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Abstract

Background: Colorectal cancer (CRC) is associated with resistance to anti-epidermal growth factor receptor (EGFR)
antibodies (both acquired and intrinsic), owing to the amplification or mutation of the KRAS oncogene. However,
the mechanism underlying this resistance is incompletely understood.

Methods: DLD1 cells with WT (+/—) or KRAS G13D mutant allele were treated with different concentrations of
Cetuximab (Cet) or panitumumab (Pab) to study the mechanism underlying the KRAS mutation-induced resistance to
anti-EGFR antibodies. The function of AMPK in KRAS mutation-induced resistance to anti-EGFR antibodies in CRC cells,
and the regulatory role of Bcl-2 family proteins in DLD1 cells with WT or mutated KRAS upon AMPK activation were
investigated. In addition, xenograft tumor models with the nude mouse using DLD1 cells with WT or mutated KRAS
were established to examine the effects of AMPK activation on KRAS mutation-mediated anti-EGFR antibody resistance.

Results: Higher levels of AMPK activity in CRC cells with wild-type KRAS treated with anti-EGFR antibody resulted in
apoptosis induction. In contrast, CRC cells with mutated KRAS showed lower AMP-activated protein kinase (AMPK)
activity and decreased sensitivity to the inhibitory effect of anti-EGFR antibody. CRC cells with mutated KRAS showed
high levels of glycolysis and produced an excessive amount of ATP, which suppressed AMPK activation. The
knockdown of AMPK expression in CRC cells with WT KRAS produced similar effects to those observed in cells with
mutated KRAS and decreased their sensitivity to cetuximab. On the contrary, the activation of AMPK by metformin
(Met) or 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) could overcome the KRAS-induced resistance to the
anti-EGFR antibody in vivo and in vitro. The activation of AMPK resulted in the inhibition of myeloid cell leukemia 1
(Mcl-1) translation through the suppression of the mammalian target of rapamycin (mTOR) pathway.

Conclusion: The results established herein indicate that targeting AMPK is a potentially promising and effective CRC
treatment strategy.
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Background

Colorectal cancer (CRC) is the fourth most common
malignancy and the second most frequent cause of
cancer-related deaths in the United States [1]. The
present treatment options for CRC include targeted
therapy using monoclonal antibodies against vascular
endothelial growth factor (VEGF)-A or epidermal
growth factor receptor (EGFR) [2]. However, genetic and
epigenetic alterations such as microsatellite instability,
mutations in KRAS, BRAF, and PIK3CA genes lead to
drug resistance in CRC [3]. KRAS mutations result in
the overexpression of phosphatidylinositol-4,5-bispho-
sphate 3-kinase (PI3K)/protein kinase B (AKT) and
RAF/mitogen-activated protein kinase (MEK)/extracellu-
lar signal-regulated protein kinase (ERK) signaling [4]
and impart resistance to anti-EGFR antibody therapy [5].
However, the exact mechanisms underlying mutant
KRAS-mediated resistance to anti-EGFR therapy remain
unclear. A variety of approaches have been explored to
target the mutant KRAS gene, including direct inhibition
of gene expression [6] and targeting of effector pathways
downstream of KRAS [7]. Despite these efforts, the
KRAS mutation is a consistent challenge in the field of
oncology, highlighting the need for the discovery of
novel mechanistic insights and targeting approaches to
resolve KRAS-mediated resistance.

Transcriptome and metabolomic analyses have indi-
cated the vital role of KRAS mutations in the control of
tumor metabolism through the stimulation of glucose
uptake [8]. Alteration in energy metabolism, including
increased aerobic glycolysis, is a fundamental phenotype
of malignant tumors and associated with tumor progres-
sion, metastasis, relapse, and chemoresistance [9-11].
AMP-activated protein kinase (AMPK) is a heterotri-
meric serine/threonine-protein kinase (STK) that is
phosphorylated by its upstream kinase STK11 (LKB1) in
response to an increase in cellular AMP/ATP ratio [12].
Activation of AMPK is cytotoxic to various cancer cells
and may inhibit tumor growth [13, 14], supporting the
role of AMPK as a tumor suppressor and its potential
application in cancer therapy and chemoprevention. The
activators of AMPK, metformin (Met) and phenformin
[15], were shown to reduce tumor growth in the xeno-
graft, transgenic, and carcinogen-induced mouse models
of cancer [13, 16]. The extensive research on the safety
and use of Met has encouraged the use of this molecule
as an anticancer agent [17]. Thus, a better understanding
of the mechanism and consequence of AMPK activation
in human cancer is important.

