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Abstract

Efferocytosis is a physiologic phagocytic clearance of apoptotic cells, which modulates inflammatory responses and
the immune environment and subsequently facilitates immune escape of cancer cells, thus promoting tumor
development and progression. Efferocytosis is an equilibrium formed by perfect coordination among “find-me”,
“eat-me” and “don’t-eat-me” signals. These signaling pathways not only affect the proliferation, invasion, metastasis,
and angiogenesis of tumor cells but also regulate adaptive responses and drug resistance to antitumor therapies.
Therefore, efferocytosis-related molecules and pathways are potential targets for antitumor therapy. Besides,
supplementing conventional chemotherapy, radiotherapy and other immunotherapies with efferocytosis-targeted
therapy could enhance the therapeutic efficacy, reduce off-target toxicity, and promote patient outcome.
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Background
Apoptosis is a mechanism of programmed cell death by
which tissues self-renew and maintain homeostasis [1].
During apoptosis, phagocytes rapidly recognize and engulf
dying cells before intracellular components are released.
Subsequently, the membrane integrity of apoptotic cells is
maintained, hence avoiding the exposure of immunogenic
materials and the subsequent inflammatory responses [2].
This physiologic process, referred to as efferocytosis, effi-
ciently removes apoptotic cells without subsequent sec-
ondary necrosis and damages [3]. Efferocytosis is induced
by several physiological or pathological conditions and
plays a crucial role in tissue differentiation, repair, and the
resolution of inflammation [4]. Because of the pleiotropic
role of efferocytosis, disruption and dysregulation of this
process are associated with many pathological states,
which may trigger some diseases. Previous research has

linked efferocytosis to inflammatory diseases [5], auto-
immune diseases [6] and atherosclerosis [7, 8].
Apoptotic cell removal is accomplished by either pro-

fessional or non-professional phagocytes [9]. Professional
phagocytes include macrophages and immature den-
dritic cells, which are recruited following the onset of
apoptosis with a relatively faster and better motile ability
in engulfment; while non-professional phagocytes are
tissue-resident cells neighboring dying cells (e.g., epithe-
lial cells, endothelial cells, fibroblasts and some stromal
cells) and are comparatively slower in ingesting dead
cells [10–12].
Tumor-associated macrophages are M2-polarized

macrophages and a type of phagocyte involved in effero-
cytosis [13, 14]. Recent studies have demonstrated the
vital role of efferocytosis in the tumor microenviron-
ment, progression, and metastasis of tumors [15, 16].
Following engulfment, tumor-associated macrophages
increase the production of anti-inflammatory cytokines
and Treg cells (regulatory T cells), while inhibiting the
production of pro-inflammatory cytokines and effector
T cells [17–19]. Therefore, the immunologically silent
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clearance of apoptotic cells promotes inflammation reso-
lution and immune suppression, which provide cancer
cells with an environment to escape from immunological
surveillance hence promoting tumor progression [1, 20].
This review explores the function and underlying mech-
anisms of efferocytosis in tumor progression and sum-
marizes the promising targets and novel strategies for
cancer therapy.

Biological mechanisms of efferocytosis
Recognition
Efferocytosis includes complicated and coordinated mo-
lecular communication and involves several signaling
pathways that culminate in phagocytosis and clearance
of dying cells. The first step in efferocytosis is recogni-
tion of the targeted apoptotic cells by phagocytes
through “find-me” signals such as lipids, proteins, pep-
tides, and complex structures released by dying cells
[21]. These signals act as chemo-attractants for scaven-
ger cells recruited to the apoptotic site during the early
stages of efferocytosis. The first chemotactic factor to be
identified as a “find-me” signal was a covalent dimer of
the ribosomal protein S19 [22]. Lysophosphatidylcholine
is a lipid attraction signal produced by apoptotic cells
through caspase-3 mediated activation of the calcium-
independent phospholipase A2 and stimulates the mi-
gration of monocytes and primary macrophages [23, 24].
Also, sphingosine-1-phosphate (S1P) is another lipid
chemotactic factor that acts as a “find-me” signal in
efferocytosis. S1P triggers the chemotaxis of macro-
phages to engulf apoptotic cells [25]. As a member of
the chemokine family, CX3CL1 is also a “find-me” signal
released by lymphocytes after apoptosis and attracts
macrophages to the apoptotic site [26]. Elliott et al. dem-
onstrated the role of extracellular nucleotides in phago-
cytosis and apoptotic cell recognition, as the release of
ATP and UTP from apoptotic cells elicit an attraction
signal through their receptor P2Y2 on phagocytes [27].

