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Role of autophagy on cancer immune 
escape
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Abstract 

Autophagy is catabolic process by degradation of intracellular components in lysosome including proteins, lipids, and 
mitochondria in response to nutrient deficiency or stress such as hypoxia or chemotherapy. Increasing evidence sug-
gests that autophagy could induce immune checkpoint proteins (PD-L1, MHC-I/II) degradation of cancer cells, which 
play an important role in regulating cancer cell immune escape. In addition to autophagic degradation of immune 
checkpoint proteins, autophagy induction in immune cells (macrophages, dendritic cells) manipulates antigen pres-
entation and T cell activity. These reports suggest that autophagy could negatively or positively regulate cancer cell 
immune escape by immune checkpoint protein and antigens degradation, cytokines release, antigens generation. 
These controversial phenomenon of autophagy on cancer cell immune evasion may be derived from different experi-
mental context or models. In addition, autophagy maybe exhibit a role in regulating host excessive immune response. 
So rational combination with autophagy could enhance the efficacy of cancer immunotherapy. In this review, the 
current progress of autophagy on cancer immune escape is discussed.
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Background
Autophagy is the intracellular components (proteins, 
lipids, mitochondria, nucleus etc.) degrading process 
in lysosome in response to stressful conditions such as 
nutrition deficiency, hypoxia, and chemotherapy, which 
is also nutrients recycling [1]. Autophagy contains three 
types including macroautophagy, microautophagy, and 
chaperone-mediated autophagy (CMA). Macroau-
tophagy process undergoes initiation, nucleation, vesi-
cle expansion, maturation of autophagosome, fusion 
of autophagosome-lysosome and finally degradation 
of components in lysosome [2–4]. In microautophagy 
process, proteins and organelles are degraded by direct 
engulfment of lysosomes [4]. In CMA process, proteins 
with KFERQ motif are recognized by HSC70 (heat shock 
cognate 70  kDa protein) resulting in targeted proteins 

degradation in lysosome by LAMP2A ( lysosomal-asso-
ciated membrane protein 2A) [5]. Autophagy (hereaf-
ter referred to as macroautophagy) degrades misfolded 
proteins or dysfunctional organelles to maintain cellular 
homeostasis [1]. The autophagy receptors such as p62 
(SQSTM1) and NBR1 (next to BRCA1 gene 1 protein) 
mediate ubiquitinated proteins for autophagic degra-
dation leading to clearance of misfolded proteins [6, 7]. 
In addition, PINK1 induces ubiquitin phosphorylation 
leading to activation of PARKIN ubiquitin ligase, conse-
quently facilitates ubiquitination of mitochondrial outer 
membrane proteins resulting in autophagy receptors 
(NDP52 and optineurin)-mediated damaged mitochon-
drial degradation [8]. Dysregulation of autophagy has 
been implicated in cance [9–12]. Although autophagy 
promotes cancer cell survival under nutrient and oxygen 
deprivation by degrading a bulk of organelles, proteins, 
and lipids for nutrients recycling [10, 11, 13–16], the role 
of autophagy in cancer progression is dependent on the 
conditions such as the tumor types and tumor models 
used [9–11]. Furthermore, autophagy plays an important 
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role in regulating cancer immunotherapy by degrad-
ing immune checkpoint proteins [17, 18]. Increasing 
clinical evidence shows that immunotherapy is an excit-
ing benefit for variety of tumors, while it exhibits low 
response rates for patients, suggesting that cancer immu-
notherapy is so complicated and the mechanisms could 
be associated with cancer types and individual differ-
ence [19]. Similarly, autophagy could negatively or posi-
tively regulate cancer immunotherapy by degradation of 
immune checkpoint protein, pro-inflammatory cytokines 
release, and antigens generation or degradation [17, 18, 
20–26]. For example, in cancer cells, induction of PD-L1 
autophagic degradation promotes T cell killing of cancer 
cells and enhances the efficacy of cancer immunotherapy 
[17], whereas MHC-I undergoes autophagic degradation 
in pancreatic ductal adenocarcinoma (PDAC) leading 
to loss of antigen presentation to T cells, consequently 
inhibits cancer immunotherapy [18]. However, the con-
tradictory role of autophagy on cancer cell immune eva-
sion may be derived from different experimental context 
or models. Autophagy maybe exhibit a role in regulat-
ing host excessive immune response. In this review, we 
discussed the current progress of autophagy on cancer 
immune escape.