Here, we demonstrate that KRAS mutation in CRC
suppressed the activation of AMPK to stimulate the
translation of myeloid cell leukemia 1 (Mcl-1) via the ac-
tivation of the mammalian target of rapamycin (mTOR)
pathway. AMPK activation may overcome the KRAS-
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mediated resistance to anti-EGFR antibodies and achieve
better therapeutic effects in vitro and in vivo. The results
established herein indicate that targeting AMPK is a po-
tentially promising, safe, and effective CRC treatment
strategy.

Methods and materials

Cell culture and reagents

LIM1215, RKO, HT29, and Difi CRC lines (WT KRAS)
were a kind gift from the Ludwig Institute (Melbourne,
Australia). HCT-116, LoVo, T84 (all KRAS G13D mu-
tants), and SW480 (KRAS GI12V mutant) were pur-
chased from the American Type Culture Collection
(ATCC, Manassas, VA, USA). Isogenic DLD1 cells with
different genotypes of KRAS were commercially available
from Horizon Discovery. Mycoplasma detection tests
were performed for CRC cells every 6 months. McCoy’s
5A modified medium was provided by Invitrogen (Carls-
bad, CA, USA) and used for cell cultivation at 37 °C in a
5% CO, non-humidified incubator. A solution of 1%
penicillin-streptomycin prepared by mixing penicillin
(100 units/mL) and streptomycin (100 pg/mL; Invitro-
gen) and 10% fetal bovine serum (FBS; HyClone, Logan,
UT, USA) were supplemented in the medium.

The reagents used in the study included cetuximab
(Cet, Merk, Kenilworth, NJ, USA), panitumumab (Pab,
Amgen, Thousand Oaks, CA, USA), 5-Aminoimidazole-
4-carboxamide 1-B-D-ribofuranoside, Acadesine, N1-(j3-
D-Ribofuranosyl)-5-aminoimidazole-4-carboxamide
(AICAR), Met, glucose, 3-Bromopyruvate (3-BrPA)
(Sigma-Aldrich, St Louis, MO, USA).

Synthesis and transfection of shRNAs, lentivirus, and
retrovirus

The shRNA plasmids of lentiviruses were provided by
Open Biosystems (Thermofisher, Shanghai, China). As per
the manufacturer’s protocol, effective transfection reagent
(Qiagen) was used to produce lentiviral particles by co-
transfecting 293 T cells with pMD2.G and pSPAX2 (pack-
aging plasmids of lentiviruses) and shRNA plasmids.
Retrovirus particle production was conducted as previ-
ously described using pBABE-puro (#1764), pPBABE-puro/
Kras WT (#46745), and pBABE-puro/KRASG12V
(#46746) (Addgene, Cambridge, MA, USA) [18].

Plasmids, siRNA transfection

The plasmids and siRNA transfection were conducted
by using lipfectamin 2000 (ThermoFisher, Waltham,
MA, USA) as described by the manufacturer. The
pcDNA3.1 and pcDNA3.1 Mcl-1 (#25375) were pur-
chased from Addgene. The siRNAs for TSC2 and
PUMA were purchased from Sigma-Aldrich.
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MTS and ATP assay

For cell survival analysis, 1 x 10* cells/well were seeded in
96-well plates. At different time points, 3-(4,5-dimethyl-
thiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophe-
nyl)-2H-tetrazolium (MTS) assay was performed using the
MTS assay kit (Thermofisher) according to the manufac-
turer’s instructions. The ATP luminescence assay was per-
formed using CellTiter-Glo assay (Promega, Madison, W1,
USA) as described by the manufacturer. Chemilumines-
cence and luminescence were measured by using Wallac
Victor 1420 Multilabel Counter (Perkin Elmer, Waltham,
MA, USA). The luminescence units were normalized to
the total cell number. Each assay was conducted in tripli-
cate and repeated three times.

RNA isolation and reverse-transcription quantitative
polymerase chain reaction (RT-qPCR)

TRIzol (Invitrogen) was used for the extraction of total
RNA, and RNeasy Mini Kit (Qiagen) was used for RNA
purification, as indicated in the manufacturer’s protocol.
Power SYBR Green Master Mix (Life Technologies) was
used to carry out qPCR. ProtoScript First Strand cDNA
Synthesis Kit (New England Biolabs) was used for re-
verse transcription.

Annexin V/propidium iodide staining and apoptosis analysis
Apoptotic levels were assayed using Annexin V and propi-
dium iodide (PI) staining with fluorescein isothiocyanate
(FITC)-Annexin Apoptosis Detection Kit I (BD Pharmin-
gen) and flow cytometry. Alternatively, the apoptosis was
analyzed using Hoechst 33258 (Sigma-Aldrich) nuclear
staining, as described previously [19].