Engulfment
Following recognition and migration of phagocytes,
apoptotic cells are engulfed by phagocytes. Engulfment
is mediated by a series of molecular events called “eat-
me” signals such as phosphatidylserine (PS) and calreti-
culin. These signals are unique surface markers on apop-
totic cells identified by arrived phagocytes and enable
them to exert a subsequent phagocytic function. The
most common and widely studied “eat-me” signal is PS,
which is usually confined to the inner leaflet of the
plasma membrane but migrates to the outer leaflet dur-
ing apoptosis [28, 29]. Apoptotic cells typically have ex-
posed PS, phagocytes recognize and combine with this
signal before the onset of engulfment.

Previous studies have reported that phagocytes can dir-
ectly bind to PS on apoptotic cells through numerous PS
receptors. These receptors include T-cell immunoglobulin
mucin (TIM) family (TIM-1, TIM-3, and TIM-4) [30, 31],
brain-specific angiogenesis inhibitor 1 (BAI-1) [32],
stabilin-2 family members [33], CD300 family members
(CD300b and CD300f) [34, 35] and receptor for advanced
glycation end products (RAGE) [36]. Alternatively, PS can
indirectly bind to receptors on phagocytes via bridging
molecules. For example, TAM receptors are a type of in-
direct PS receptors, and growth arrest-specific 6 (Gas6)
and Protein S are bridging molecules that facilitate the
binding of PS on apoptotic cells to TAM receptors (Tyro3,
Axl and MerTK) on phagocytes [37]. Further, Gas 6 binds
to all three receptors, while Protein S only binds to Tyro3
and MerTK [38]. Milk fat globule epidermal growth
factor-8 (MFG-E8) bridges between PS and αvβ3/αvβ5
integrins, another type of indirect PS receptors [39]. Be-
sides, the SCARF1 scavenger receptor on phagocytes uses
C1q as a complement component to recognize PS on
apoptotic cells [40]. Inversely, phagocytes can identify live
and normal cells by detecting “don’t-eat-me” signals,
which protects the cells from being engulfed. The most
widely studied ligands of “don’t-eat-me” signals are CD47
[4] and CD31 [41].
Following the “eat-me” signals recognition and tether-

ing, cytoskeletal rearrangement occurs within phago-
cytes, leading to cell motility and phagosome formation
to complete the process of engulfment. This process is
mediated by ELMO/Dock180/Rac1 pathway [40, 41],
which is proved to be downstream of PS receptors such
as BAI-1 [30]. In addition, TAM receptors and αvβ5
integrin have been confirmed to have an effect on Rac1
activation and eventually causing phagocytosis [42].
However, mechanisms of some other receptors in post-
receptor activation signaling are still unclear.

Immunomodulation
The clearance of apoptotic cells occurs via their inter-
action with phagocytes, which contributes to tissue
homeostasis. This process is accompanied by the secre-
tion of a series of anti-inflammatory cytokines, including
transforming growth factor-beta (TGFβ), interleukin
(IL)-10, prostaglandin E2 (PGE2) and platelet-activating
factor (PAF). Meanwhile, the production of the pro-
inflammatory cytokines IL-1β, tumor necrosis factor-
alpha (TNF-α), and IL-12 is inhibited [42, 43]. This
mechanism occurs via the reduction of M1 macrophage
induced production of pro-inflammatory cytokines and
suppression of the nuclear factor-kappa B (NF-ĸB) sig-
naling [44]. In contrast, the anti-inflammatory response
of M2 macrophages is enhanced [45]. Besides, TAM re-
ceptor activation dampens pro-inflammatory Toll-like
receptor (TLR) signaling by upregulating the expression
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of suppressor of cytokine signaling (SOCS) 1 and SOCS3.
Furthermore, the enhancement of efferocytosis is always
in line with the decreased activation and function of CD8+

