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receptor pairs reveals important cell-to-cell
interactions inside glioma
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Abstract

Background: Glioma is the most commonly diagnosed malignant and aggressive brain cancer in adults. Traditional
researches mainly explored the expression profile of glioma at cell-population level, but ignored the heterogeneity
and interactions of among glioma cells.

Methods: Here, we firstly analyzed the single-cell RNA-seq (scRNA-seq) data of 6341 glioma cells using manifold
learning and identified neoplastic and healthy cells infiltrating in tumor microenvironment. We systematically
revealed cell-to-cell interactions inside gliomas based on corresponding scRNA-seq and TCGA RNA-seq data.

Results: A total of 16 significantly correlated autocrine ligand-receptor signal pairs inside neoplastic cells were
identified based on the scRNA-seq and TCGA data of glioma. Furthermore, we explored the intercellular
communications between cancer stem-like cells (CSCs) and macrophages, and identified 66 ligand-receptor pairs,
some of which could significantly affect prognostic outcomes. An efficient machine learning model was
constructed to accurately predict the prognosis of glioma patients based on the ligand-receptor interactions.

Conclusion: Collectively, our study not only reveals functionally important cell-to-cell interactions inside glioma, but
also detects potentially prognostic markers for predicting the survival of glioma patients.
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Background
Glioma is the most common primary central nervous
system (CNS) tumor in adults, and is known for its high
heterogeneity and poor clinical outcomes [1]. Traditional
researches regarding the expression profile of glioma
were mainly based on bulk RNA-seq technologies, which
mainly provided us an initial view of gene expression at
cell-population level. Tumors are usually comprised of
heterogeneous cells that differ in many biological fea-
tures, such as morphology, proliferation, invasion, me-
tastasis and drug resistance [2]. Thus, bulk RNA-seq
data reflects the averaged expression profile of poten-
tially different cells, which fails to reveal the intrinsic ex-
pression differences among distinct cell subpopulations,
leading to the ignorance of cell heterogeneity [3]. Single-

cell RNA-sequencing (scRNA-seq) technologies enable
us to gain insight into the transcriptome at single-cell
resolution and allow us to have a deeper understanding
of intra-tumor heterogeneity. The advancements of
scRNA-seq largely facilitated the development of novel
approaches to improve targeted therapy and precision
medicine [4, 5].
Tumor together with surrounding stromal cells

and extracellular matrix (ECM) constitute a tumor-
ous niche referred as the tumor microenvironment
(TME) [2], which plays crucial roles in each step of
tumorigenesis [6]. In gliomas, TME is comprised of
immune cells, astrocytes, oligodendrocytes and neu-
rons, while most of immune cells are macrophages
and microglia (> 95%) [7, 8]. Macrophages have been
reported to be preferentially enriched in the tumor
core region, but how tumor associated macrophages
(TAMs) in TME affect the tumor biological process
has not been fully understood. Venteicher et al.
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revealed that IDH-A gliomas were highly infiltrated
by microglia/macrophage cells, but they did not ex-
plore the interactions between tumor cells and mac-
rophages in gliomas [9]. Cancer stem cells (CSCs) is
also a small subpopulation of tumor cells with the
ability of self-renew, differentiate and responsible for
drug resistance and cancer recurrence [10–12]. CSCs
and TAMs are enriched around blood vessels [13,
14], and both of them are important for promoting
tumor growth by intercellular signaling to support
diverse biological processes [15, 16]; however, the in-
teractions between TAMS and CSCs are less explored.
Cell-to-cell communications between diverse cell types
are mediated by specific pairs of secreted ligands and
cell-surface receptors. Chakrabarti et al. found that macro-
phages may nourish stem cells and the stem cells could se-
crete ligand DLL1 to activate Notch pathway to increase
the expression level of Wnt ligand in macrophages for
promoting the function and survival of stem cells [17].
CSCs of gliomas were also found to recruit TAMs by se-
creting POSTN to support the growth of glioblastoma
(GBM) [18]. Nevertheless, those findings are done by
functional experiments, which are time-consuming and
limited to a single interaction each time. The scRNA-seq
data provide great opportunities for interrogating the
genome-wide crosstalk between glioma CSCs and TAMs.
Here, we first explored the cell types of glioma cells

using manifold learning based on a large amount of
scRNA-seq data. Then the autocrine interactions among
neoplastic cells were analyzed. Furthermore, we investi-
gated the gene expression profile of macrophages and
CSCs in gliomas, and subsequently examined the cross-
talk between the two kinds of cell types. In the end, we
built a robust machine learning model to predict the
survival risk of glioma patients based on the expression
level of specific ligands and receptors.

