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Abstract

Therapy resistance is a major problem when treating cancer patients as cancer cells develop mechanisms that
counteract the effect of therapeutic compounds, leading to fit and more aggressive clones that contribute to poor
prognosis. Therapy resistance can be both intrinsic and/or acquired. These are multifactorial events, and some are
related to factors including adaptations in cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT),
deregulation of key signaling pathways, drug efflux through ABC transporters, acquired mutations, evading
apoptosis, and activation of DNA damage response among others. Among these factors, CSCs represent the major
source of therapy resistance. CSCs are a subset of tumor cells that are capable of self-renewal and multilineage
progenitor expansion that are known to be intrinsically resistant to anticancer treatments. Multiple clones of CSCs
pre-exist, and some can adopt and expand easily to changes in the tumor microenvironment (TME) and/or in
response to radio- and chemotherapy. A combination of both intrinsic and extrinsic factors contributes to CSC-
mediated therapy resistance. In this review, we will focus on CSCs and therapy resistance as well as suggest
strategies to eliminate CSCs and, therefore, overcome resistance.
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Introduction
Tumors harbor heterogeneous clones of cancer stem
cells (CSCs) representing the fundamental properties for
survival [1]. In recent years, addressing the origin of
intratumor heterogeneity (ITH) has become one of the
core challenges for overcoming therapy resistance. The
clonal evolution model considers tumors to be the result
of random evolution, while the CSC model considers
tumor heterogeneity due to the presence of CSCs [2, 3].
CSCs are defined as “cells that have the ability to self-
renew and also create a progeny”. Therefore, the bulk of
cancer mass is formed by the differentiated and ex-
panded progeny with high proliferation potential while
harboring small populations of various CSCs. At present,
cure of tumor remains a major challenge for oncologists
due to advanced stage of most cancers and the presence
of resistant CSC clones [4, 5].

It has been proposed that targeting CSC subpopula-
tions can result in tumor elimination thus no likelihood
of tumor relapse [6]. CSCs evade conventional therapies
by remaining dormant, have increased DNA repair cap-
acity, turn off apoptotic pathways, manage reactive oxy-
gen species (ROS) and reactive nitrogen species (RNS)
in a highly competent manner, and by manipulating
TME (tumor microenvironments) to their advantage [7].

Potential CSCs markers and therapy resistance
In essence, CSCs are defined by their intrinsic ability to
propagate the tumor, thereby explaining the alternative
names “tumor initiating cells” or “tumorigenic cells” [8].
CSCs can be identified by various surface markers. To
date, several CSC markers in different tumor types have
been proposed and validated through cell lines, patient
samples, and xenotransplantation of CSCs in animal
models. Followings are the CSC biomarkers of interest:
CD133, also known as prominin-1, a glycoprotein with

five transmembrane domains, was identified from mouse
neuro-epithelial stem cells and human hematopoietic
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stem cells. The expression of CD133 is not restricted to
normal stem cell, but also found in many tumor types.
Dirks et al. discovered that CD133 expressed in brain tu-
mors and used CD133 as a CSC marker to identify brain
CSCs [9]. CD133 was also identified in various other tu-
mors including breast, stomach, colon, prostate, liver,
pancreatic, ovarian, lung cancer, and head and neck
squamous cell cancers [10–14]. CD133-expressing CSCs
exhibited self-renewal potential and over-expression of
CD133 has been associated with poor prognosis and re-
duced overall survival in gastric adenocarcinoma and
several other tumor types [15].
High expression of CD133 is associated with drug re-

sistance. The presence of CD133-positive CSCs in lung
cancer increases the expression of the ABC transporter
ABCG2, resulting in lung cancer resistance to first-line
drugs such as platinum and paclitaxel. Studies have
shown that low-dose platinum therapy can cause DNA
damage rather than cell death, which can induce ABCG2
upregulation and further increase the number of
CD133-positive cells. Specific ABCG2 inhibitor Panto-
prazole or ABC transporter inhibitor Verapamil can re-
duce tumor resistance to platinum [16]. It has been
reported that CD133 mediates cisplatin resistance that
can overcome by inhibition of CD133 [17].
CD44, is a transmembrane receptor for hyaluronic acid

(HA) and many other extra-cellular matrix (ECM) com-
ponents and a coreceptor for growth factors and cyto-
kines. It is reported that CD44 is associated with
increased potential for tumor initiation and progression
[18]. CD44 is an important cell surface molecule that
can sense, integrate, and transduce cellular microenvir-
onment signals to membrane-associated cytoskeleton
proteins or to nuclei, thereby regulating the expression
of various genes that control cell behaviors. Increasing
evidence suggests that CD44, especially the CD44v sub-
type, is a CSC biomarker and a key regulator of cancer
stemness, metastases, and response to therapy [19].
ALDH1, is a member of the aldehyde dehydrogenase