and CD4+ effector T cells as well as increased Treg cells-
mediated immunosuppression [17, 46–49]. Indeed, CD8+

and CD4+ T cells play a critical role in tumor rejection re-
sponse [50]. Particularly, CD8+ cytotoxic T cells are ac-
knowledged to recognize tumor-specific antigens and
target cancer cells, leading to the shrinkage of tumor [51].
Taken together, efferocytosis hinders the inflamma-

tory response and modulates the immune environ-
ment, which facilitates immune escape and promotes
tumorigenesis and progression (Fig. 1) [52]. Con-
versely, inhibition of efferocytosis in the context of
cancer results in the release of intracellular compo-
nents of dying cells. And the succeeding exposure of
immunogenic materials triggers the robust innate
and adaptive immune responses against cancer, due
to the secretion of pro-inflammatory cytokines, the
accumulation of inflammatory cells, as well as the
enhanced recognition and presentation of tumor-
specific antigens [1, 2, 20, 51].

The role of efferocytosis in the tumor
microenvironment
The mechanisms of several efferocytosis-associated mol-
ecules and signaling pathways have been elucidated in
the past few decades.

TAM receptors
TAM receptors promote the tumor microenvironment
by promoting remodeling of the extracellular matrix
and the release of factors conducive to cell prolifera-
tion, migration, and angiogenesis [53]. Under normal
physiological conditions, TAM receptors are principally
expressed on natural killer (NK) cells and antigen-
presenting cells (APCs) such as macrophages and im-
mature dendritic cells [54]. However, TAM receptors
are overexpressed in various cancers, including lung
cancer, leukemia, gastrointestinal cancer, and breast
cancer, and the overexpression results in enhanced
efferocytosis and a worse cancer outcome [55–57]. The
underlying mechanisms of TAM receptors, particularly
Axl and MerTK, have been widely researched.

Fig. 1 Schematic representation of signaling pathways in the efferocytosis-induced immune suppression for tumor progression. The engulfment
of apoptotic cells by tumor-associated macrophages triggers a series of signaling pathways, subsequently induces M2 polarization of
macrophages while inhibiting M1 polarization, increases Treg cells while decreasing CD8+ T cells, and thereby resulting in the inflammation
resolution and immune suppression, which may provide an environment for cancer to escape from immunological surveillance and promote
tumor progression. NFκB = factor-κ-gene binding; JAK/STAT1 = Janus kinase/signal transducers and activators of transcription 1; PI3K/Akt =
phosphatidylinositol 3 kinase/protein-serine-threonine kinase; PD-1/PD-L1 = programmed death-ligand 1/programmed cell death protein 1; TLR =
Toll-like receptor; IL = interleukin; TGFβ = transforming growth factor-beta; PGE2 = prostaglandin E2; PAF = platelet-activating factor; TNF-α = tumor
necrosis factor-alpha; Treg cells = regulatory t cell
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The oncogenic and cancer-promoting mechanisms of
MerTK are associated with the classic cell proliferation
pathways phosphatidylinositol 3 kinase (PI3K)/protein-
serine-threonine kinase (Akt) and mitogen-activated pro-
tein kinase (MAPK)/extracellular signal-regulated kinase
(ERK) [55]. Through the PI3K/Akt signaling axis, MerTK
induces polarization of M2 macrophages while inhibiting
polarization of M1 macrophages, and thereby resulting in
the resolution of inflammation [58]. M2 macrophages play
a crucial role in the cancer microenvironment by facilitat-
ing tumor progression and invasion due to their immuno-
suppressive characteristics [59]. In addition to innate
immunity, MerTK is involved in the modulation in adap-
tive immunity as genetic ablation of MerTK parallels in-
creased intratumoral CD8+ T lymphocytes and promoted
lymphocyte proliferation [48]. Moreover, MerTK-driven
efferocytosis also induces the expression of the pro-
grammed death-ligand 1 (PD-L1), a molecule that pro-
motes tumor escape, and therefore enhances the immune
suppression microenvironment for cancer cells [57]. Not-
ably, MerTK is essential for TIM-4 induced efferocytosis
[60]. Since TIM-4 lacks an extensive intracellular domain,
it works in tandem with MerTK to facilitate the phagocyt-
osis of apoptotic cells [60]. Furthermore, it has been shown
in many malignant tumors that MerTK is involved in the
resistance of multiple anticancer therapies. In non-small
cell lung cancer, for instance, MerTK participates in drug-
resistance of epidermal growth factor receptor (EGFR) in-
hibitors [61].
Axl is typically activated by the Gas6 ligand, and the affin-

