protein Ser/Thr kinase activ-
ity as well [49, 62]. Thus, the 110 kDa subunit is capable 
of autophosphorylating Ser608 of the PI3K’s p85α subu-
nit, which results in a decreased PI3K activity, and PP2A 
reverses this inhibitory effect [62, 63]. To test whether 
such an effect is involved in the regulation of PI3K in 
our system, we generated antibody (Ab) to pSer608-p85, 
and confirmed its specificity to the phosphorylated resi-
due (Additional file  1: Fig. S2). Indeed, the Ab detected 
elevated p85 phosphorylation upon PKC activation by 
TPA or GnRH and okadaic acid (Fig. 2e, f and Additional 
file  1: Fig. S2). Thus, our results confirm the phospho-
rylation of Ser608 on p85, indicate that it operates in our 
system, and suggest that it might be the site of the PP2A-
mediated regulation.

PP2A detaches from PI3K and binds to AKT 
upon stimulation to form a PP2A switch
Since dephosphorylation often requires direct interac-
tions between the phosphatase and its target [64], and 
to further learn about the role of PP2A in the regula-
tion of PI3K and AKT, we undertook to study the inter-
actions of the phosphatase with the two kinases. For 
this purpose, we performed coimmunoprecipitation 
(CoIP) experiments and found that the catalytic subu-
nit of PP2A (PP2Ac) specifically precipitates with AKT. 
This interaction was significantly enhanced upon TPA 
stimulation in both cell lines (Fig. 3a, b). We then exam-
ined whether PP2A may interact with PI3K, and whether 
this interaction can be modulated by stimulation. Thus, 
both cell lines were subjected to CoIP, using anti-PP2Ac 
Ab for the immunoprecipitation (IP) and anti-PI3K Ab 
for Western blotting. This experiment revealed that PI3K 
interacts with PP2A in quiescent cells, and this interac-
tion is significantly reduced after stimulation (Fig.  3c, 
d; Additional file 1: Fig. S3). The results of both PP2Ac-
AKT and PP2Ac-PI3K interactions were confirmed 
using additional cell lines and stimuli as well as proxim-
ity ligation assay (PLA; Fig.  3e, f; Additional file  1: Fig. 

S4). Our results best fit a model in which in resting cells, 
PP2A interacts with PI3K, dephosphorylates the inhibi-
tory pSer608-p85, and thus keeps the PI3K active. Upon 
stimulation, PP2A is detached from PI3K, and thereby 
allows incorporation of phosphate to Ser608-p85 by 
autophosphorylation, inactivating the kinase. The PP2A 
released from PI3K then interacts with AKT, and dephos-
phorylates the activatory Thr308 and Ser473 residues 
of the kinase. We termed these alternate interactions 
that downregulate both PI3K and AKT activities “PP2A 
switch”.

IGBP1 regulates the PP2A switch
PP2A usually acts as a heterotrimeric complex composed 
of PP2Aa, PP2Ac and a regulatory B subunit. While the 
A and C subunits are each encoded by two distinct genes 
that are very similar to each other, there are no less than 
17 different B subunits and several other PP2Ac-inter-
acting proteins that contribute to the specificity of the 
phosphatase [12]. To determine the specific subunit(s) 
that regulates the PKC-dependent AKT dephosphoryla-
tion, we performed an SiRNA screen in αT3-1 cells. In 
this screen, we knocked down the expression of most 
types of B, as well as IGBP1, the two PP2Ac and the two 
PP2Aa isoforms, followed by stimulation with GnRH-
a for 30  min (Fig.  4a). A loss of stimulation-dependent 
pSer473-AKT dephosphorylation that was consistent 
in the screens performed was observed with the SiRNA 
of R2D, R3C and, most prominently, IGBP-1. Unlike 
the results with the knockdown of the two isoforms of 
PP2Ac together (Fig.  1e), the individual knockdown of 
each PP2Ac isoform (Fig. 4a) did not affect the stimula-
tion-dependent AKT dephosphorylation. The reason is 
probably that the reduction in total expression of PP2Ac 
did not exceed 50%, which is not sufficient to cause cel-
lular effects. Although it is possible that the knockdown 
of some proteins was not sufficient, and they do partici-
pate in AKT regulation, we decided to concentrate on 
the B-subunits that did show some effect. Therefore, we 
examined the effect of these SiRNAs (Fig.  4b), as well 
as the SiRNA of R4 (PTPA), on the stimulated AKT 