Methods

Gene expression data We downloaded the single-cell
RNA-seq gene expression data of glioma from GEO
(Gene Expression Omnibus, https://www.ncbi.nlm.nih.
gov/geo/) with accession number GSE89567. Bulk
RNA-seq data of glioma were downloaded from The
Cancer Genome Atlas (TCGA) data portal (https://tcga-
data.nci.nih.gov/). Our analysis mainly focused on low
grade glioma (LGG) and glioblastoma (GBM).

Validation dataset We used the RNA-seq data of a co-
hort of 325 glioma patients from Chinese Glioma Gen-
ome Atlas (CGGA, http://www.cgga.org.cn/) [19] as
validation dataset for the machine learning model.

Ligand-receptor pairs database The ligand-receptor
pairs analyzed in this study were from public dataset
provided by a previous research [20].

Statistical analysis Our analyses were performed with R
software, version 3.4.4 (http://www.R-project.org). We
performed preliminary clustering of all cells using t-SNE
based on single-cell RNA-seq gene expression data by
employing monocle2 (https://github.com/cole-trapnell-
lab/monocle-release) [21]. Differential gene expression
calling was conducted by MAST (https://github.com/
RGLab/MAST) [22]. Spearman’s correlation coefficients
were calculated by the function of ‘cor’ in R basic pack-
age (version 3.4.4).

Machine learning model Extreme Gradient Boosting
(XGBoost) [23] was used to train the model to predict
clinical outcomes. We used Python 2.7 anaconda 3–4.0.0
to build the machine learning model. Python package
sklearn [24] was applied in machine learning training.
We randomly split the TCGA gliomas dataset into train-
ing and test sets with 3:1 ratio. XGBoost is the most ad-
vanced classifier based on decision trees. More details
about XGBoost algorithm can be found in the explana-
tory document written by the algorithm designer
(https://xgboost.readthedocs.io/en/latest/).

Results
Neoplastic and healthy cell clusters are identified in
glioma
To gain insights into the subpopulations and cellular di-
versity of gliomas, we first analyzed the scRNA-seq data of
6341 IDH-A glioma cells from 10 patients [9] by perform-
ing t-distributed stochastic neighbor embedding (t-SNE)
based on the top 5% highly variable genes in expression.
As shown in Fig. 1a, clusters 1 to 10 were separately com-
posed of the cells from a single one of 10 patients,
whereas clusters of 11–13 were mixed with the cells ori-
ginating from distinct patients (Fig. 1b). Since tumor cells
are more heterogeneous than normal cells, the cells in
clusters 1–10 could be neoplastic, while the cells in clus-
ters 11–13 might be healthy cells. We further validated
the neoplastic and healthy cell clusters based on the ex-
pression profile of the known markers of mature human
neurons astrocytes, oligodendrocytes, microglia/macro-
phages, and endothelial cells [25]. Previous study showed
that the expression of neoplastic cell markers like EGFR
can be used to identify neoplastic cells with high sensitiv-
ity and specificity [7]. We also found that neoplastic cell
clusters of gliomas express significantly higher level of
EGFR than that of healthy cell clusters (Fig. 1c). However,
those neoplastic cell clusters barely expressed the
myeloid-specific gene PTPRC (CD45), but this gene was
broadly expressed in healthy cells.
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To further explore the TME of non-neoplastic cells in
glioma, we used the reported marker genes for different
residential cell types to define the identity of each cell
cluster [25]. As expected, we observed large expression
differences among several cell types including neurons,
oligodendrocytes, microglia/macrophages, and endothe-
lial cells, in those three healthy cell clusters (Fig. 1d).
We then annotated the cells with known marker genes
and found that microglia/macrophages occupy the lar-
gest portion of healthy cells (Fig. 1d).