ity of Gas6 for Axl is higher than to Tyro3 and MerTK re-
ceptors [62]. The Gas6/Axl signaling pathway influences
cancer development and progression through its effect on
tumor cell proliferation, invasion, metastasis, epithelial-
mesenchymal transition (EMT), and angiogenesis [38, 63,
64]. A previous study demonstrated that Axl is required for
EMT, which promotes metastasis of HER-2 positive breast
cancer [65]. Several signaling pathways, including Janus
kinase (JAK)/signal transducers and activators of transcrip-
tion 1 (STAT1), PI3K/Akt, and NF-ĸB, MAPK/ERK are
downstream of the Gas6/Axl pathway [66]. Therefore,
macrophage polarization induced by the PI3K/Akt signaling
axis is also involved in the cancer-promoting mechanisms
of Axl. Moreover, Axl could mediate resistance to chemo-
therapy [67], radiotherapy, and targeted molecular therapy
in many cancers [68]. For instance, overexpression of Axl
promotes resistance to EGFR-tyrosine kinase inhibitor
(TKI) through the PI3K/Akt and MAPK/ERK signaling
pathways [69]. In small-cell lung cancer, Axl promotes
primary and acquired resistance to WEE1 (WEE1 G2
checkpoint kinase) inhibition. This resistance occurs via ac-
tivation of another G2-checkpoint protein, the checkpoint
kinase 1 (CHK1), which is a parallel pathway for the repair
of DNA damage [70].

Furthermore, TAM receptors are characterized as ubi-
quitylation substrates for the E3 ligase casitas B-lineage
lymphoma-b (Cbl-b), which suppresses antitumor activ-
ities of NK cells, CD8+ T cells and CD4+ T cells while
enhances Treg immunosuppressive activity [46, 47, 71,
72]. Consequently, the inhibition of Cbl-b by blocking
TAM receptors has the potential to boost immunity
against cancer.

Direct PS receptors
Among the TIM family, TIM-4 is expressed on the sur-
face of phagocytes and is tightly involved in the efferocy-
tosis [73, 74]. Although the overall function of TIM-4
remains obscure, several pieces of evidence suggest that
TIM-4 is involved in tumor progression. Overexpression
of TIM-4 has been shown to promote the proliferation
of non-small cell lung carcinoma [75]. Also, a previous
study demonstrated that TIM-4 attenuates the effect of
chemotherapy and increases immune tolerance to cancer
via interaction with AMPKα1 [76]. A recent study explored
the role of TIM-4 in colorectal cancer and reported that
TIM-4 promotes angiogenesis by upregulating vascular
endothelial growth factor (VEGF). TIM-4 also recruits
tumor-associated macrophages through the PI3K/Akt sig-
naling pathway, thereby promoting cancer progression [77].
The roles of other direct PS receptors (BAI-1, stabilin-2
family members, and CD300 family members) remain
elusive.

Bridging molecules
Gas6 bridges between PS and TAM receptors, thereby
promoting cancer cell proliferation and migration [78].
Notably, leukocytes infiltrating through cancerous tis-
sues upregulate Gas6, which contributes to tumor
growth and invasion [79]. The role of the Gas6/Axl sig-
naling pathway in cancers has been described in the
“TAM receptors” section.
MFG-E8 bridges between PS and αvβ3/αvβ5 integrins