(ALDH) superfamily of enzymes, which comprises 19
human isozymes. ALDH1 is known to participate in
many important physiological biosynthetic pathways,
and certain ALDH1 activities have been shown to be
crucial in the detoxification of specific endogenous and
exogenous aldehyde [20]. Many studies indicate that
ALDH1 is involved in therapy resistance. ALDH1 con-
trols the oxidation of aldehydes to corresponding acids,
and ALDH-mediated detoxification of toxic aldehyde in-
termediates produced in cancer cells treated with certain
therapeutic agents has been proposed to confer therapy
resistance to ALDH1+ tumor cells [21]. In esophageal
cancer, ALDH1high is associated with reduced response
in chemoradiation and chemotherapy [22]. Meng’s study
indicates that ALDH1 expression is also correlated to

the platinum resistance in ovarian cancer by regulating
cell cycle checkpoints and the DNA repair pathway [23].
Using ALDH1 sorting, Nguyen et al. found that
ALDH1+ CSCs had higher tumorigenicity in mice and
were more resistant to therapy than ALDH1− gastric
cancer cells [24]. Study from our laboratory also demon-
strated that ALDH1 expression levels predict response
or resistance to preoperative chemoradiation in resect-
able esophageal cancer patients and we found that
sorted ALDH1+ cells were more resistant and had an
aggressive phenotype than ALDH1- cells [22]. Targeted
inhibition of ALDH1 could prevent recurrence of the
tumor driven by ALDH1+ CSCs [25]. Therefore, as a de-
toxifying enzyme, ALDH1 is highly expressed in CSCs to
alleviate the toxic effects of ROS and to control the cell
cycle so that the cells have enough time for DNA repair,
which enables CSCs to resist therapy.
CD166, also named as activated leukocyte cell adhe-

sion molecule (ALCAM), is a glycoprotein belonging to
the immunoglobulin superfamily of adhesion molecules
[26]. Unlike other adhesion molecules such as E-
cadherin which are usually down-regulated during ma-
lignant transformation, CD166 often shows increased ex-
pression in certain cancers [27]. Overexpression of
CD166 in papillary thyroid carcinoma (PTC) was inde-
pendently associated with a shorter progression-free sur-
vival, higher nodal and tumor stages suggesting that
CD166 may be a potential therapeutic target to treat
PTC [28]. CD166 has been implicated as CSCs marker
in many cancer types such as colon, stomach and head/
neck [24, 29]. Recent study from Satar NA et al. demon-
strated that CD166/EpCAM/CD44 triple positive clones
mediated therapy resistance and putative CSC character-
istics in human non-small cell lung cancer cells [30].
CD49f, (integrin subunit alpha 6, ITGA6), is also iden-

tified to be a CSC surface marker, and found to correlate
with tumor spheres formation capacity and in vivo self-
renewal ability in lung cancer [31]. In glioblastoma CSCs
(GCSCs), CD49f has also been proposed to be an im-
portant regulator of stemness [32]. It has been reported
that CD49f is associated with radiation therapy resist-
ance and CD49f + population-mediated taxane resistance
[33, 34].
CD24, also known as heat-stable antigen in mouse, is

significantly upregulated in different cancers compared
to their benign counterparts. In many human cancers,
CD24 overexpression is highly associated with adverse
prognostic features such as lymph node metastases, ad-
vanced clinical stage and shorter overall survival [35]. It
is identified to be a CSC marker in bladder cancer [36],
hepatocellular carcinoma [37]. In Terence Kin Wah Lee’
s study, CD24+ cells were more quiescent, with a greater
ability to form tumors in Non-obese diabetic (NOD)
/Severe combined immune deficient (SCID) mice, and
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an ability to self-renew, differentiate, and metastasize,
especially upregulated in residual resistant tumors upon
cisplatin treatment when compared with untreated
tumors [37].
CD9, motility-related protein-1, is involved in cell fu-

sion, adhesion, motility, proliferation, metastases and
signaling [38, 39]. Some studies have reported that CSCs
can contribute towards tumor formation by upregulating
CD9, thereby maintaining the tumor cell population [40,
41]. In human B-acute lymphoblastic leukemia, CD9
plays important roles in attributing CSC properties, and
the CD9+ cells exhibited therapy resistance [42].