Macrophage and microglia cells are distinguished from
non-neoplastic clusters
Previous study suggested that 237 human-mouse homo-
logs are enough to discriminate discrete human glioma
TAMs from macrophage/microglia cluster through the
principal component analysis (PCA) based on scRNA-seq
data [26]. We then explored those 237 genes in the
macrophage/microglia cell cluster of glioma using PCA
and found that macrophage and microglia cells are strati-
fied into two subpopulations, respectively (Fig. 2a). More-
over, Muller et al. previously identified 66 potential maker

genes that were strongly differently expressed between
macrophage and microglia cells [26]. We also observed
that those 66 marker genes of macrophage/microglia are
respectively enriched in the two subpopulations identified
by us, which further confirmed that one subpopulation is
macrophages while the other is microglia (Fig. 2b).
To investigate the polarization heterogeneity of macro-

phages, we compared the expression level of specific
markers for M1 (e.g. CD64, SOCS1 IDO, CD86, CD80,
IL1R1, TLR2 and TLR4) and M2 (such as MRC1,
TGM2, CCL22, CD163, TLR1, TLR8 and CLL22) macro-
phages [27]. Intriguingly, we found that the markers of
M1/M2 co-exist in macrophages and no significant cor-
relation is observed between the marker expression of
M1 and M2 (Fig. 2c). Accordingly, our results further
confirm previous finding that macrophages may have
mixed M1/M2 phenotypes.

Expression correlation analysis reveals significant
autocrine ligand-receptor pairs in glioma
Since the expression level of ligands and their receptors
could reflect the level of cell-to-cell communication

a b

c d

Fig. 1 Neoplastic and non-neoplastic clusters in gliomas. a T-distributed stochastic neighbor (t-SNE) embedding plot of 6341 cells of 10 glioma
patients. b T-SNE plot of non-neoplastic cells from gliomas. c Violin plot of expression of EGFR and PTPRC (CD45) in neoplastic and non-
neoplastic cells. d Expression heatmap of some known markers in non-neoplastic cells. Note: the t-SNE maps of (a) and (b) were conducted
based on the top 5% highly variable genes in expression
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[28], we tried to identify the autocrine network among
glioma neoplastic cells. We first collected 696 ligands and
653 cognate receptors (2419 pairs of chemokine/cytokine)
from a public interaction dataset [20], and then compared
their expression between neoplastic and non-neoplastic
cells. By screening the expression of both receptors and li-
gands increased in glioma neoplastic cells with MAST
[22], 186 ligand-receptor pairs were detected. Considering
that co-expression of a ligand and its corresponding re-
ceptors is necessary for cell-cell communication through
secreting signals, thus we subsequently calculated the
Spearman’s correlation coefficients for the 186 ligand-re-
ceptor pairs using the TCGA Low-Grade Glioma (LGG)
dataset [29]. A total of 16 pairs with significant Spearman’s
correlation coefficients higher than 0.4 (P-value < 0.05)
were identified (Fig. 3a, Additional file 1: Table S1). Fur-
thermore, down-regulation of NOTCH1 and its ligand
DLL1 has been reported to inhibit tumor proliferation in
glioma cell lines, which may play the function of promot-
ing tumor proliferation [30]. Our finding showed that
NOTCH1 and DLL1 are both highly expressed in tumor
cells (Fig. 3b). Additionally, previous research suggested
that the secretion of NLGN3 could promote glioma
growth [31], and we found that its binding partners are
also highly expressed in tumor cells (Fig. 3c).

Specifically, GDNF (Glial Cell Derived Neurotrophic
Factor) has been hypothesized to promote tumor growth
and invasion in prostate cancer and its effect of resisting
treatment could be related to the expression of its re-
ceptor GFRA1 [32]. We found that GDNF together
with its two receptors in autocrine ligand-receptor
pairs are highly expressed in glioma neoplastic cells
(Additional file 1: Figure S1a). We also conducted
gene functional enrichment analysis and found that
those 16 ligand-receptor pairs are mainly involved in
the pathways of tumor invasion, cell adhesion and
cytoskeleton, cell growth and proliferation (Fig. 3d).
Therefore, those 16 ligand-receptor pairs identified by
us have important roles and may be tightly associated
with the development of glioma.