[39] and its expression is upregulated in tumors [80].
MFG-E8 attenuates inflammation and increases Treg
cells, efferocytosis, angiogenesis, allograft tolerance,
tumorigenicity, and cancer metastasis [81, 82]. More-
over, overexpression of MFG-E8 is negatively associated
with prognosis in various cancers including breast, colo-
rectal and esophageal cancers [83–85]. According to
Yamada et al., MFG-E8 promotes angiogenesis by upreg-
ulating the expression of VEGF and endothelin (ET)-1 in
bone marrow-derived mesenchymal stromal cells to
trigger tumor progression in melanomas [86]. Besides,
MFG-E8 enhances M2 polarization of macrophages
[86, 87], and blockade of MFG-E8 enhances antitu-
mor effector T cells but inhibits Treg cells, leading to
tumor destruction [17].
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The implication of efferocytosis in cancer therapy
Given the vital role of efferocytosis in the tumor micro-
environment, progression, and metastasis, efferocytosis-
targeted approaches could offer a novel therapeutic strategy
in tumorigenesis and cancer management [1, 20]. We have
summarized some representative agents of efferocytosis-
targeted therapy in Table. 1. Also, chemotherapy and radio-
therapy induce apoptosis of cancer cells and increase the
subsequent efferocytosis, which suppresses inflammatory
responses. Therefore, combining these traditional therapies
with efferocytosis-targeted therapy or other types of
immunotherapy could enhance their efficacy and improve
patient outcomes [73].

Blockade of “eat-me” signaling
Notably, “find-me” signals are not tumor-specific. More
research has, therefore, focused on therapies targeted to
the “eat-me” signaling pathway, among which the previ-
ously described PS signaling is the most common and
the most widely studied.

PS targeting
Several PS targeting agents, such as annexin proteins
and PS targeting antibodies, have been widely studied
[1]. Annexin proteins, the naturally occurring ligands
for PS, saturate and block the externalized PS, thus
inhibiting the “eat-me” signaling pathway [102]. This
blockage triggers a pro-inflammatory response, in-
creases the immunogenicity of apoptotic tumor cells,
and shifts the immunosuppressive environment to-
wards an antitumor response [20, 103, 104]. PS target-
ing antibodies specifically bind to PS with high
affinity. As PS is also expressed in vascular endothelial
cells, these antibodies not only target PS-expressing
tumors but also target tumor blood vessels [105–107].
The interaction between PS targeting antibodies and ex-
posed PS increases the expression of inflammatory cyto-
kines and reduces the expression of immunosuppressive
myeloid-derived suppressor cells [108]. Besides, PS target-
ing antibodies induce the polarization of M1 macrophages
and recruitment of mature dendritic cells, leading to an
increase of tumor-specific cytotoxic T cells [108]. When

Table 1 Representative agents of efferocytosis-targeted therapy

Agents Sub-types Mechanisms or effects References

Annexin A5 Natural occurring ligands for PS Inhibit PS-dependent phagocytic activity,
produce proinflammatory mediators and not
produce sufficient factors related with tissue
repair.

[20]

Bavituximab Antibody binding specifically to PS [88–90]

UNC2025 Tyrosine kinase inhibitor against
MerTK

Cause visual impairment, produce proinflammatory
mediators and not produce sufficient factors related
with tissue repair.

[91]

BGB324, SGI-7079, TP-0903, DAXL-88,
DP3975 and NA80xl

small-molecule TKIs against Axl Produce proinflammatory mediators and not produce
sufficient factors related with tissue repair; some
TKIs cause fatigue, diarrhea, hypertension, hematologic
events, and palmar-plantar erythrodysesthesia syndrome.

[38, 92]

GL21.T Nucleotide aptamer binding
specifically to Axl

Produce proinflammatory mediators and not produce
sufficient factors related with tissue repair.

[38]

YW327.6S2, D9 and E8 Monoclonal antibody binding
specifically to Axl

[38]

Soluble Axl Inhibiting the transmembrane Axl
and Gas6 signaling

[38, 93]

Celastrol, dihydroartemisinin Natural compound inhibiting Axl [38, 94,
95]

Warfarin Oral anticoagulant suppressing
Gas6 activity

Cause hemorrhage, produce proinflammatory
mediators and not produce sufficient factors
related with tissue repair.

[47]

Small interfering RNA Nucleotide aptamer binding
specifically to MFG-E8

Produce proinflammatory mediators and not
produce sufficient factors related with tissue repair.