Autophagy regulates PD‑1/PD‑L1 immune checkpoint 
pathway
Expression of PD-L1 on cancer cells binds to PD-1 on T 
cells leading to inhibition of T cell activation and prolifer-
ation, consequently promotes cancer immune escape [27, 
28]. Therefore, PD-1/PD-L1 immune checkpoint block-
ade can enhance the efficacy of cancer immunotherapy 
29, 30. Although cancer cell exhibits immune evasion 
by abnormal expression of PD-L1 [30, 31], deficiency of 
HIP1R in cancer cells increases PD-L1 protein levels [32]. 
In this study, it shows that HIP1R acts as a autophagy 
receptor for PD-L1 binding and induces PD-L1 selec-
tive autophagic degradation in lysosome, subsequently, 
inhibits tumor growth by increasing T cell cytotoxicity, 
suggesting that autophagic degradation of PD-L1 sup-
presses cancer immune escape. However, cancer cell 
exhibits ability to inhibit PD-L1 autophagic degradation 
by transcriptional modification [33, 34]. EGFR/B3GNT3 
pathway-induced PD-L1 glycosylation leads to inhibition 
of PD-L1 autophagic degradation, subsequently, facili-
tates tumor immune escape in a breast xenograft tumor 
model [33]. PD-L1 palmitoylation by DHHC3 reduces 
PD-L1 endosomal sorting-mediated autophagic degrada-
tion consequent immune suppression and tumor growth 
in a colon tumor model [34]. In addition to PD-L1 pro-
tein modification, the cell membrane CMTM6 binds to 
PD-L1 consequent inhibition of endocytosed PD-L1 deg-
radation and tumor immune evasion [35]. Therefore, in 

response to extracellular stimuli, activation of autophagy 
induces PD-L1 degradation in lysosome, subsequently, 
increases the efficacy of cancer immunotherapy [34, 36, 
37]. SA-49 treatment facilitates PKCα/GSK3β/MITF-
mediated PD-L1 autophagic degradation [36], and 
DHHC3 inhibitor 2-bromopalmitate (2-BP) abolishes 
PD-L1 palmitoylation resulting in PD-L1 autophagic deg-
radation [34], subsequently, enhances the efficacy of can-
cer immunotherapy in a colon tumor model. Moreover, 
verteporfin induces PD-L1 degradation in Golgi-related 
autophagy pathway consequent T cell activation [38]. As 
a phase III trial drug, sunitinib promotes p62-mediated 
PD-L1 autophagic degradation resulting in increased 
anti-tumor immune response [39]. Since the interaction 
of SIGMA I with glycosylated PD-L1 leads to inhibition 
of PD-L1 autophagic degradation in breast and pros-
tate cancer cells, SIGMA I inhibitor IPAG reverses this 
event leading to increased T cell activity [37]. In addition 
to autophagy induction by extracellular stimuli, PD-L1 
blockade by PD-L1 antibody H1A inhibits the interac-
tion of PD-L1 with CMTM6 leading to PD-L1 autophagic 
degradation [40]. These findings suggest that autophagy 
induction causes selective PD-L1 autophagic degrada-
tion, subsequently, increases T cell activity (Fig. 1). How-
ever, another study suggests that autophagy activation 
increases PD-L1 expression by 5-HT1aR/autophagy/p-
STAT3 pathway in lung adenocarcinoma patients with 
depression leading to immune escape [41]. Similarly, 
pharmacological inhibition of PIK3C3/VPS34-mediated 
autophagy increases the efficacy of immunotherapy by 
PD-1/PD-L1 immune checkpoint blockade [42]. These 
findings suggest that rational PD-L1 levels could improve 
PD-1/PD-L1 blockade therapy.