Immunoblot analyses

The collected tumor samples were used to prepare spec-
imens. TissueLyzer II (Qiagen) was used for the radioim-
munoprecipitation  assay  (RIPA)  buffer-mediated
disruption of cells to obtain cell lysates, which were then
centrifuged. The Pierce bicinchoninic acid (BCA) Pro-
tein Assay Kit (Thermo Scientific) or Bradford Protein
Assay Kit (Bio-Rad) was employed to determine concen-
trations of proteins. Immunoblot assay was used as pre-
viously described [20] in the presence of antibodies
against cleaved caspase-3, Bid, Bim, AMPK, p-AMPK, B-
actin (Sigma-Aldrich), Mcl-1 (BD Biosciences), Bax, Bad,
Bcl-xL, Bcl-2 (Agilent DAKO, USA), PUMA, and p-Sék,
S6k, 4EBP1, p-4EBP1, TSC1, TSC2 (Abcam).

Mouse tumorigenesis experiments

For all xenograft tests, we used Nu/Nu mouse models
(female; age: 5 to 6 weeks; Charles River, Wilmington,
MA, USA). Miniature isolation cages under sterile con-
ditions were used to maintain these mice on-site. Mice
had constant access to chow and water. Subcutaneous
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injection on two flanks of each mouse was performed
using 5 x 10° DLD1 cells with WT (+/-) and mutated
KRAS (G13D/-). Mice were intraperitoneally adminis-
tered with Met in saline (100 mg/kg; 0.9%) every 2 days
after 1week to allow tumor growth. Cet (0.8 mg) was
injected every 3 or 4 days. Some mice received a com-
bination of Cet and Met. The treatment was terminated
on day 5 or 15 and the tumors were subjected to immu-
nostaining assay or tumor volume investigation, respect-
ively. Tumor growth was monitored every 2 days using
calipers in two experimenters who were not blinded.
Tumor volume was calculated using the formula, 0.5 x
length x width?. Tumors collected after sacrificing these
mice were excised. Before embedding in paraffin, forma-
lin (10%) fixing was performed for immunostaining.
Every procedure was approved by the Animal Care and
Use Commiittee of Guangdong Medical University.

Quantification and data analyses

Statistical significance is determined by Student’s t-test
(paired) for bar graphs or One-way ANOVA analysis for
growth curves with Graphad Prism (v.5).

Results

KRAS mutation in CRC suppresses the phosphorylation of
AMPK

To study the underlying mechanism that the KRAS
mutation-induced resistance to anti-EGFR antibodies,
DLD1 cells with WT (+/-) or KRAS G13D mutant allele
were treated with different concentrations of Cet or Pab.
As a result, we found that Cet and Pab substantially sup-
pressed the growth of DLD1 WT cells in a dose-
dependent manner (Fig. 1a, Fig. S1A). In contrast, DLD1
cells with mutated KRAS showed resistance to Cet and
Pab treatment (Fig. la, Fig. S1A). Anti-EGFR antibodies
are known to induce cancer cell death via apoptosis [21,
22]; we, therefore, investigated the expression of apop-
totic signals in CRC cells treated with Cet or Pab. Treat-
ment with 5nM Cet or 10nM Pab markedly induced
death in WT DLD1 cells with characteristics of apop-
tosis (Fig. 1b, Fig. S1B), positive Annexin V staining of
plasma membrane (Fig. 1c), and cleavage of caspases-3
(Fig. 1d, Fig. S1C). The apoptotic signals were low in
DLD1 cells with mutated KRAS after treatment with the
same dose of Cet or Pab (Fig. 1b-d, Fig. S1B,C), indica-
tive of the anti-apoptotic effect of this mutation that me-
diates resistance to anti-EGFR antibodies. We also
analyzed the expression and phosphorylation level of
AMPK in DLDI cells with WT or mutated KRAS. No
significant change in AMPK expression was observed
between WT and mutated cells after Cet or Pab treat-
ment (Fig. 1d, Fig. S1C). However, the treatment with
anti-EGFR  antibodies induced phosphorylation of
AMPK in WT cells, and this effect was compromised in