[96]

HMGB1, extracellular matrix ligands Inhibiting αvβ3/αvβ5 integrins [97, 98]

B6H12.2, BRIC126 Anti-CD47 antibodies Induce the phagocytosis of live and normal cells. [49, 99,
100]

ICAM-1 Transmembrane glycoprotein
inhibiting efferocytosis

Not mentioned. [101]

Abbreviations: PS, phosphatidylserine; TKI, tyrosine kinase inhibitor; MFG-E8, Milk fat globule epidermal growth factor-8; CD, cluster of differentiation; Gas, growth
arrest-specific protein 6; ICAM-1, intercellular cell adhesion molecule-1; HMGB1, high-mobility group box 1
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used in combination with either chemotherapy, radiother-
apy, or immune checkpoint antibodies (anti-CTLA-4 and
anti-PD-1), PS targeting agents have been shown to facili-
tate the curative effect of these therapies [20, 103]. As
such, pre-clinical agents associated with PS targeting anti-
bodies such as Annexin A5 of annexin proteins and 3G4,
2aG4 and chimeric 1 N11 have been developed [20]. Mul-
tiple clinical trials of bavituximab, a PS targeting antibody,
have also been carried out [88–90].
However, subsequent phase II study and phase III trial

did not provide evidence on the substantial improve-
ment of efficacy following the addition of bavituximab
compared to the chemotherapy alone group [54, 109].
Besides efferocytosis, PS targeting therapy also interferes
with the function of antigen-presenting cell (APCs) and
induces non-selective inhibition of all PS-dependent
phagocytic activity. Thus, PS inhibition may cause other
harmful side effects on the body [54]. Notably, PS
receptor-blocking approaches also inhibit PS signaling
pathway.

TAM targeting
TAM receptors play a pleiotropic role in tumor patho-
physiology and drug resistance. Previous studies have re-
ported that all three TAM receptors are overexpressed
in various cancers. This overexpression promotes onco-
genic signaling and efferocytosis, resulting in a worse
cancer outcome [55–57].
The Axl inhibitors potentiate the apoptosis of live can-

cer cells, reduce migration and invasion of tumor cells,
and suppress efferocytosis [110]. Previous studies have
also reported that Axl targeting synergizes with chemo-
therapy and other targeted therapies such as VEGF,
EGFR, PI3K, PARP (poly ADP-ribose polymerase), and
HER2 inhibitors to promote therapeutic efficacy [111–113].
There are currently five types of Axl targeting agents under
development. These agents include small-molecule TKIs,
nucleotide aptamers, monoclonal antibodies (mAbs), sol-
uble receptors, and several natural compounds [38]. Re-
search on reputable Axl inhibitors, especially the TKIs, has
now progressed into clinical trial phases [38]. Nonetheless,
Axl TKIs have increased clinical off-target toxicity and drug
resistance [114, 115]. Nucleotide aptamers and mAbs are
emerging therapy with higher affinity and specificity, and
lower toxicity and drug resistance [92, 116–118], although
their application is currently at preclinical stages [38]. Other
than the transmembrane form, Axl can also exist in a sol-
uble form once it is cleaved in the extracellular domain.
Soluble Axl binds to Gas6 or Axl itself, thereby inhibiting
the transmembrane Axl and Gas6 signaling pathway [93].
Besides, it has been shown that natural compounds such as
celastrol [94] and dihydroartemisinin [95] show therapeutic
potential through Axl inhibition.

MerTK can induce intrinsic and adaptive resistance of
Axl-targeted agents, which advocates a dual targeting of
Axl and MerTK for the hindrance of downstream signal-
ing and tumor growth [91]. However, the ablation of
MerTK may cause visual impairment [119, 120]. Hence,
the safety of MerTK-targeted therapies should be ex-
plored further. Several preclinical studies have reported
similar adaptive responses caused by single TKI therapy,
and co-targeting of the receptor tyrosine kinase family
could, therefore, be a novel strategy for overcoming drug
resistance and increasing efficacy [61, 121–125]. Notably,
cells of the innate immune system are involved in the
initiation and regulation of adaptive immune response.
Co-targeting innate immune checkpoints such as TAM
receptors may thus enhance the recruitment and activa-
tion of adaptive immune cells and increase the thera-
peutic efficacy compared to the single adaptive immune
checkpoint-targeted therapy [54].