Deregulated developmental signaling that govern
CSCs and therapy resistance
Hippo/YAP1 pathway is a highly conserved signaling
pathway that regulates cell fate, apoptosis, proliferation
and stem cell maintenance in various species [43, 44].
The Hippo pathway components, including a major kin-
ase cascade and scaffold proteins, have been established
in both Drosophila and mammals [45]. In mammals, the
Hippo pathway consists of a core kinase cascade in
which Mst1/2 form a complex with an adaptor protein
Sav1 that phosphorylates kinases Lats1/2. Lats1/2 then
phosphorylates and represses the transcriptional coacti-
vators YAP1 and TAZ by promoting ubiquitination, deg-
radation, and cytoplasmic retention (Fig. 1a).
Recent emerging data suggest that YAP1 regulate

CSCs properties and confer therapy resistance [46, 47].
Overexpression of YAP1 and its activation (nuclear
localization) are associated with poor prognosis in sev-
eral tumor types, including gastric adenocarcinoma
(GAC). We have demonstrated that YAP1 is overex-
pressed in gastroesophageal cancer and mediates CSC
properties through its target SOX9 [48]. Studies from
our laboratory also found that YAP1 strongly mediates
chemo- and radiation resistance through upregulation
EGFR and CDK6 in esophageal cancer respectively [49,
50]. YAP1 has been reported as conferring resistance to
cisplatin in human oral squamous cell carcinoma [51].
Others surmised that YAP1 is often the terminal node of
many oncogenic pathways [52] and a signaling hub of
the tumor microenviroment [53].
In addition, YAP1 was reported to be responsible for

target therapy resistance. Lin L et al. reported that YAP1
enhances resistance to RAF and MEK-targeted cancer
therapies resistance, revealing that YAP1 and RAF or
MEK combined inhibition of synthetic lethality is a
promising strategy to enhance treatment response and
patient survival [47]; while Lee JE et al. found that YAP1
inhibition restores the sensitivity of EGFR-TKI in lung
adenocarcinoma having primary or acquired EGFR-TKI
resistance [54].

It has been reported that another hippo downstream
effector, TAZ, promotes the self-renewal and tumor-
seeding potentials of CSCs and confers CSC-like proper-
ties on differentiated non-CSC cells in different cancer
contexts [55]. Recent evidence suggests that TAZ is also
associated with therapy resistance. Zhan z et al. reported
that TAZ, is associated with drug resistance of pancre-
atic cancer [56], high expression of TAZ in lung adeno-
carcinoma cells and cell lines is associated with cisplatin
resistance. TAZ inhibition restores the sensitivity of cis-
platin through AKT/mTOR signaling in lung adenocar-
cinoma [57].
Wnt/β-catenin pathway is an ancient and evolutionar-

ily conserved pathway which regulates embryonic devel-
opment [57]. The canonical Wnt/β-catenin signaling
cascades are involved in self-renewal of stem cells and
proliferation or differentiation of progenitor cells,
whereas non-canonical Wnt signaling cascades are in-
volved in maintenance of stem cells, and directional cell
movement (Fig. 1b). Both canonical and non-canonical
Wnt signaling cascades play key roles in the develop-
ment and evolution of CSCs [58].
The abnormal activation of Wnt signaling has impli-

cated in many cancers including hepatoblastoma, colo-
rectal cancer, multiple myeloma, and GAC [59]. It has
been shown that factors secreted by fibroblasts, such as
hepatocyte growth factor (HGF), activate the Wnt/β-ca-
tenin pathway and CSC expansion in vivo and in vitro.
In a colon cancer model, CSCs with high Wnt signaling
activity appear to be adjacent to stromal myofibroblasts,
which secrete multiple factors to maintain the active
Wnt/β-catenin pathway, thereby ensuring the stemness
characteristics of its neighboring cells [60]. In malignant
pleural mesothelioma, Wnt/GSK3β/β-catenin pathway is
found to be upregulated and Wnt-driven autocrine pro-
duction of IL-8 and IL-1β contributes to upregulate
ABCB5 which is predictive of poor response to chemo-
therapy [61]. Emons G et al. report that chemoradiother-
apy resistance in colorectal cancer cells is mediated by
Wnt/β-catenin signaling [62].
Hedgehog pathway (Hh) is critical during embryonic

development. It is involved in the patterning of the
neural tube, lung, skin, axial skeleton, and gastrointes-
tinal tract [63]. Binding of Hh ligands, relieves the in-
hibitory effect of their Patched (PTCH) transmembrane
receptors on Smoothened (SMO), which is also located
in the cell membrane. Subsequently, the signaling cas-
cade initiated by SMO leads to activation and nuclear
localization of GLI transcription factors, which drive
expression of Hh target genes; most of the target genes
are involved in proliferation, survival, and angiogenesis
(Fig. 1c) [64].
Hh signaling has been associated with cell fate deter-