Ye et al. Cell Communication and Signaling

(2020) 18:115

Page 4 of 13

A e B C
_120; = G13D/- =0 Sh=ET
= 1008 s m G13D/- 2= e
S 80 § 60 840
4 +
g 60 .2 40 S
» 407 ° £20
3 o] : 8” =8
o, S ol — e B 2, .
Vv 5 ; 7 ;7 < Un Cet < Un Cet
Cet (log (nM))
D E F Control
X X
+-_ G13D)- + Control+ PRI G
NI O NG N
Cet_ - + - + 120 = WT+ SO P
—_ - v - =
p-AMPK .. — 2\1100! G12v+ Kras p |
— B 804 3 . ==
= . p .
n : 4
3 AMPK - 5 = - ﬂ
. . : . cC3s ' :
0 1 2 3
Cet (log(nM)) Actin
50
- LIM1215
= RKO =40
— HT29 %
= Dif <301
4 HCT116 Q]
+ T84 A
N e g?/\\//fso =19
£og NE=IRIRT=1HINININ
9 &
3 'Q:{O Qi_o Qi(l' O‘\\«\\"O «Q?‘ \/040 @0
\>® Q\O )
o
N N
N $\° 0
L
0(\ & P '\Q’b‘ 2 oﬁ
Cet - + - + - + - + - + - + - + - +
p-AMPK ————————
AMPK s e i € > i = v WD WP WP W W W
e Tt Dttt —————
Fig. 1 Phosphorylation of AMPK was suppressed by Kras mutation in CRC cells. a MTS analysis of DLDT WT (+/—) and Kras mutation (G13D/-)
cells treated with cetuximab (Cet) at the indicated doses for 48 h. b Apoptosis in DLD1 WT (+/-) and Kras mutation (G13D/-) cells treated with 5
nM Cet for 48 h was analyzed by nuclear staining with Hoechst 33258. ¢ Apoptosis in DLD1 WT (+/—) and Kras mutation (G13D/-) cells treated
with 5 nM Cet for 48 h was analyzed by Annexin V staining followed by flow cytometry. d Western blot of p-AMPK, AMPK, and Caspase-3 (C3) in
the cells treated as in (b). @ DLD1 WT (+/-) cells stably expressing control, Kras WT, or Kras mutant (G12V) by retrovirus transfection were treated
with Cet at indicated doses for 48 h. The cell viability was analyzed by MTS assay. f DLDT WT (+/-) cells stably expressing control, Kras WT, or Kras
mutant (G12V) by retrovirus transfection were treated with 5 nM Cet for 48 h. The expression of indicated proteins was analyzed western blot. g
MTs analysis of indicated cells treated with Cet at indicated doses for 48 h. The IC50 was calculated and plotted in the right panel. h The
expression of p-AMPK, AMPK in the indicated cells treated with 5 nM Cet. Each experiment was repeated for 3 times. *, p < 0.05; **, p <0.01

DLD1 cells with KRAS mutation (Fig. 1d, Fig. S1C).
Therefore, KRAS mutation suppressed the activation of
AMPK. To confirm the effect of KRAS mutation on
AMPK activation, we transfected DLD1 WT (+/-) cells

with WT or mutant KRAS (G12V) using retrovirus
transfection. The transfection of cells with mutant KRAS
(G12V) resulted in significant suppression of their sensi-
tivity to Cet and decreased the apoptosis of cells as
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compared with DLD1 WT cells; this effect was absent in
DLD1 cells transfected with WT KRAS (Fig. le, Fig.
S1D,E). Furthermore, we failed to observe AMPK phos-
phorylation induced by Cet treatment in the cells trans-
fected with KRAS mutant gene as compared with those
expressing WT KRAS (Fig. 1f). We also analyzed the ac-
tivation of AMPK in eight different CRC lines, including
LIM1215, RKO, HT29, and Difi (KRAS WT), HCT-116,
T84, LoVo (all KRAS GI13D mutants), and SW480
(KRAS G12V mutant). The cell lines with KRAS muta-
tions were less sensitive to Cet-induced death and had
higher IC50 values (Fig. 1g). Among those KRAS WT
cells, RKO and HT29 had relatively higher IC50 values,
which might due to the BRAF mutation (Fig. 1g). More-
over, Cet-induced phosphorylation of AMPK was lower
in the cells with KRAS mutations than in other cell lines
(Fig. 1h). Taken together, KRAS mutations in CRC cells
suppressed the activation of AMPK pathway in response
to anti-EGFR antibody treatment.