Autophagy and MHC‑I/MHC‑II
Activation of innate and adaptive immune response is 
critical for killing to cancer cells in host immune system 
[43, 44]. In this process, MHC-I/II plays an important 
role on antigen presenting cells (APCs) by presenting 
antigens to T cells consequent T cell activation [43, 44]. 
However, cancer cell can escape immune surveillance by 
degrading MHC-1 [18]. In pancreatic ductal adenocarci-
noma (PDAC), MHC-I proteins are selective degradation 
by NBR1, subsequently, reduces antigen presentation and 
T cell killing to cancer cells. In contrast, autophagy inhib-
itors treatment enhances the efficacy of anti-tumor ther-
apy [18]. Similarly, March1 E3 ubiquitin ligase induces 
MHC-II autophagic degradation in M-MDSCs (mye-
loid-derived suppressor cells) leading to cancer immune 
evasion. Conversely, autophagy inhibition by ATG5 defi-
ciency elevates cell surface MHC-II protein levels lead-
ing to increased CD4+ T cell activation [45]. Although 
one study shows that autophagy activation in response 
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Fig. 1  Autophagy regulates PD-1/PD-L1 immune checkpoint pathway. The binding of PD-L1 to PD-1 suppresses T cell killing to cancer cells, while 
PD-L1 undergoes selectively autophagic degradation by H1P1R or p62. In addition, autophagy could be activated by extracellular stimuli such as 
SA-49, 2-BP, veteporfin resulting in PD-L1 autophagic degradation in cancer cells, consequently, enhances T cell activity and inhibits tumor growth
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to irradiation increases MHC-I expression and CD8+ T 
cell infiltration in NSCLC cells, the direct relationship 
of MCH-1 expression with autophagy is unclear [46]. In 
addition to degradation of MHC-1 in cancer cells, AAK1 
mediates MHC-1 endocytosis and autophagic degrada-
tion in DCs resulting in inhibition of antigen presenta-
tion and CD8+ T cell priming, which is reversed in DCs 
by deficiency of autophagy [47]. These findings suggest 
that autophagic degradation of MHC-I/II in cancer cells 
facilitates tumor immune evasion (Fig.  2). However, in 
the tumor microenvironment, could cancer cell regulate 
MHC-1 autophagic degradation in DCs?

Mitophagy and tumor immune escape
Mitophagy is a selective autophagy process by clearance 
of damaged or dysfunctional mitochondria, which is trig-
gered in response to stimuli such as hypoxia, DNA dam-
age, and nutrient starvation [48]. Mitophagy plays an 
important role in regulating immune response against 
cancer [49–51]. Increased mitophagy in STAT3 deleted 
intestinal epithelial cells facilitates lysosomal membrane 
permeabilization by increasing Fe2+ accumulation, which 
in turn releases cathepsin into cytosol and generates 
peptides for antigen presentation, leading to T cell acti-
vation and anti-tumor immunity [49]. PINK1/PARK2 
pathway-mediated mitophagy is essential for clearance 
of damaged mitochondria and inhibits tumor develop-
ment [50]. Deficiency of Pink1 and Park2 promotes pan-
creatic tumorigenesis in  Kras-driven tumor model by 
increasing mitochondrial iron accumulation and AIM2/
HMGB1 pathway-mediated PD-L1 expression [51]. As 
a mitophagy receptor, FUN14 domain-containing 1 
(FUNDC1)-mediated mitophagy inhibits  hepatocellular 
carcinoma (HCC) initiation and progression in response 
to diethylnitrosamine, whereas hepatocyte-specific 
FUNDC1 deficiency increases dysfunctional mitochon-
dria accumulation and cytosolic mitochondrial DNA 
(mtDNA) release, which in turn promotes proliferation 
of hepatocytes by pro-inflammatory response [52]. Cyto-
solic mitochondrial DNA stress activates TLR9/NFκB/
CCL2 pathway, and then increases TAM (tumor-asso-
ciated macrophage)-induced HCC [53]. These findings 
suggest that damaged mitochondrial clearance or lysoso-
mal membrane permeabilization-mediated antigen pres-
entation could enhance anti-tumor immune response 
(Fig.  3), which contributes to cancer immunotherapy. 
However, mitophagy inhibition in NLRX1 deficiency 
inhibits turnover of damaged mitochondria in response 
to TNF-α, leading to inhibition of oxidative phospho-
rylation (OxPhos)-dependent triple-negative breast 
cancer cell proliferation and migration [54]. In contrast 
to mitophagy promotes antigen presentation in colorec-
tal cancer (CRC) [49], in response to LPS or heat stress, 

PINK1 and PARK2 inhibits mitochondrial antigen pres-
entation [55]. These discrepancy phenomenon may be 
derived from different model and conditions.

Autophagy, exosome and immune escape
Exosomes are cellular secreted vesicles (30–150 nm) with 
double-layer membrane, which play an important role 
in regulating crosstalk between cells [56]. Exosomes are 
generated from endosome-derived multivesicular bod-
ies (MVBs) without degradation by lysosomes [57]. The 
membrane PD-L1 protein undergoes endosome cycling, 
and exosomal PD-L1 is observed in multiple types of can-
cer cells [58]. Tu et  al. have described that the binding 
of membrane CMTM6 to PD-L1 is required for PD-L1 
trafficking to cell surface rather than autophagic degra-
dation in lysosome [40]. In addition to PD-L1 releases 
extracellular by exosome pathway, CD47 is present on 
exosome [59–61]. SIRPα (signal-regulatory protein α)/
CD47 immune checkpoint is “don’t eat me” signal [62, 
63], which inhibits phagocytosis of cancer cells by mac-
rophage [62–64]. CD47 is highly expressed on cancer 
cells [65, 66]. The binding of CD47 to the surface SIRPα 
on macrophage resulting in inhibition of phagocytosis 
[62, 65]. Exosomal CD47 decreases pancreatic cancer 
cell clearance by phagocytes [61], while the relationship 
of exosomal CD47 with autophagy is still unclear. These 
findings suggest that autophagy induction could contrib-
ute to cancer immunotherapy by PD-L1 or CD47 degra-
dation in lysosome (Fig. 4).