mination, self-renewal [65] and CSC regulation in many
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cancer types including leukemias [66], multiple myeloma
[67], gliomas [68], breast cancer [69], pancreatic cancer
[70], prostate cancer [71], lung cancer [72], melanoma
[73], and gastrointestinal cancers [74, 75]. It has been re-
ported that activation of Hh signaling contributes to
therapy resistance and Hh signaling contributes to
tumor regrowth after chemoradiotherapy and a target to
improve radiation response [76]. Kobune M found that
drug resistance is dramatically restored by Hh inhibitors
in CD34+ leukemic cells [77]. Hh signaling affects the
sensitivity of hepatoma cells to therapy through the
ABCC1 transporter [78].
The Notch pathway, has been extensively explored as a

CSC-realted pathways in multiple tumor types. The
pathway is activated upon ligand binding to the Notch
receptor, which is subsequently cleaved by the ADAM

family proteases and γ-secretase to release the Notch
intracellular domain (NICD). NICD translocates to the
nucleus, binds to transcription factor CSL, and converts
the complex from a repressor to an activator of Notch
genes (Fig. 1d). Notch activation has been proposed as
vital to CSC populations for maintaining stemness, en-
hancing therapy resistance, and promoting a hypoxic
niche [79]. Notch signaling pathway plays an important
role in normal stem cells proliferation, differentiation,
and apoptosis. It is also reported that Notch signaling is
crucial for cell survival and self-renewal properties of
CSCs [57, 80].
Notch signaling is one of the most important cascades

involved in therapy resistance in tumor cells [71]. Zhang
Y et al. reported that Notch signaling regulates self-
renewal and platinum resistance of CSCs in human non-

Fig. 1 Developmental signaling that govern CSCs and therapy resistance. a. Hippo signlaing consists of a core kinase cascade in which Mst1/2
forms a complex with the adaptor SAV1 that phosphorylates the kinases LATS1/2. LATS1/2 then phosphorylates and represses the transcriptional
coactivators YAP1 and TAZ by promoting their degradation and cytoplasmic retention. When deregulation of the Hippo signaling by deletion or
mutation of these kinases, YAP/TAZ accumulate in the nuclear and binds to its transcription factor Tead1–4 and upregulation of its target genes
involving cell proliferation, CSCs properties and drug resistance. b. When SHH reaches its target cell, it binds to the PTCH1 receptor. The binding
of SHH relieves SMO inhibition, leading to activation of the GLI transcription factors. Activated GLI accumulates in the nucleus and controls the
transcription of hedgehog target genes. c. The Wnt/β-catenin pathway is important for CSC maintenance. In the canonical pathway, Wnt ligands
bind to transmembrane Frizzled receptor, leading to the recruitment of Dvl protein. Dvl triggers the cytoplasmic accumulation of β-catenin which
translocates into the nucleus, where it forms a complex with TCF/LEF that control genes in CSCs and therapy resistance. d. Notch signaling is
activated through cell-to-cell contact. Ligands bind to Notch receptors on the target cell. This allows intracellular cleavage through γ-secretase,
producing NICD. NICD translocates to the nucleus binding with CSL complex, triggering transcription and leading to CSC maintenance,
metastasis and chemo-resistance. e. JAK-STAT signaling is made of three major proteins: cell-surface receptors, JAKs, and STATs. Once a ligand
binds to the receptor, JAKs phosphorylates the receptor (gp130) which allows STAT proteins binds and be phosphorylated by JAKS to form a
dimer. The phosphorylated STAT dimer enters the nucleus, binds to DNA, and causes transcription of target genes
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small cell lung cancer [31]. Another report suggested
that Notch signaling induces platinum resistance in a
HES1-independent manner. Furthermore activation of
the Notch signaling pathway is involved in osteosarcoma
resistance [81]. Silencing of Notch1 suppressed AKT
pathway, reduced EMT, and enhanced the sensitivity of
TNBC cells to cisplatin and doxorubicin [82].
JAK/STAT pathway, plays a critical role in various cy-

tokines and growth factors signaling that affect various
cellular functions, such as proliferation, growth, and im-
mune response. JAK/STAT signaling is reported to be
involved in maintaining embryonic stem cell self-
renewal properties, hematopoiesis, and neurogenesis
[83]. It is also reported that inhibiting JAK/STAT path-
way can block CSC self-renewal [84]. In the breast can-
cer, expression of a variety of lipid metabolic genes,
including carnitine palmitoyltransferase 1B (CPT1B),
which encodes the key enzyme for fatty acid b-oxidation
(FAO) is also blocked by the inhibition of JAK/STAT
pathway. Human breast-cancer-derived data suggest that
the STAT3-CPT1B-FAO pathway promotes cancer cell
stemness and therapy resistance. In addition, cells when
treated with FDA-approved JAK inhibitor Tofacitinib,
became sensitive and underwent apoptosis when com-
bined with doxorubicin [85].