Glycolysis is essential for mediating KRAS mutation-induced
anti-EGFR resistance

Previous studies have revealed the suppression of AMPK
pathway by aerobic glycolysis [23], which contributes to
the development of CRC with KRAS pathway mutations
[24]. We, therefore, investigated whether aerobic glycoly-
sis is important for AMPK suppression by KRAS muta-
tion. We examined the level of cellular ATP in DLD1
cells expressing WT or mutant KRAS using an ATP-
based luminescent assay and found that KRAS mutation
resulted in a two-fold increase in total cellular ATP level
as compared with WT cells (Fig. 2a). Transfection of
mutant KRAS (G12V) in DLD1 WT cells also increased
the cellular ATP level as compared with that observed in
control cells or those expressing WT KRAS (Fig. 2b).
Furthermore, the CRC cell lines with KRAS mutations
had higher levels of cellular ATP than those expressing
WT KRAS (Fig. 2c), indicative of the production of high
levels of ATP in the cells expressing KRAS mutations.
Treatment of Cet or Pab reduced the ATP level in WT
DLD1 cells, but did not have any effects on the cellular
ATP level of KRAS mutant (G13D) DLD1 cells (Fig. 3a),
suggesting elevation of glycolysis might be the reason of
AMPK activation and anti-EGFR drug resistance. To
study the function of glycolysis in AMPK activation, we
cultured KRAS WT cells, Difi and HT29, in the presence
of glucose supplementation and found a substantial in-
crease in the level of cellular ATP in both cell lines in a
time-dependent manner (Fig. 2d). The supplement of
glucose compromised the Cet induced apoptosis (Fig.
2e) and activation of AMPK (Fig. 2f) in Difi and HT29
cells. To confirm the function of glycolysis in AMPK
suppression, we treated DLD1 cells expressing mutant
KRAS with 3-BrPA, a pyruvate analogue with alkylating
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properties that deplete cellular ATP levels. Pretreatment
with 3-BrPA resulted in a significant suppression in cel-
lular ATP levels in DLD1 cells expressing mutant KRAS
in a dosage-dependent manner (Fig. 2g). Furthermore, 3-
BrPA treatment sensitized the mutant cells to Cet- or
Pab-induced apoptosis (Fig. 2h,i) and restored the phos-
phorylation status of AMPK suppressed by KRAS muta-
tion (Fig. 2i). Thus, KRAS mutation in CRC cells
suppressed the activation of AMPK via glycolysis.

AMPK is necessary for KRAS mutation-mediated
resistance to anti-EGFR antibodies in CRC cells

We investigated the function of AMPK in KRAS
mutation-induced resistance to anti-EGFR antibodies in
CRC cells. The depletion of AMPK expression in DLD1
cells by small-hairpin RNA (shRNA) produced effects
similar to those observed with KRAS mutation, consistent
with the retardation of cell death induced by Cet and Pab
(Fig. 3a). The absence of AMPK expression also resulted
in the suppression of anti-EGFR antibody-mediated apop-
tosis of DLD1 cells with WT KRAS (Fig. 3b-d). We further
evaluated whether the activation of AMPK pathway may
overcome the resistance to anti-EGFR antibodies induced
by KRAS mutation and found that the combination treat-
ment of AMPK activator Met or 5-aminoimidazole-4-car-
boxamide ribonucleotide (AICAR) and anti-EGFR
selectively re-sensitized the mutated DLD1 cells to apop-
tosis induced by antiEGFR antibodies (Fig. 3e,f). In con-
trast, the treatment with AMPK activator had less effects
on WT cells in the presence of anti-EGFR antibody (Fig.
3e,f). Therefore, these results suggest that the activation of
AMPK pathway may overcome the drug resistance in-
duced by KRAS mutation in CRC.

AMPK activation suppresses the expression of mcl-1

As B cell lymphoma-2 (Bcl-2) family of proteins plays an
important role in mediating apoptosis induced by anti-
EGEFR antibodies and AMPK activator [21, 25], we inves-
tigated the regulatory role of Bcl-2 family proteins in
DLD1 cells with WT or mutated KRAS. Cet treatment
induced the expression of PUMA and Bim but sup-
pressed the level of Mcl-1 in WT cells (Fig. 1a). KRAS
mutation had opposite effects on the induction of
PUMA and suppression of Mcl-1 observed after Cet
treatment (Fig. 4a). The depletion of PUMA in WT cells
resulted in the suppression of Cet-induced apoptosis
(Fig. S2A,B), consistent with the previously reported ob-
servation about the role of PUMA in anti-EGFR
antibody-induced cell death [21]. However, the absence
of PUMA had no effect on the apoptosis induced by Cet
in combination with Met in DLD1 cells with mutated
KRAS (Fig. S2C,D). Furthermore, the depletion of AMPK
pathway only affected the Cet-induced suppression of
Mcl-1 expression but not PUMA induction (Fig. 4b).
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The activation of AMPK by Met in DLD1 cells with mu-
tated KRAS suppressed the expression of Mcl-1 but had
no effect on the induction of PUMA expression (Fig. 4c),
suggesting that AMPK activation specifically suppressed
the expression of Mcl-1 protein. To confirm the role of
Mcl-1 protein in KRAS-AMPK-mediated anti-EGFR
antibody resistance, we generated a mutated KRAS car-
rying DLD1 cell line with a stable knockdown of Mcl-1
expression. The depletion of Mcl-1 expression resulted
in the sensitization of the mutant cells to Cet- and Pab-
induced apoptosis (Fig. 4d,e). On the contrary, the in-
crease in the expression of Mcl-1 protein in mutant
DLD1 cells compromised the apoptosis induced by the
combination of Cet and Met (Fig. 4f,g). Together these
results indicate that the abnormal expression of Mcl-1

mediates resistance to antiEGFR antibodies in CRC cells
with oncogenic KRAS.