(See figure on next page.)
Fig. 3  PP2Ac is detached from PI3K and interacts with AKT upon stimulation. a, b Increased AKT-PP2Ac interaction upon stimulation. Serum 
starved αT3-1 (a) and PC3 (b) cells were stimulated with TPA (250 nM) for the indicated times and harvested. Then, PP2A was IPed using 
anti-PP2A and the CoIPed AKT was detected using the indicated Abs. The graphs in the bottom panels represent means ± standard errors of 
three experiments. * p < 0.01, ** p < 0.05. c, d PP2Ac interacts with PI3K’s p85 in resting cells and the interaction is decreased upon stimulation. 
Serum starved αT3-1 (c) and PC3 (d) cells were stimulated with TPA (250 nM) for the indicated times and harvested. Then, PP2A was IPed using 
anti-PP2A and the CoIPed p85 was detected using the indicated Abs. The graphs in the bottom panels represent means ± standard errors of three 
experiments. * p < 0.01, ** p < 0.05. e, f Using PLA to follow PP2Ac interaction with AKT and PI3K’s p85. αT3-1 (left) and PC3 (right) cells were cultured 
on cover slips. The cells were then serum starved, stimulated with TPA (250 nM, 30 min) and fixed. Protein–protein interactions were detected and 
quantified using the PLA kit, as described in experimental procedures. The bar graphs in the lower panels represent means ± standard errors of a 
representative experiment that was reproduced 3 times. Significance of change from non-stimulated (NT) is calculated. * p < 0.01, ** p < 0.05
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dephosphorylation in PC3 cells. Although all four SiR-
NAs reduced the expression of their cognate proteins 
(IGBP1 – 85%, R2D – 90%, R3C—60%, and R4—95%), 
reduction of the stimulated pSer473-AKT dephospho-
rylation was observed only with the SiRNA of IGBP1 
(Fig.  4b). This effect was even more pronounced with 
pThr308-AKT, indicating that IGBP1 is the main subunit 
responsible for the PP2A effect on both phosphorylated 
residues in our system. The lack of effect of the knock-
down of each individual C subunit (Fig. 4a) could be due 
to insufficient reduction of the expression of this protein. 
We therefore used combined knockdown of the two iso-
forms of PP2Aa in PC3 cells. We found that significant 
reduction (~ 75%) in the total expression of PP2Aa had 
no significant effect on AKT dephosphorylation (Fig. 4c). 
These results indicate that unlike PP2Ac and IGBP1, 
PP2Aa is not involved in the PP2A switch.

IGBP1 directs PP2A to PI3K in resting cells and to AKT 
upon stimulation
In order to follow the mechanism by which IGBP1 regu-
lates the PP2A switch, we first examined its interaction 
with PI3K, AKT and PP2Ac. CoIP experiments using 
IGBP1 Ab in both αT3-1 and PC3 revealed that in rest-
ing cells, this protein is bound to PI3K (p85 subunit) and 
PP2Ac, but not to AKT. After TPA stimulation, the inter-
action with PI3K diminished, the interaction with PP2Ac 
did not change, and the interaction with AKT increased 
(Fig.  4d, e). These results were confirmed using PLA 
(Additional file  1: Fig. S4), indicating that IGBP1 is pri-
marily responsible for recruiting the switch-related PP2A 
complex. To further verify this point, we used Si-RNA 
of IGBP1 and followed the effect of the knockdown on 
the interaction in both αT3-1 and PC3 cells. Our results 