Mechanisms of CSC-mediated therapy resistance
CSC-mediated therapy resistance appears to be associ-
ated with their dormancy/slow-cycling, and/or expres-
sion of efflux transporters, avoidance of apoptosis and
Non-coding RNAs mediated drug resistance etc.

CSC dormancy, plasticity and drug resistance
Tumor dormancy, a clinically undetectable state of can-
cer, contributes the development of multidrug resist-
ance (MDR), minimum residual disease (MRD), tumor
outgrowth, cancer relapse, and metastases. CSCs can
mediate therapy resistance through dormancy. Cellular
dormancy means that cells are recruited into the G0-
phase of the cell cycle but remain capable of cell
division in response to mitotic stimulation [85].
Chemotherapy and irradiation are mainly effective
against proliferating cells. It is likely that dormant
tumor cells comprise both CSC and non-CSC popula-
tions [86]. Study from the Massague J laboratory dem-
onstrated that latency competent cancer (LCC) cells
show stem-cell-like characteristics and express SOX2
and SOX9 transcription factors, which are essential for
their survival and resistance to therapy in host organs
under immune surveillance and for metastatic out-
growth under permissive conditions [87].

ATP-binding cassette transporter (ABC transporter)
ABC transporters are proteins that allow transmembrane
transportation of different substrates using the energy
produced by ATP hydrolysis. These proteins are gener-
ally located on the membrane of the cell, which can pro-
tect cells from harmful toxins [88]. ABC transporters
contain ABCG2, ABCB1, and ABCC1, etc. Among them,
ABCG2 has the ability to transport drugs such as doxo-
rubicin and methotrexate. ABCB1, known as P-
glycoprotein, can be expressed in more than half of
chemo-resistant tumors [89]. Recent study indicates that
downregulating ABCG2 can enhance the chemo-
sensitivity of breast CSCs [90]. Similarly, SUN et al. [91]
also found that CSCs showed enhanced chemo-
sensitivity when siRNAs that blocked ABC transporter
expression were added to breast CSC culture media
along with drugs. Surprisingly, ABC transporter proteins
such as multi-drug resistance protein-1, leading to
therapy-resistance of CSCs is controlled by Hh signaling
[92]. Therefore, ABC transporter proteins can be used as
a surface markers for CSC identification, and their ability
to transport drugs itself enables CSCs to prosper.

Avoidance of apoptosis through rho family
Rho protein, a member of small GTPases, is highly con-
served and plays an important role in pathological pro-
cesses including cancer progression, inflammation and
wound repair [93]. Rho-associated protein kinase
(ROCK), the effector of Rho, is also proved crucial in
cancer progression. Recent study found that the Sox2
gene can regulate the motility of colorectal cancer cells
and promote tumor progression through the Rho-ROCK
signaling pathway [94]. In the study of targeting of Rho-
ROCK pathway in melanoma and breast CSCs, CSC mo-
tility and invasiveness decreased [95]. Similarly, small
molecule inhibitors targeting ROCK could inhibit the
expression of survivin by blocking the Rho pathway and
increase the sensitivity of pancreatic CSCs to drugs [96].
In conclusion, activation of the Rho-ROCK pathway pro-
motes survivin expression, and survivin acts as an anti-
apoptotic protein to protect CSCs from therapy-induced
apoptosis, thus enabling CSCs to resist therapy and
strengthen stemness.