MFG-E8 targeting
Although the administration of MFG-E8 nucleotide
aptamer alone may not be effective enough for averting
tumor progression and boosting immunity [96]. Previous
studies have demonstrated that the down-regulation of
MFG-E8 increases the sensitivity of tumor cells to TKIs
and cytotoxic agents in vitro [126, 127]. Besides, the
combination of chemotherapy and MFG-E8 RNA inter-
ference contributes to sustained inhibition of tumor
survival and growth [96]. These synergistic actions
could be attributed to several mechanisms since the
down-regulation of MFG-E8 signaling results in several
different effects, including (1) decrease in chemother-
apy resistance of tumor cells; (2) inhibition of MFG-E8-
mediated efferocytosis; (3) blockage of VEGF-induced
angiogenesis; (4) enhanced cross-presentation between
the dying tumor cells and dendritic cells; (5) reduced
Treg cells and increased activation and function of CD4+

and CD8+ effector T cells [17, 96, 128, 129]. Indeed, MFG-
E8 bridges between PS exposed on apoptotic cells and
αvβ3/αvβ5 integrins expressed on macrophages [39, 130].
Therefore, integrin-targeted molecules such as extracellular
matrix ligands, high-mobility group box 1, and inhibitory
antibodies also suppress efferocytosis [97, 98].
In addition to the blockade of the above “eat-me” sig-

naling pathways, targeting the TIM receptor family and
Gas6, which are the direct PS receptors and bridging
molecule for efferocytosis respectively, could also im-
prove the current immunotherapies [1, 47]. However,
the blockade of “eat-me” signaling pathways may pro-
duce excessive pro-inflammatory mediators and fail to
produce sufficient factors for tissue repair [131, 132],
which compromises on the rationality of this therapeutic
strategy.
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Blockade of “don’t-eat-me” signaling
Efferocytosis is an equilibrium formed following proper co-
ordination among “find-me”, “eat-me” and “don’t-eat-me”
signals [73]. The “don’t-eat-me” signaling are primarily
emitted by CD47, whose receptor is signal regulatory
protein-α (SIRP-α), a protein expressed on the surface of
phagocytes [73, 133]. Previous studies have revealed that
CD47 is overexpressed (approximately three-fold compared
to healthy cells) on the plasma membrane of all hu-
man cancers and enables cancer cells to evade phago-
cytosis [49, 134]. Notably, the expression of CD47
mRNA is negatively correlated with patient survival
rates [134]. Dysregulation of CD47, therefore, affects
tumor-associated efferocytosis and represents a prom-
ising therapeutic strategy.
Anti-CD47 mAbs facilitate phagocytosis of cancer cells

[134]. In addition, anti-CD47 mAbs decrease the ability
of Treg cells to overcome immune evasion by cancer
cells and increase the capacity of CD8+ T cells to exhibit
an effective antitumor cytotoxic function [49]. Further-
more, anti-CD47 mAbs prevent or eliminate metastatic
lesions and circulating tumor cells [135, 136]. Conse-
quently, the blockade of CD47 signals inhibits the
growth and metastasis of human tumors [134]. Since
CD47 is also expressed on normal cells at varying levels,
looming safety concerns on targeting CD47 should be
addressed [137]. Previous studies have revealed that
anti-CD47 mAbs could produce potent antitumor re-
sponses without causing any severe side effects, even at
doses that exceed the minimum effective dose. This
observation could be attributed to the lack of second-
ary prophagocytic “eat-me” signals on the surface of
healthy cells [134, 138]. Under cellular stress, however, the
calreticulin of healthy cells may translocate to the cell sur-
face and result in phagocytosis of healthy cells by nearby
macrophages. Thus, targeting CD47 should be applied
with caution in the context of recent ongoing inflamma-
tory or cytotoxic treatments [139, 140]. The findings of a
study by Willingham et al. point out that a better efficacy
of anti-CD47 mAbs therapy is correlated with smaller
tumor size at the onset of treatment. The study further
proposes that the optimal time to effect an anti-CD47
therapy is after maximal cytoreductive surgery [134].
Combination of anti-CD47 mAbs and other antitumor

antibodies such as trastuzumab (anti-HER2 antibody), ri-
tuximab (anti-CD20 antibody), alemtuzumab (anti-CD52
antibody), and cetuximab (anti-epidermal growth factor
receptor antibody) elicits a synergistic effect. This effect
may be attributed to a magnifying effect of Fc receptor-
dependent phagocytosis by the second antitumor anti-
body [49, 134, 141]. Such a combined therapy does not
only result in increased therapeutic efficacy but also pos-
sesses several advantages. These advantages include (1)
decreased off-target toxicity compared to chemotherapy;