Activation of AMPK suppresses mcl-1 expression by
targeting mTOR pathway

We investigated the mechanism underlying Mcl-1 sup-
pression upon AMPK activation. Treatment with Cet
and/or Met had no significant effect on the mRNA level
of Mcl-1 in DLD1 cells with WT or mutated KRAS
(Fig. 5a). Thus, AMPK activation had no effects on Mcl-
1 transcription. Pretreatment of DLD1 WT or mutant
cells with a protease inhibitor, MG132, had no effect on
the Met-mediated regulation of Mcl-1 (Fig. 5b), ruling
out the possibility of post-transcriptional modification of
Mcl-1. On the other hand, the pretreatment of mutant
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1 uM AICAR in combined with 5 nM Cet (left) or 10 nM Pan (right) for 48 h. Each experiment was repeated for 3 times. *, p < 0.05; **, p <001

cells with a translation inhibitor, cycloheximide (CHX),
shortened the half-life of the Mcl-1 protein in response to
Met treatment (Fig. 5¢), indicative of the modulation of
Mcl-1 translation upon KRAS mutation. For certain can-
cers, cap-dependent translation is essential for the efficient
translation of Mcl-1 mRNA [26, 27]. In such situations,
the level of Mcl-1 protein reduces after inhibition with
mTORCI, resulting in the loss of eukaryotic translation
initiation factor 4E-binding protein 1 (4EBP1) expression
[27]. Here, we found that the cells with mutated KRAS
showed a higher level of S6 kinase beta-1 (S6K) and
4EBP1 phosphorylation than WT cells (Fig. 5d). Treat-
ment of DLD1 cells with mutated KRAS with Met led to a
decrease in S6K and 4EBP1 phosphorylation (Fig. 5e), and
this effect correlated with Mcl-1 expression (Figs. 4a and
5b). This observation is suggestive of the suppression of
the mTOR pathway in response to the activation of
AMPK. The activation of AMPK was shown to result in

the formation of a complex with tuberous sclerosis com-

plex 2 (TSC2) that recruits TSC1 and suppresses 4EBP1

and S6K phosphorylation [28]. In the present study, the
activation of AMPK by Met in DLD1 cells with mutated
KRAS resulted in an increase in the interaction between
TSC2, TSC1, and AMPK (Fig. 5f). The knockdown of
TSC2 expression by small-interfering RNA (siRNA) abol-
ished the apoptotic effects of the combination of Cet and
Met in DLD1 cells with mutated KRAS (Fig. 5g,h). TSC2
knockdown also recovered the expression of Mcl-1 and
phosphorylation of S6K (Fig. 5g). Thus, the activation of
AMPK suppressed the mTOR pathway and eventually re-
duced the translation of Mcl-1 in CRC.

In vivo resistance to anti-EGFR antibodies may be overcome
via AMPK activation

We established a xenograft tumor model with nude mouse
using DLD1 cells with WT or mutated KRAS to examine
the effects of AMPK activation on KRAS mutation-
mediated anti-EGFR antibody resistance. Consistent with
the results of in vitro studies, KRAS mutations in tumors in-
duced resistance to Cet treatment; however, no difference in
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expression of indicated was analyzed. e The apoptosis of DLD1 Kras mutated cells treated as in (d). f DLD1 Kras mutated cells transfected with control
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apoptosis of DLD1 Kras mutated cells treated as in (f). Each experiment was repeated for 3 times. *, p < 0.05; **, p <0.01; ***, p < 0.001

growth was observed for tumors derived from cells with
WT or mutated KRAS (Fig. 6a). Western blot analysis
showed that Cet treatment induced the cleavage of caspase-
3, increased AMPK activation, and suppressed Mcl-1 level
in tumors obtained from WT cells, and these effects were
compromised in tumors derived from the cells with mutated
KRAS (Fig. 6b). Terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) staining results also
showed that the cell death induced by Cet was suppressed
in the tumors from cells with mutated KRAS, confirming
that KRAS mutation may induce resistance to anti-EGFR
antibody in vivo (Fig. 6¢). We evaluated whether the com-
bination of Cet and AMPK activator (Met) may overcome
drug resistance in tumors from cells with KRAS mutation.
As a result, we found that Cet-resistant tumor showed a
slight decrease in growth after treatment with Cet or Met