show that specific knockdown of IGBP1 (see reduced 
IGBP expression and rescue by overexpression of GFP-
IGBP1 (Additional file 1: Fig. S5)) abolished PP2Ac-PI3K 
interactions, independent of stimulation, and also altered 
the stimulated PP2Ac binding to AKT (Fig.  4f, g). To 
further confirm these results and learn more about the 
components involved, we employed the reciprocal CoIP 
experiment, using either PI3K or AKT for the IP step. 
As expected from the experiments above, we found that 
the binding of PP2Ac and IGBP1 to PI3K is decreased 
upon TPA stimulation (Fig. 5a, b), while their binding to 
AKT is increased (Fig. 5c, d). On the other hand, the B 
subunits that might have been involved in the reaction 
according to the αT3-1 screen (R2D, R3A, R4; Fig.  4a) 
did not bind to AKT or PI3K under any of the conditions 
used. This lack of binding of other B subunits to AKT was 
confirmed also by mass spectrometry (Additional file 1: 
Table S1). These results imply that IGBP1 has a dual func-
tion in the PP2A switch. One is the anchoring of a PP2Ac 
to PI3K in resting cells, and the other is the stimulated 
binding of the PP2Ac to AKT. These functions fully inac-
tivate AKT, and thereby mediate its downstream effects.

Stimulated interaction of PP2Aa with the IGBP1‑PP2Ac 
complex is not involved in the PP2A switch
It was previously reported that IGBP1 may interact not 
only with PP2Ac, but also with PP2Aa, forming differ-
ent sets of dimers [19]. In order to examine this point, 
we blotted the CoIPed proteins with anti PP2Aa Ab. 
While the PP2Aa subunit did not interact with PI3K at 
all (Fig. 5a, b), it did interact with AKT upon TPA stim-
ulation (Fig.  5c, d). This result was confirmed by mass 
spectrometry analysis that showed interaction of PP2Aa 
with both AKT and IGBP1 (Additional file 1: Table S1). 

Fig. 4  Identification of IGBP1 as a key regulator of the PP2A switch. a Si-RNA screen to identify the PP2A B subunit involved in the PP2A switch. 
αT3-1 cells were transfected with the indicated Si-RNAs by incubation of two 6 cm plates for each Si-RNA (6 h, 20 nM SiRNA pool). Then, the cells 
were transferred to a fresh medium with 10% FCS, and the cells were left for 24 h recovery followed by serum starvation for 14 h. Next, for each 
SiRNA, the cells in one plate were stimulated with TPA (250 nM, 15 min) and the other plate was left untreated. Finally, the cells were lysed and the 
extracts were subjected to Western blotting with the indicated Abs. The MW of the gAKT and pAKT in all lanes is 64 kDa. b SiRNA of IGBP1 reduces 
the stimulated AKT dephosphorylation in PC3 cells. PC3 cells were transfected with the indicated SiRNA and treated as described for the αT3-1 cells 
in A. In the final stage, the cells were subjected to Western blotting with additional Abs as indicated. c Combined SiRNAs of the two PP2Aa subunits 
does not affect AKT dephosphorylation. PC3 cells were transfected with the combined SiRNA of both PP2Aa isoforms or scramble control (Si-CTRL) 
for 6 h. Forty-eight hr later, the cells were serum-starved (16 h) and then stimulated with TPA (250 nM, 30 min, +) or left untreated (-). Cell extracts of 
each treatment were then subjected to Western blotting using the indicated Abs. d Stimulated IGBP1 interactions with PI3K’s p85 (PI3K), AKT and 
PP2Ac. αT3-1 (left panels) or PC3 (right panels) cells were serum starved and stimulated with TPA (250 nM) for the indicated times. The cells were 
harvested and then IGBP1 was IPed from the cell extracts using anti-IGBP1 Ab. CoIPed proteins as well as the proteins in the loaded extracts were 
detected using Western blotting with the indicated Abs. e Quantification of the results in d. The graphs represent the average and standard errors of 
three independent experiments. Significance of change relative to non-stimulated (NT) control is calculated for each protein and cell line. * p < 0.01, 
** p < 0.05. f IGBP1 is required for the interaction of PP2A with PI3K and AKT. αT3-1 (left panels) or PC3 (right panels) were transfected with the SiRNA 
(75 nM) of IGBP1 or Scramble control (CTRL) for 6 h (50 nM SiRNA pool), after which the cells were moved to medium containing 10% FCS for 48 h 
to recover followed by serum starvation for additional 16 h. Then the cells were stimulated with TPA (250 nM, 30 min), harvested, and PP2A was IPed 
from the cell extracts using anti-PP2A. The CoIPed proteins were detected using Western blotting with the indicated Abs. g Quantification of the 
results in E. The results shown represent means ± standard errors of three experiments. Significance of change from non-stimulated (NT) control is 
calculated for each protein and cell line. * p < 0.01, ** p < 0.05