The crosstalk between CSCs and macrophages is
associated with the survival of glioma patients
To discover the crosstalk between CSCs and macro-
phages based on ligands and receptors, we first selected
the stem-like cells with high expression of the 90 genes
associated with stemness in glioma (Additional file 1:
Table S2) [9]. Then we compared the expression of those
ligands and receptors between stem-like and other dif-
ferentiated tumor cells. The ligands and receptors that

a

c
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Fig. 2 Distinguishing macrophage and microglia by gene signatures. a PCA of macrophage and microglia cells based on signature genes. The
237 human-mouse homologous genes reported previously were used to plot PCA. b Heatmap of macrophage and microglia cells based on 66
maker genes. c Distribution of M1/M2 scores (average expression of M1/M2 marker genes) for macrophages. Rows are ranked by M1 scores
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were with higher expression in macrophages than that of
microglia were further identified. Next, we explored the
cell-to-cell communications between stem-like cells and
macrophages based on those highly expressed ligand-re-
ceptor pairs.
Interestingly, the crosstalk between stem-like cells and

macrophages that showed ligands highly expressed in
stem-like cells and receptors highly expressed in

macrophages was mainly related to invasion and angio-
genesis (Fig. 4a, Additional file 1: Figure S2). We found
that the CSCs highly express some ligands encoding colla-
gens I and III, such as COL1A1, COL1A2, COL3A1,
COL6A1 and COL6A2. A previous study suggested that
cancer cells and leukocytes could migrate instantly along
collagen fibers [33]. Our results also implied similar mech-
anism that those ligand-receptor pairs may help glioma

b

c

a

d

Fig. 3 The autocrine ligand-receptor signaling network identified in glioma cells. a Ligand-receptor pairs of autocrine signals inside glioma
neoplastic cells. Dots stand for ligands and receptors and arrows points from ligands to receptors. A total of 16 pairs with significant Spearman’s
correlations were identified (P-value <0.05). b (c) Spearman’s correlation coefficients of two ligand-receptor pairs (DLL1-NOTCH1 and NLGN3-
NRXN2) in TCGA LGG dataset. d Significantly enriched pathways for autocrine ligand-receptor pairs in tumor cells (adjusted P-value <0.05)
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cells to migrate in glioma. Moreover, the receptors that
highly expressed in macrophages, like CD44, ITGB1,
ITGB3 and ITGA5, contained the integrin members.
Integrins are known to directly bind the components of
extracellular matrix (ECM) and could provide the traction
necessary for cell motility and invasion [34, 35]. Intri-
guingly, we observed that the patients with high expres-
sion of COL1A1, ITGB1 and ITGB3 are prone to with
significantly poor prognostic outcomes in TCGA LGG
datasets (Fig. 4b c, f and Additional file 1: Figure S3;
P-value < 0.05). Furthermore, our result shows that BGN
(Biglycan) is highly expressed in CSCs, and BGN has been
reported to promote tumor invasiveness via inducing
integrin-β1 expression [36]. Additionally, laminins (e.g.
LAMA4, LAMA5 and LAMC1) may take part in the in-
teractions between CSCs and macrophages as well. We
found that the glioma patients with higher expression of
LAMA4 is significantly associated with shorter survival
days (Fig. 4e, P-value <0.05).
Besides, we also identified a ligand-receptor pair that

related to angiogenesis. Previous research suggested that
PLGF (Placenta growth factor) could recruit macrophage
lineage cells in inflammatory sites [37] [38]. We ob-
served that CSCs remarkably express PLGF and its only
receptor VEGFR1 is highly expressed in macrophages

which may help macrophages enrich in tumor site. Thus
our result implies that CSCs could recruit macrophages
via PLGF-VEGFR1 system.