Autophagy negatively or positively regulates immune 
response against cancer cells
Autophagy promotes T cell proliferation and survival, 
which exhibits ability to maintain ER homeostasis by reg-
ulating intracellular calcium stores in T cells, in contrast, 
autophagy inhibition by deleted ATG5 results in T cell 
death [67]. Increasing evidence suggests that autophagy 
induction enhances antigen generation and presenta-
tion [20–23]. Activation of autophagy increases antigen 
presentation of DCs and T cell priming leading to inhibi-
tion of tumor growth [20]. In the antigen presenting cells 
(APCs), autophagy induction generates citrullinated pep-
tides that are antigen presentation of MHC-II on CD4+ 
T cells [21]. In response to radiation therapy, autophagy 
causes loss of its natural ligands of MPR (mannose-
6-phosphate receptor), which is transferred to cell surface 
leading to increased T cell killing and CTLA4 antibody 
immunotherapy in B16F10-bearing tumor model [22]. 
α-TEA (α-tocopheryloxyacetic acid) induces autophagic 
death in lung cancer cells, and then the release of 
autophagosome with α-TAGS acts as an effective anti-
gen presentation on DCs, subsequently, increases CD8+ 
T cell killing to cancer cells [23]. Autophagy activation 
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in response to temozolomide and VPA in GL261 glioma 
cells increases T cell activity [68]. As a secreted cellular 
matrix protein, tenascin-C inhibits T cell activation, but 
SKP2 induces tenascin-C ubiquitination and p62-medi-
ated autophagic degradation, in contrast, autophagy 
deficiency reverses this event resulting in (TNBC) tri-
ple-negative breast cancer resistance to T cell [69]. In 
addition to T cell activation by autophagy, autophagy 
induction also increases NK cell killing by HMBOX1 
(homeobox containing 1) [70] in HepG2 cells or activa-
tion of p53 in breast cancer cells [71]. Chollat-Namy et al. 
[71] have described that pharmacological reactivation of 
mutant p53 by CP31398 results in autophagy induction in 
breast cancer cells. Mechanistically, CP31398 blocks the 
infusion of lysosome and autophagosome that contains 
anti-apoptotic Bcl-Xl, XIAP proteins. In addition, this 
drug also inhibits granzyme B degradation that is impor-
tant for NK cell killing. However, activation of mutant 
p53 by CP31398 is involved in multiple pathways, which 
maybe have alternative mechanism that is independent 
of p53 function for NK activation. These findings suggest 
that autophagy induction positively regulates immune 
response against cancer cells (Fig. 5).

In contrast to activation of immune response by 
autophagy induction, some reports suggest that 
autophagy induction inhibits T cell activation in response 
to EMT (epithelial-to-mesenchymal transition) [72], 
ROS (reactive oxygen species) [73], and chemotherapy 
[24, 25] leading to impaired T cell killing and promotion 
of tumor growth, which is associated with autophagy-
mediated antigen degradation [24, 25] and inhibition of 
DCs activity [73] (Fig.  5). Loss of antigen presentation 
by APCs impairs T cells priming [74], thus activation 
of autophagy in macrophages or DCs promotes antigen 
degradation in lysosome, consequently impairs T cell 
killing and promotes MC38 colon cancer growth [24]. 
Mechanistically, the release of DAMPs (danger-associ-
ated molecular patterns) from chemotherapy-induced 
dying cancer cells increases TIM-4 expression and sur-
face distribution on macrophages and DCs, and then 
TIM-4 binds to AMPKα1 consequent autophagy induc-
tion and antigen degradation in lysosome. Consistently, 
in response to chemotherapy, treatment with autophagy 
inhibitor (chloroquine) effectively increases CD8+ T cell 
killing to colon cancer cells [25] and CD4+ T cell killing 
to lung cancer cells [75]. Activation of STING-mediated 