(See figure on next page.)
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The fact that all three PP2A subunits examined, namely 
PP2Ac, PP2Aa and IGBP1, bind to AKT upon stimula-
tion (Fig.  5) may indicate that the three subunits form 
complexes. However, since the ability of PP2Ac to inter-
act simultaneously with IGBP1 and PP2Aa is controver-
sial ([15, 19] vs [20, 21]), we undertook to examine it in 
our system. For this purpose, we first CoIPed IGBP1 with 
PP2Aa before and after stimulation, in both αT3-1 and 
PC3 cell lines. Our results demonstrate that in resting 

cells, the interaction between the two subunits is negli-
gible, but is significantly elevated upon TPA treatment 
(Fig. 6a–c). This was confirmed by PLA, as we detected 
a specific interaction in resting cells (Fig.  6d) that was 
increased after stimulation (Fig.  6d right panel). Finally, 
mass spectrometry verified the presence of the PP2Aa as 
well as PP2Ac in the IGBP1 CoIP of PC3 cells (Additional 
file 1: Table S1).
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Although our results clearly indicate that IGBP1 can 
bind to both PP2Aa and PP2Ac after stimulation, they 
do not verify formation of a heterotrimer between 
these subunits. We therefore resorted to non-denatur-
ing gel electrophoresis in order to examine whether a 
trimeric PP2A complex may be detected after stimu-
lation. In resting cells, all three subunits were found 
mainly in various dimers ranging in their molecular 
weights between ~ 55 to ~ 80  kDa, although higher 
molecular weight complexes were seen as well (Fig. 6e). 
After TPA stimulation, the dimers disappeared and 
shifted to increased levels of trimers (~ 130  kDa) and 
mainly other multimers (160–180  kDa). The molecu-
lar weight of the trimers may indicate the existence of 
a PP2Aa, PP2Ac and IGBP1-containing holoenzyme, 
while the multimers likely contained the holoen-
zyme bound to its substrate(s). Complexes containing 
PI3K could not be detected in our system because of 
their very high mass. Importantly, when PP2Aa was 
knocked-down, it did not affect the IGBP1-AKT inter-
action (Fig. 6f ), indicating that the interaction of these 
components is not dependent on the scaffolding func-
tion of the PP2Aa, and corroborating the lack of effect 
of PP2Aa knockdown on the PP2A switch shown above 
(Fig. 4c). Taken together, our results show for the first 
time that the PP2A composition changes shortly after 
stimulation. In addition, we show the possible for-
mation of an IGBP1, PP2Aa and PP2Ac-containing 
holoenzyme. This interaction is stimulus-dependent, 
indicating that it requires post-translational modifi-
cations, which may explain why it is not seen in some 
systems [19, 21]. However, due to lack of effect of 
PP2Aa on the binding of PP2Ac to or dephosphoryla-
tion of AKT, it seems that PP2Aa is not involved in the 
PP2A switch, and the IGBP1-PP2Ac dimer is sufficient 
for its function.