but was obviously inhibited in response to the combination
treatment (Fig. 6d). On the other hand, the expression of
Mcl-1 was inhibited in the resistant tumors by the combin-
ation therapy, as evident from analytical results obtained for
early collected tumors (Fig. 6e). The cleavage of caspase-3
increased, suggestive of apoptosis activation in response to
the combination treatment of Cet and Met (Fig. 6e). This
observation was consistent with the results of TUNEL stain-
ing (Fig. 6f). Thus, the resistance to anti-EGFR antibodies
mediated by KRAS mutation could be overcome with the use
of AMPK activators to suppress the expression of Mcl-1.

Discussion

Therapeutic resistance is one of the most significant
challenges for targeted therapies [29]. In the present
study, we found that KRAS mutation in CRC cells
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imparts resistance to anti-EGFR antibody treatment
through the suppression of AMPK activation. KRAS mu-
tation in CRC cells increases the level of cellular glycoly-
sis and consequently suppresses the activation of AMPK

in response to anti-EGFR antibody treatment. Our re-
sults show that the combination treatment with an
AMPK activator, Met or phenformin, may re-sensitize
the cells with mutated KRAS to anti-EGFR antibody-
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treatment. f The TUNEI staining of tumor sample from (e). Panels b, ¢, e, f were repeated for 3 times. *, p < 0.05; **, p <001, ***, p <0.001

induced apoptosis, suggestive of the potential of this strat-
egy to overcome the drug resistance induced by KRAS
mutation. The suppression of AMPK expression by KRAS
mutation may lead to the activation of the mTOR pathway
and increase the translation of the Mcl-1 protein.

KRAS is the isoform commonly mutated in the pan-
creas, lung, and colon cancers [30]. Retrospective analyses
of clinical data revealed the alterations in KRAS oncogene

that are mostly responsible for mediating resistance to
anti-EGFR antibodies [31]. Previous studies have estab-
lished that KRAS G12D mutation rewired the anabolic
glucose metabolic network in multiple cancers that is im-
portant for tumor growth [8, 24]. However, whether gly-
colysis stimulated by KRAS mutation contributes to drug
resistance is largely unknown. It was reported that the
metabolic shift driven by high ATP levels is associated
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with the progression of acquired chemoresistance of cancer
cells [11]. Our data revealed the elevated level of aerobic gly-
colysis in CRC cells with mutated KRAS and demonstrated
the sensitization of mutant cells through the inhibition of
glycolysis. These observations suggest that the increase in
aerobic glycolysis in cancer cells may provide the extra
amount of ATP needed for the survival of cells with mu-
tated KRAS under stress. The elevated level of cellular ATP
in cells with mutated KRAS may suppress the activation of
AMPK, leading to resistance to anti-EGFR antibodies.

Other than KRAS mutation, BRAF, the downstream of
KRAS, is also frequently mutated in the CRC patients
(around 10%) [32]. The mutation of BRAF was also re-
ported to be another vital obstacle for anti-EGFR
antibodies-based therapy [32, 33]. In our study, we found
that the BRAF mutated cells, including HT29 and RKO
cells, had relative higher IC50 of cetuximab than the KRAS/
BRAF WT cells, Difi and Lim1215 cells (Fig. 1g), which in-
dicated that BRAF mutation also contributes to the anti-
EGEFR antibodies resistance in CRC cells. The AMPK acti-
vation by Cet was also found in these two BRAF mutated
cell lines (Fig. 1h), indicating BRAF might be the down-
stream effector of AMPK. Exactly, it has been reported that
AMPK activation leads to phosphorylation of BRAF and
impairs its oncogenic effects [34]. Therefore, suppression of
AMPK activation by supplement of glucose compromised
the sensitivity of HT29 cells to higher dosage of Cet (Fig.
2d-f). However, whether manipulating AMPK activation
can overcome the BRAF mutation-induced drug resistance
might still need further investigated.