pro-inflammatory cytokine release could facilitate T 
cell priming [74]. Therefore, another report shows that 
SKIL/TAZ-induced autophagy inhibits STING path-
way-mediated antitumor immune response [76]. In this 
study, it shows that SKIL increases TAZ protein stability 
by inhibition of LATS2 activity, which in turn promotes 
autophagy and tumorigenesis of lung cancer. In addition, 
SKIL/TAZ/autophagy pathway reduces pro-inflamma-
tory cytokine release including CXCL10, CCL5, and IFN-
β, which could be activation of STING pathway-mediated 
antitumor immune response, but the direct relation-
ship of autophagy in NSCLCs with STING pathway is 
unclear. Autophagy induction reduces IL-1β release 
[77], which in turn inhibits IL-1/TLR/NFκB-mediated 
pro-inflammatory cytokine release in macrophages 
and DCs resulting in impaired γδ T cell activation [26]. 
In contrast, combined chloroquine (autophagy inhibi-
tor) with IL-2 increases IL-1 immunotherapy in meta-
static liver tumor model [78]. These findings suggest that 
autophagy inhibits pro-inflammatory response-mediated 
antitumor immune therapy. In addition to inhibition 
of T cell activity by autophagy, deficiency of autophagy 
promotes CLL5 expression resulting in NK cell infiltra-
tion and tumor growth inhibition of melanomas [79]. In 
response to hypoxia, autophagy induction causes resist-
ant to NK cell killing by granzyme B autophagic degra-
dation in breast cancer cells [80]. These reports suggest 
that autophagy induction in APCs or cancer cells impairs 
immune cell activity such as DCs, T cells and NK cells, 
which are associated with antigen presentation or gran-
zyme B degradation. These findings suggest autophagy 
induction negatively regulates immune response against 
cancer cells (Fig. 5).

Conclusion
Autophagy induction could enhance effectivity of 
cancer immune therapy by PD-L1 autophagic deg-
radation in multiple types of cancer cells [17, 34, 36, 
37, 39]. Conversely, NBR1 induces MHC-I selective 
autophagic degradation in PDAC consequent tumor 
immune escape, while autophagy inhibitor treat-
ment increases the efficiency of anti-tumor immune 
therapy [18]. Since PD-L1 undergoes endosome traf-
ficking and autophagic degradation in lysosome [35], 
does autophagy inhibition in PDAC could elevate 
PD-L1 protein levels? Moreover, internalized CTLA-4 

(See figure on next page.)
Fig. 5  Autophagy positively or negatively regulates immune response against cancer. Autophagy induction acts as inhibition or promotion of 
cancer immune escape. This controversial phenomenon may be derived from the experimental context. Some experimental models are in vitro 
analysis, whereas the regulatory role of autophagy on cancer immune response is complicate in the tumor microenvironment in response to 
hypoxia, cytokines, or chemotherapy. Autophagy maybe exhibit synergistic effect with immune cells on regulation of cancer immune surveillance
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Fig. 5  (See legend on previous page.)
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(cytotoxic T-lymphocyte antige 4) immune checkpoint 
on T cells undergoes recycling to the cell surface by 
binding to LRBA or is sorted to lysosome for degrada-
tion [81–84]. However, it is still unclear the mechanism 
of CTLA-4 autophagic degradation and the effect on 
cancer immunotherapy. In addition, autophagy induc-
tion increases antigens generation and T cell activa-
tion [20–23], while autophagy could degrade antigens 
in DCs or cancer cells leading to tumor immune escape 
(Fig.  5). However, autophagy deficiency or inhibition 
by using autophagy inhibitor chloroquine has no effect 
on T cell response in tumor-bearing mice [85]. There-
fore, these controversial reports may be derived from 
different experimental context or models. For exam-
ple, as an important regulator of autophagy, FIP200 
inhibits AZI2/TBK1/IFN pro-inflammatory cytokine 
expressions, which could increase CD8+ T cell activ-
ity. However, in this process, FIP200 did not exhibit 
autophagy function [86]. Thus, it is necessary to deter-
mine the direct role of autophagy on cancer immune 
escape. Some autophagy-related genes could exhibit 
alternative function without autophagy induction. 
Moreover, autophagy could maintain the homeostasis 
of pro-inflammatory innate response [87], this study 
shows that selective autophagic degradation of TRIF by 
TAX1BP1 regulates the TRIF/TLR-induced robust pro-
inflammatory immune response in macrophage. Some 
studies are in vitro analysis. Actually, in tumor micro-
environment, autophagy regulates cancer immune 
escape will be more complicate. Therefore, autophagy 
maybe regulate the homeostasis of cancer immune 
response.
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