IGBP1 regulates the PP2A switch‑dependent TPA‑induced 
apoptosis
We show here that the PP2A switch can induce the 
inactivation of AKT, and this is regulated by IGBP1, 
which is important both for the release of PP2Ac from 
PI3K and for its binding to AKT. In order to study 
whether this IGBP1-dependent PP2A action indeed 
affects the physiological roles of TPA in the switch-
containing cells we undertook to examine whether it 
may be involved in the TPA-induced JNK activation 
and apoptosis as reported in our previous study [48]. 
Thus, we knocked down IGBP1 in both αT3-1 and PC3 
(> 80% reduction in all cases), and then treated the 
cells with TPA for 30 min. As expected, we found that 
TPA induced the JNK phosphorylation, and this acti-
vation was strongly decreased in the IGBP1 reduced 

cells (Fig.  7a). In order to test the effect on TPA-
induced apoptosis in these cells, we used the IGBP1 
knockdown cells in two apoptotic assays, namely 
PARP1 cleavage (Fig.  7b) and TUNEL (Fig.  7b) in 
which the TPA was administrated for 2  days. Indeed, 
the IGBP1 knockdown completely prevented the TPA-
induced apoptosis as detected by both methods in 
both cell types. Thus, these results confirm that the 
TPA-induced JNK activation that leads to apoptosis is 
mediated by the IGBP1-mediated PP2A switch in both 
cell lines tested where the switch is active.

Discussion
Stimulation of GqPCRs by ligand binding usually results 
in activation of various intracellular signaling pathways 
that consequently culminate in the induction of cellu-
lar responses. We have previously reported that in some 
cells, GqPCR stimulation results, instead, in the inactiva-
tion of the PI3K-AKT pathway, leading to the induction 
of the JNK cascade and consequently to apoptosis [48]. 
This unique signaling seems to play an important role in 
several physiological and pathological  systems, such as 
cardiac hypertrophy [44], pituitary development [45] and 
others. However, very little is known about the molecular 
mechansim involved in the inactivation of the PI3K-AKT 
pathway within minutes after stimulation, and this is the 
subject of the current study. Here we undertook to study 
the molecular mechanisms involved in the inactivation 
of the PI3K-AKT pathway. Our results best fit a model 
in which in resting cells, PP2A dimer containing IGBP1 
and PP2Ac interacts with PI3K, and dephosphorylates 
its autoinhibitory pSer608-p85 (Fig. 8). This dephospho-
rylation results in elevated basal activity of PI3K, for-
mation of PIP3, and activation of AKT. Upon GqPCR 
stimulation, the PP2A detaches from PI3K and interacts 
with AKT to form a complex, composed of AKT, PP2Ac, 
IGBP1, and PP2Aa. The detachment from PI3K results in 
accumulation of phosphate on Ser608-p85 by autophos-
phorylation, and therefore, inactivation of PI3K. In paral-
lel, the stimulation leads to an attachment of the PP2A 
holoenzyme containing PP2Ac, PP2Aa and IGBP1 to 
AKT, resulting in the dephosphorylation of the regula-
tory Thr308 and Ser473, and inactivation. We name this 
process a “PP2A switch”, and show that it is responsible 
for JNK activation and shift to apoptosis.