Non-coding RNAs (nc-RNAs), CSCs and therapy resistance
Recent studies have shown that different types of nc-
RNAs, such as microRNAs (miRNAs) and long-chain
non-coding RNAs (IncRNAs) can control growth and
division of CSCs and disease progression by regulating
transcription factors and downstream signaling pathways
[97–100] Therefore, the effects of non-coding RNAs on
intracellular signaling pathways and cell stemness main-
tenance are the basis for many diseases including tumors
[100, 101]. Accumulated evidence confirms that miRNAs
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are critical for the maintenance, self-renew, and differen-
tiation of CSCs [102]. For example, study by Liu et al.
[103] demonstrated that miR-125b upregulated by the
Snail via Wnt pathway can promote CSC hematopoiesis
and therapy resistance. In the study of pancreatic cancer,
it was reported that simultaneous inhibition of miR-21
and miR-221 can reduce the number of CSCs and re-
duce differentiation, leading to a decline in the overall
proliferative, invasive ability and therapy resistance
[104]. While Inc-RNA is a group of nc-RNAs longer
than 200 nucleotides, studies have shown that Inc-RNA
is closely related to CSCs. Studies in lung adenocarcin-
oma have shown that IncRNA-ROR regulates the
expression of EMT-associated with tumor invasion, me-
tastases, and therapy resistance [105]. Wang et al [106]
reported that in prostate cancer, IncRNA HOTAIR can
be induced by gemcitabine, and can promote the self-
renewal and migration ability of CSCs. In summary,
miRNAs and LncRNAs mainly regulate CSCs by con-
trolling the expression of intracellular proteins and the
activation of related signaling pathways, which enables
CSCs to maintain their stemness and therapy resistance.

Other stemness genes that mediate therapy resistance
Numb protein
Numb protein, involves cell development, adhesion and
migration, cell misalignment, and endotoxin, and ubiqui-
tination of the target protein [107]. In prostate cancer,
low or negative Numb CSCs preferentially express
Notch and Hh downstream and stem cell–associated
genes, enrich a castration-resistant prostate cancer cell
subpopulation [107]. Phosphorylation of Numb by
NANOG destabilizes Numb-p53 complex, leading to
p53 proteolysis, then promotes self-renew and tumori-
genesis in liver cancer [108].

Musashi (MSI)
Musashi, underwent a duplication event in vertebrates
giving rise to two homologs: Musashi1 (MSI1) and
Musashi2 (MSI2). As a member of RNA binding protein
family, it is capable of maintaining the infinite prolifera-
tion of stem cells through transcriptional regulation or
activation of related protein expression [109]. By down-
regulating pro-apoptotic genes, overexpression of MSI1
in glioblastoma can protect tumor cells from apoptosis
induced by drugs [110]. The study found that MSI1 as a
stem gene in colorectal cancer cells is a key regulator of
CD44+ CSC development and enhances tumor stem cell
therapy resistance by triggering the formation of anti-
apoptotic stress granules (SGs) [111]. FANG’s study
showed that MSI2 can up-regulate the expression level
of the self-renewing gene Lin28A in hepatocellular CSCs
to achieve CSC therapy resistance, and knock down of
MSI2 gene leads to changes in CSC self-renewal and

therapy resistance [112]. Therefore, MSI proteins play
an important role in the anti-apoptotic process of CSCs
that might be the molecular basis for CSCs to resist
drugs.

Bmi1
The chromatin modifier Bmi1 is required for self-
renewal of hematopoietic stem cells as well as for self-
renewal of neural, mammary-gland, and prostate gland
stem cells [113]. Bmi 1 functions by modifying histones
and repressing genes that regulate apoptosis (P19 and
p53) and senescence (p16) in stem cells but not in their
differentiated progeny [114]. It has been reported that
Bmi1 is responsible for the resistance to the tyrosine
kinase inhibitors (TKIs) in a BCR-ABL1-independent
way and co-expressed CD26+ in leukemic stem cells of
chronic myeloid leukemia [115]. Study from Tang D’s
group demonstrated that Bmi1 confers resistance to
tamoxifen in estrogen receptor positive breast cancer
[116].

Toll-like receptors 4 (TLR4)
TLR4 is a transmembrane protein, its activation leads to
initiation of intracellular NF-kB signaling pathway and
production of inflammatory cytokines associated with
the innate immune system [117]. While NF-κB plays an
important role in the regulation of immune response,
and its dysregulation is considered to be related to
tumorigenesis. In gliomas, the interaction of lipopolysac-
charide (LPS) with TLR4 can induce tumor stem cell
proliferation, and therapy resistance. At the same time,
the cytotoxic T cell killing ability can also be alleviated
by LPS [118]. In human hepatocellular carcinoma, it re-
ported that the expression of TLR4 was associated with
stemness of CSCs and TLR4 promoted tumor invasion,
metastases, and might serve as a surface marker for
CSCs [119]. Therefore, activation of TLRs and its down-
stream signal pathways (NF-κB, etc.) enhance the stem-
ness of CSCs and increase the expression level of cyto-
kines (TNF-α, IL-6, etc.) that are associated with CSC
therapy-resistance.