AMPK is hypothesized to maintain energy homeostasis
by targeting defective mitochondria for autophagy [35]
and the regulation of fatty acid metabolism [36]. The ac-
tivation of AMPK results in the regulation of cell
growth, at least in part, through the inhibition of the
mTORCI1 signaling pathway via the dual phosphoryl-
ation of TSC2 and Raptor [28]. Accumulating evidences
support the beneficial role of AMPK in gut health medi-
ated through an increase in intestinal absorption, im-
provement in barrier function, suppression of colorectal
carcinogenesis, and reduction of intestinal inflammation
and metabolism-related diseases [37]. p-AMPK expres-
sion was reported to exhibit a significant prognostic
value in a large cohort of CRC patients [38]. Consistent
with the results of previous studies, we found that KRAS
mutation suppressed the activation of AMPK and
imparted resistance to anti-EGFR antibody treatment in
CRC. The activation of the AMPK pathway by Met or
AICAR may overcome the drug resistance induced by
KRAS mutation. As AMPK activation may exert growth-
suppressive effects, the daily intake of Met for decades
may lower the incidence of cancer owing to the chronic
effects of the AMPK-mediated suppression of mTORC1
and other pro-growth pathways. Today, over 50 different
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clinical trials are investigating the use of Met in oncol-
ogy [39]. However, multiple pieces of research also
showed that activation of AMPK actually benefits tumor
survival and growth [40], and renders drug resistance,
including cetuximab [41]. Since the activation of AMPK
is also the critical process for cell survival during meta-
bolic stress, it would not be surprising that AMPK acti-
vation rewires cancer metabolism to allow cancer cells
to survive with inhibition of cetuximab [42]. In our
current study, we found the beneficial effect of AMPK
agonist in anti-EGFR antibodies only happen in the
KRAS mutation CRC cells with low activation level of
AMPK (Fig. 3e, f). In contrast, continued activation of
AMPK in KRAS WT CRC cells did not dramatically en-
hanced the killing effect of anti-EGFR antibodies (Fig.
3e, f). Therefore, the anti-cancer effects of metformin in
cancer cells are highly dependent on the AMPK activity,
which is correlated to diverse metabolic stress, such as
glucose concentration, oxidative stress, and hypoxia level
[43, 44]. A further investigation of relationship between
AMPK activation level and drug response in different
tumor circumstances will be helpful for the usage of
AMPK agonists in cancer therapy.

Here we demonstrate that the suppression of AMPK ex-
pression by KRAS mutation stimulated the mTOR pathway
to increase the expression of Mcl-1 at the translational
level. AMPK suppresses the mTOR activity directly through
the phosphorylation of mTOR at Thr2446 and indirectly
through the phosphorylation of TSC2 at Thr1227 and
Ser1345, resulting in an increase in the activity of the TSC-
complex [28]. It was recently reported that mTOR inhib-
ition specifically sensitizes CRC with KRAS or BRAF muta-
tions through the suppression of Mcl-1 expression [45].
However, the relationship between the KRAS mutation and
mTOR pathway activation is still unclear. Here, we found
that KRAS mutation suppresses the activation of AMPK
and consequently increases the activity of mTOR pathway,
leading to translation of Mcl-1.

Conclusions

Overall, we believe that the combination of AMPK activa-
tor and anti-EGFR antibodies may mechanistically induce
the apoptosis and growth arrest of the subset of CRCs
with KRAS mutations. Further investigation is warranted
to evaluate the clinical outcomes of these molecules in re-
calcitrant cancers. The current study reveals some inter-
esting findings that may facilitate drug development.
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Additional file 1: Fig. S1. Kras mutated cell showed resistant to anti-
EGFR antibodies induced apoptosis. (A) (A) MTS analysis of DLDT WT
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(+/-) and Kras mutation (G13D/-) cells treated with Panitumumab (Pan)
at the indicated doses for 48 h. (B) Apoptosis in DLD1 WT (+/-) and Kras
mutation (G13D/-) cells treated with 10 nM Pan for 48 h was analyzed by
nuclear staining with Hoechst 33258. (C) Western blot of p-AMPK, AMPK,
and Caspase-3 (C3) in the cells treated as in (B). (D, E) DLD1 WT (+/-)
cells stably expressing control, Kras WT, or Kras mutant (G12V) by retro-
virus transfection were treated with 10 nM Pan for 48 h. The apoptosis
was analyzed by Hochst 33,258 staining (D) and annexin-V staining (E).
Each experiment was repeated for 3 times. nd, p > 0.05; *, p < 0.05; **,

p <001,

Additional file 2: Fig. S2. PUMA is dispensable for AMPK activation
induced apoptosis. (A) DLD1 WT cells transfected with control or PUAM
SiRNA were treated with 5nM Cet for 48 h. The expression of indicated
was analyzed. (B) The apoptosis of DLD1 Kras mutated cells treated as in
(A). (C) DLD1 Kras mutated cells transfected with control or PUMA siRNA
were treated with 5nM Cet in combined with 5 uM Met for 48 h. The
expression of PUMA and caspase-3 (C3) was analyzed. (D) The apoptosis
of DLD1 Kras mutated cells treated as in (C). Each experiment was re-
peated for 3 times. nd, p > 0.05; **, p < 0.01.
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