We show that one of the main regulators of the PP2A 
switch is IGBP1. This protein was initially identified as 
a regulator of Ig receptor signal transduction in B and T 
lymphocytes [65], but soon after was shown to interact 
with and regulate PP2Ac, as well as PP4 and PP6 [17, 66]. 
Although it was shown that IGBP1 might participate in 
the regulation of specificity of PP2A, it clearly does not 
behave as a canonical B subunit under most conditions. 
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Fig. 7  IGBP1 is essential for PP2A-dependent JNK activation and apoptosis upon TPA stimulation. a PC3 and αT3-1 cells were treated with scramble 
(SCR) or IGBP1 SiRNA for 48 h. Cells were then grown to 70% confluency, serum starved (0.1% serum for 16 h) and then treated with or without 
TPA (250 nM, 30 min). Cells were harvested in RIPA buffer and the cell extracts were separated and immunoblotted with the indicated antibodies. 
The bar-graphs represent average and standard errors of three distinct experiments. b Cells were treated as in A, except that the TPA (250 nM) was 
added for 48 h. Then the cells were harvested in RIPA buffer and the cell extracts were separated and immunoblotted with the indicated antibodies. 
The bar-graphs represent average and standard errors of two distinct experiments. c Cells were treated as in B followed by fixation with 4% PFA and 
apoptotic TUNEL assay. The bar-graphs represent average and standard errors of three distinct experiments NT-non-treated. In all cases: * p < 0.01
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For example, IGBP1 can form a stable complex with 
PP2Ac, without the involvement of any PP2Aa or any 
other B subunits. In fact, it was initially proposed that the 
binding of IGBP1 and PP2Aa to PP2Ac is mutually exclu-
sive, mainly because the binding of the subunits requires 
charged residues in adjacent and even overlapping sur-
faces in PP2Ac [15, 19]. However, other reports indicated 
that such an interaction may exist, at least under some 
conditions [20, 21]). In our systems, the AKT-bound 
(but not PI3K bound) PP2A contain PP2Ac, PP2Aa and 
IGBP1. This parallel binding of PP2Aa and IGBP1 seems 
to require post-translational modification, which might 
be PKC-dependent phosphorylation. Thus, our results 
show for the first time that under some circumstances, 
stimulation may change the composition and substrate 
binding of the PP2A, and consequently its role in regula-
tion of various cellular processes.

Early studies implicated IGBP1 as either a regulator of, 
or subject to regulation by mTOR signaling [17], which 
together with other studies, including ours, suggest that 
IGBP1 is a key regulator of the broad signaling axis of 
PI3K-AKT-mTOR [1]. However, IGBP1 does not regulate 
only this pathway, as it was shown as a key regulator of 
the stress related proteins MEK3 [18], and the ubiquitin 
E3 ligase midline-1 (Mid1 [67]). Interestingly, the speci-
ficity of PP2A towards these two proteins is determined 
by the IGBP1 without binding of PP2Aa or any B subunits 

to the IGBP1-PP2Ac dimer. Moreover, this PP2A dimer 
was shown to act as a regulator of the phosphatase by 
additional means, including directing Mid1 to induce its 
degradation [68]. It was also proposed that IGBP1 could 
act as a chaperon in the formation of a trimeric PP2A 
holoenzyme [69]. Thus, IGBP1 was suggested to have 
two distinct regulatory functions: (i) substrate targeting 
resembling the B-subunit functions, but without PP2Aa 
and (ii) modulating PP2A folding, composition and sta-
bility. In our system we did not detect any change in the 
PP2A stability, and IGBP1 clearly directed PP2A holo-
enzyme to either PI3K or AKT. Therefore, we show that 
IGBP1 can act as a B-like subunit of PP2A holoenzyme, 
and our results support the notion that it is a key regula-
tor of PI3K-AKT-mTOR signaling.

As mentioned above, PP2A is a known regulator of the 
PI3K-AKT pathway, dephosphorylating many of its com-
ponents [1]. Although less studied, it has been shown that 
PP2A regulates PI3K by removing the phosphate from its 
Ser608-p85 residue, which is autophosphorylated by the 
catalytic subunit of this enzyme [62, 63]. Thus, it was first 
reported that a tightly associated protein Ser/Thr kinase 
phosphorylates the p85 subunit of the PI3K and causes 
its inactivation upon stimulation with middle T antigen 
[63]. It was later shown that this associated kinase is in 
fact the 110 kDa catalytic subunit of PI3K. Thus, the cata-
lytic subunit can act as a dual specificity lipid and protein 