CSCs niche, TME and drug resistance
The tumor microenvironment (TME) consists of stromal
cells, immune cells, cytokine networks, chemokines and
growth factors, hypoxic regions and ECM. TME stimu-
lates CSC self-renewal, angiogenesis and remodeling im-
munity, providing other environments that are
conducive to CSC tumor invasion and metastasis and
dynamic changes [120]. CSCs niche modulates the Wnt/
β-catenin, Notch, and Hh signaling pathways and/or in-
terrupts the master transcriptional regulators like
NANOG, OCT-4, and SOX-2 etc. to maintain the stem-
ness of CSCs. Under specific microenvironmental
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stimuli, certain cancer cells exhibit plasticity, which en-
ables them to resume proliferation through EMT [121].
For example, Chang et al [122] revealed that the activa-
tion of the Hh signaling pathway in the TME can trans-
form common prostate cells into stem cells. The TME
mainly affects the process of tumor progression and evo-
lution, and the CSCs niche that exists in the TME plays
an important role in the origin and evolution of the
tumor, which proves that the TME has an important in-
fluence on the development stages of tumors.
To date, many therapy resistance mechanisms involv-

ing the TME and CSCs niche have been identified across
cancer types and these mechanisms have been classified
into a range of categories including physical barriers to
treatment and cell-adhesion-associated drug resistance
[123].

Strategies to target CSCs and overcome therapy
resistance
Because of their role in drug resistance and tumor me-
tastasis, CSCs have contributed significantly to adverse
outcomes of patients. In terms of reducing CSCs to im-
prove the prognosis of patients, therapies that target key
molecules for CSC maintenance seem theoretically feas-
ible. Several new therapies targeting stem-associated
genes and pathways have been proposed to specifically
eradicating CSCs [124].

Target deregulated CSCs signaling
As mentioned earlier, dysregulation of developmental
signaling pathways has been shown to be associated with
the oncogenic function of CSCs. Targeting pathways
that lead the normal stem cells to CSCs open a new di-
mension for treating cancers associated with the high
rate of recurrence and therapy resistance. Several novel
strategies targeting CSC affecting pathways alone and in
combination with different therapeutic agents are in
clinical trials. For example, EMT and CSC marker ex-
pression were significantly enhanced in resistant ovarian
cancer cells, which was accompanied by activation of
PI3K/Akt/mTOR signaling. Compared with single cis-
platin treatment, combined treatment with pathway in-
hibitor and cisplatin significantly disrupted the colony
formation ability, induced higher ROS levels and more
apoptosis in resistant ovarian cancer cells. Furthermore,
the combination approach effectively inhibited the PI3K/
Akt/mTOR signaling pathway, reversed EMT, and de-
creased CSC marker expression [125]. In liver cancer,
the use of curcumin (NF-kB signaling pathway inhibitor)
to block NF-kB can specifically target the CSC popula-
tion, and suggests the potential for the combined inhib-
ition of NF-kB and HDAC signals can be used to treat
patients with poor prognosis [126].

In osteosarcoma, tankyrase inhibitor (IWR-1) inhibited
tumor progression associated with specific down-
regulation of TCF/LEF transcriptional activity and nu-
clear β-catenin expression, suggesting that targeting the
Wnt/β-catenin pathway can eliminate the CSC popula-
tion. In cervical cancer cell line, curcumin inhibited
proliferation, invasion, stemness of cervical cancer cells
through impairing Wnt/β-catenin and NF-Kβ pathways
[127] The combination of conventional chemotherapy
with Wnt/β-catenin inhibition can improve therapeutic
effect by eliminating aggressive osteosarcoma CSCs and
reducing therapy resistance [128]. Many Wnt/β-catenin
signaling inhibitors have been developed and in the
preclinical and clinical trials such as PKF115–584
(CGP049090) has been tested and shown inhibiting the
growth of HCC cells in xenografts [129].
The importance of Hippo/YAP1 and deregulation of

the Hippo pathway during cancer development and
progression are emerging [130]. Our recent report dem-
onstrated that, CA3, a novel potent YAP1 small mol-
ecule inhibitor effectively suppressed CSC properties
and reduced the fraction of ALDH1+ cells enriched in
radiation resistant cells [131]. Moreover, CA3 and 5-FU
synergistically inhibited EAC growth, especially that of
high YAP1-expressing and resistant cells [131]. YAP1
antisense oligo has been tested in the preclinical and
clinical trials through collaboration between Ionis and
MDACC (unpublished data).
Recently, FDA approved three new drugs that can tar-

get CSCs. Vismodegib is a hedgehog inhibitor that tar-
gets a subset of CSCs in basal-cell carcinoma [132].
Vismodegib has also been tested in preclinical models
and clinical trials in other solid tumors, such as esopha-
geal cancer. The BCL-2 inhibitor venetoclax selectively
killed AML stem cells, and demonstrated that 60% of pa-
tients receiving venetoclax (with other agents) had com-
pletely clinical response [133]. Similarly, we also found
AT101, another pan BCL-2 inhibitor target CSC genes-
YAP1/SOX9 and proved effective in esophageal and gas-
tric cancer patients in the preclinical and clinical setting
(manuscript in GUT, 2021 in press).