(2) reduced potential antibody toxicity compared to
monotherapies; (3) enhanced cancer cell elimination,
even when the epitope of a single drug target mutates
[49]. Several anti-CD47 mAbs have so far been devel-
oped, including B6H12.2 and BRIC126 [49, 99, 100], and
efficacy studies are ongoing. However, the research is
based on xenotransplantation models, and more experi-
mental studies and clinical trials should, therefore, be
done to validate the reported efficacies.

Intercellular cell adhesion molecule-1
Intercellular cell adhesion molecule-1 (ICAM-1) is a
transmembrane glycoprotein of the immunoglobulin
supergene family, which is expressed in all leukocytes
and is a ligand for β2 integrins [142, 143]. ICAM-1 is
also expressed on the cell surface of many cancer types
and facilitates tumor progression and metastasis [101].
ICAM-1 inhibits the efferocytosis of apoptotic tumor
cells through the suppression of the PI3K/Akt signaling
pathway, and the downregulation of efferocytosis leads
to the decrease of M2 macrophage polarization, conse-
quently inhibiting tumor progression and tumor metastasis
[101, 144]. Therefore, the role of ICAM-1 in efferocytosis
makes it a promising target for cancer treatment. Other
agents that alter the polarization of tumor-associated
macrophages are also of therapeutic potential.

Combined inhibition of apoptosis and secondary necrosis
A recent study [52] described two distinct mechanisms
for cell death: apoptosis and secondary necrosis, both of
which affect the tumor microenvironment in different
ways. In the study, inhibition of efferocytosis did not
suppress the production of tumor myeloid-derived
suppressor cells, Treg cells, and some immunosuppres-
sive mediators. Further research uncovered that this
phenomenon could be because decreased efferocytosis
induced secondary necrosis of apoptotic cells, which
stimulated the expression of inflammation-resolving fac-
tor indoleamine-2,3-dioxygenase (IDO) 1, leading to the
restoration of the immunosuppressive environment for
cancer cells. The results indicate that apoptotic and nec-
rotic cancer cells promote tumor progression through
efferocytosis and IDO1 respectively. Combined inhib-
ition of these two processes showed a better result in
tumor regression and inhibition of metastasis [52].

Conclusion and future perspectives
Efferocytosis inhibits inflammatory responses, modulates
the immune environment, and facilitates immune escape
of cancer cells. Subsequently, efferocytosis promotes
tumor development and progression. Efferocytosis is an
equilibrium formed by perfect coordination among
“find-me”, “eat-me” and “don’t-eat-me” signals. Among
the three signals, the “find-me” signals do not exhibit
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specificity for antitumor targeting, and many studies
have, therefore, focused on the “eat-me” and “don’t-eat-
me” signals. These signaling pathways influence cancer
development and progression by affecting the prolifera-
tion, invasion, and metastasis of tumor cells, epithelial-
mesenchymal transition, and angiogenesis. Thus, the
signals represent potential therapeutic targets for cancer
treatment.
On the other hand, chemotherapy and radiotherapy

induce apoptosis of cancer cells and increases the subse-
quent efferocytosis. Combining these traditional therap-
ies with efferocytosis-targeted therapy could, therefore,
enhance the efficacy and promote patient outcomes. Sin-
gle TKI therapy also elicits adaptive responses and drug
resistance, and co-targeting receptors of the tyrosine
kinase family are promising for overcoming TKI-related
drug resistance and increasing treatment efficacy. Also,
the combined therapies could result in reduced side ef-
fects. However, the mechanisms underlying efferocytosis
are obscure; for instance, the Tyro3 pathway has not
been extensively explored. Besides, no compelling evidence
on the efficacy of several efferocytosis inhibitors such as
bavituximab has been established, and the potential clinical
off-target toxicity may limit the clinical application. Fur-
thermore, the safety of some efferocytosis-associated in-
cluding MerTK inhibitors and anti-CD47 mAbs needs to
be further studied.
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