Fig. 8  Schematic representation of the PP2A switch. In resting cells (a) the PP2Ac-IGBP1 dimer interacts with the p85 subunit of the PI3K, 
and thereby dephosphorylates it and keeps it active, resulting in the phosphorylation of AKT on both Thr308 and Ser473. The active AKT then 
phosphorylates MLK3 and thereby blocks the activation of JNK [48]. b Upon PKC activation by GqPCR or TPA, the PP2Ac-IGBP1 dimer is detached 
from PI3K, thus allowing inactivation through autophosphorylation on Ser608. c The released dimer forms a trimer with PP2Aa and interacts with 
AKT, dephosphorylating both the activatory residues of the kinase, thus rendering the AKT inactive, and allow activation of the JNK cascade. A more 
detailed description is provided in the discussion section
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kinase. By phosphorylating the Ser608-p85, it inactivates 
both the lipid and protein kinase activities of this enzyme 
[49, 62]. This autophosphorylation is induced by various 
stimuli, suggesting that it may act as a negative feedback 
of the PI3K pathway causing its inactivation. Importantly, 
it was shown that this phosphorylation is counteracted 
by PP2A [62, 63], which consequently permits PI3K acti-
vation. However, the components and regulation of PP2A 
in this system have not been determined up to now. Here 
we show that this regulation might be mediated by an 
IGBP1-containing PP2A. Furthermore, we show that the 
regulation by PP2A also occurs in non-stimulated cells 
to contribute to a relatively high basal activity of the lipid 
kinase. In our system, stimulation disrupted the interac-
tion between PP2A and PI3K, leading to inactivation of 
the lipid kinase activity. This seems a unique event that 
is unlikely to occur upon survival/growth stimulations, 
which have effects opposite to the one described here.

PP2A is one of the most important regulators of the 
protein Ser/Thr kinase AKT, as shown previously [25]. 
The dephosphorylation of this kinase results in its inac-
tivation, and consequently negatively regulates its down-
stream promotion of survival and/or metabolism related 
processes. PP2A heterotrimer consisting of PR56β is 
required for dephosphorylation of residues p-Ser473 
and p-Thr308, at least upon insulin stimulation [27]. We 
therefore entertained the possibility that upon release 
from PI3K, the IGBP1 is replaced by PR56β to induce the 
inactivating dephosphorylation of AKT. No effect of the 
SiRNA directed to PR56β was detected either in our initial 
screen (Fig. 4), or when we knocked down this isoform. In 
addition, no change in the interaction of AKT with PR56β 
was detected in αT3-1 and PC3 cells. Thus, IGBP1 likely 
provides PP2A with the ability to recognize AKT, at least 
in our conditions. As mentioned above, IGBP1 might be 
the main regulator of the PI3K-AKT-mTOR pathway, at 
least when downregulated upon GqPCR stimulation.

Conclusions
We have previously found that, in certain cells, activation 
of GqPCRs results in AKT dephosphorylation and inac-
tivation that leads to JNK activation and apoptosis [48]. 
Here we deciphered the molecular mechanism responsible 
for this pathway. We found that the main regulator of the 
effect is PP2A, which switches its interaction from PI3K 
to AKT upon GqPCR stimulation (“PP2A switch”). In 
resting cells, a heterodimer of PP2A, composed of IGBP1 
and PP2Ac, interacts with PI3K to dephosphorylate its 
inhibitory Ser608-p85, and consequently induce high basal 
PI3K-AKT activity. Upon stimulation, PP2A detaches from 
PI3K, and subsequently binds as a holoenzyme of PP2Ac, 
IGBP1 and PP2Aa to AKT to induce its dephosphoryla-
tion. This process results in the inactivation of the two 

kinases and therefore allows activation of the JNK cascade 
leading to apoptosis. While PP2Ac and IGBP1 are essential 
for this action, PP2Aa binding does not play a role in the 
AKT-inactivating switch. The fact that PP2Aa and IGBP1 
can simultaneously associate with PP2Ac only upon stim-
ulation resolves the controversy regarding this issue, as the 
stimulation probably results in a conformational change 
that allow the simultaneous binding. In addition, it shows 
for the first time that the complex formation of PP2A 
can be modulated by extracellular stimulation. Thus, our 
results delineate a mechanism that involves PI3K and AKT 
that induces a death-receptors independent apoptosis in 
various systems.
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