Target CSCs markers
According to characteristics of CSCs, integrin αvβ3 (in-
tegrin αvβ3) acts as a cell surface adhesion molecule that
can induce stemness [134]. In breast cancer, lung cancer,
and pancreatic cancer, stemness is induced by KRas/
RalB/NF-κB, which is expected to be an effective target
for inhibiting stemness [135]. In nasopharyngeal carcin-
oma, FoxM1 is significantly associated with stem cell-
related clinicopathological features, including advanced
clinical stages, tumor recurrence, and distant metastases.
At the same time, FoxM1 is closely related to the ex-
pression levels of stem cell markers such as Nanog, Sox2
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and OCT4 in tumor samples, and promoted the expres-
sion of these stem-related genes in vitro. In addition,
FoxM1 gives cancer cells self-renewal properties by in-
creasing the side population (SP) cells and forms larger
and more numerous tumor spheres [136]. Song et al.
[137] found that the mitochondrial membrane of CSCs
has a high PRX3 gene expression in colon cancer cells.
FoxM1 can stimulate overexpression of CD133 and
PRX3, to regulate the stemness of colon cancer stem
cells. In addition, targeting glioma stem cells through
combined BMI1 and EZH2 inhibition proved more ef-
fective than either agent alone both in culture and
in vivo, suggesting that strategies that simultaneously
target multiple epigenetic regulators within glioblast-
omas may be effective in overcoming therapy resistance
caused by ITH [138].

Targeting miRNA/LncRNAs that associated with CSCs
Recently, lncRNA and miRNA have been discovered as
new targets for affecting stemness. In triple-negative
breast cancer (TNBC), LNC00284, also known as LNCR
NA-NRAD1, is associated with worth patient outcomes.
Targeting NRAD1 in TNBC tumors using antisense oli-
gonucleotides reduced cell survival, tumor growth, and
the number of cells with CSC characteristics [139]. In
cholangiocarcinoma (CCA) lnc-PKD2–2-3 increased
CD44, CD133 and OCT4 expression as well as the
CD44 + CD133+ cell proportion, raised tumor sphere
forming efficiency and enhanced tharapy resistance to 5-
FU in TFK-1 and Huh-28 cells. In addition, lnc-PKD2–
2-3 was positively correlated with CSC markers in CCA
tumor tissues and was markedly upregulated in CCA
stem-like cells compared with that in normal CCA cells
[140]. Amit K. Srivastava et al. reported that miR-328-3p
(miR-328) is significantly upregulated in ovarian CSCs.
High expression of miR-328 maintained CSC properties
by directly targeting DNA damage binding protein 2
(DDB2), which has been shown previously to inhibit
ovarian CSC. Targeting miR-328 could be exploited for
the eradication of CSC and aversion of tumor metastasis
in ovarian cancer [57].

Conclusion
The common features of these molecular mechanisms of
CSC-mediated therapy resistance are the maintenance of
the stemness and dormancy which is the basis for the
ability of CSCs to counteract therapy. Other mechanisms
include drug efflux mechanism; anti-apoptotic mechan-
ism; DNA damage repair mechanism, and CSC niche,
immune evasion by manipulating the TME. By studying
the mechanism of resistance, we can explore new targets
and improve traditional anti-tumor strategies. The tar-
geted therapy of CSC has greater potential than the trad-
itional therapy to simultaneously eliminate progenitor

cells and CSCs, and improve the overall effect of therapy
in cancer patients. Current treatment strategies targeting
CSCs mainly include specific surface markers and intra-
cellular signal transduction pathways for CSCs, induc-
tion of tumor stem cell differentiation, and alteration of
TME. The intra/inter tumor heterogeneity and the com-
plexity of the TME make therapy extremely ineffective,
therefore, greater understanding of intra/inter tumor
heterogeneity and TME is needed for novel therapies to
emerge. Future successful eradiation of CSCs and over-
come therapy resistance mainly depend on combination
therapies that target multiple CSC pathways as well as
target proliferating cancer cells.
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