The ligands in macrophages and the receptors in CSCs
are also correlated with patient survival
To further explore the interactions between CSCs and
macrophages, we analyzed how macrophages communi-
cated with CSCs via ligand-receptor pairs. For the ligands
and receptors separately highly expressed in macrophages
and CSCs, we identified 24 ligand-receptor pairs that
showed crosstalk from macrophages to stem-like cells
(Fig. 5a). We found that these 24 ligand-receptor pairs are
mainly involved in the pathways of angiogenesis, integrin
and apoptosis (Additional file 1: Figure S4).
It has been suggested that TNF expressed by macro-

phages can promote angiogenesis through IL-8 and
VEGF to help tumor cells escape from immune system
[39] [40]. Moreover, IL-8 has been shown to be strongly
correlated with brain cancer grades [41, 42]. However,
we found that IL-8 is mainly expressed by macrophages
rather than tumor cells in glioma. Furthermore, we ob-
served that the patients with lower expression of SDC1
is significantly associated with longer survival days (Fig.
5b, P-value <0.05). The high expression of SDC1 is

a b c
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Fig. 4 The crosstalk from CSCs to macrophages. a Ligand-receptor pairs of the signaling network from CSCs to macrophages. Green dots stand
for ligands highly expressed in CSCs and red dots represent highly expressed in receptors in macrophages (adjusted P-value <0.05). The arrows
point from ligands to receptors. In total, 42 ligand-receptor pairs were identified. b-e Kaplan-Meier survival analysis for COL1A1, ITGB1, BGN and
LAMA4 in TCGA LGG dataset (n = 512 and P-value <0.05)
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crucial for promoting stem-like cell invasion and metas-
tasis in cell-extracellular matrix adhesion [43]. C3 plays
a key role in complement system and could support
tumor growth by immunosuppression as well [44]. We
observed that C3 is highly expressed in macrophages,
and the glioma patients with higher expression of C3
tend to have significantly decreased survival days (Fig.
5c, P-value <0.05). Other ligand-receptor pairs many also
influence tumor progress in different ways. For example,
Kast et al. suggested that FN1 may play a key role in
extracellular matrix components to increase tumor inva-
sion and IL-18 could promote tumor growth [45]. Our
result indicates that both FN1 and IL-18 are significantly
associated with poor prognosis of glioma patients (Fig.
5d and e, P-value <0.05). In total, 34 ligand and receptor
genes in the crosstalk between CSCs and macrophages
are significantly associated with survival in the LGG
dataset (P-value <0.05).

Prognostic model based on ligand-receptor interactions
achieves high accuracy
To predict the prognosis of glioma patients, we built a
model based on the ligand-receptor interactions between
macrophages and CSCs using advanced machine learn-
ing algorithm XGBoost [46]. Firstly, we performed
principle component analysis (PCA) based on the genes

of ligand-receptor pairs in IDH-mutated and IDH-wild-
type gliomas, and found that IDH-mutated and
IDH-wildtype gliomas mixed together in PCA (Add-
itional file 1: Figure S5), suggesting that these two types
of gliomas have little difference in the expression of the
ligand-receptor pairs. Then, we randomly chose 75% of
the gene expression dataset of all the TCGA glioma sam-
ples as training set and the rest of 25% as test set. Then
the training set was used to train a XGBoost model to
predict the prognosis of glioma patients. We observed
that this XGBoost model achieve a precision of 0.80
and a recall of 0.78 in the test set, which is much
better than models built on randomly selected genes
(Additional file 1: Figure S6).
To further validate the result of our XGBoost model,

we tested the RNA-seq data of 325 glioma samples from
CGGA (Chinese Glioma Genome Atlas) [19]. Strikingly,
our model can significantly divide the patients into
high-risk and low-risk groups as well, and the survival
time of these two patient groups are remarkably differ-
ent (P-value = 0), which further confirmed the perform-
ance of our robust model (Fig. 6a). The expression level
of ITGB5 is the most important feature in the model
followed by SEMA4F, IL18 and HMGB1 (Fig. 6b).
Among the top 10 important genes, ITGB5, IL18 and
CXCL1 are highly expressed in macrophages, while the

a b c
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Fig. 5 The crosstalk from macrophages to CSCs. a Ligand-receptor pairs of the signaling network from macrophages to CSCs. Green dots stand
for ligands highly expressed in macrophages and red dots represent receptors highly expressed in CSCs. The arrows point from ligands to
receptors (adjusted P-value <0.05.). The crosstalk contains a total of 24 significant ligand-receptor pairs. b-e Kaplan-Meier survival analysis for
SDC1, C3, FN1 and IL18 in TCGA LGG dataset (n = 510 and P-value <0.05)
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receptors of SCD1, TNFRSF6B, ACVR1B are highly
expressed in CSCs and the ligands of PODXL2, HMGB1,
SEMA4F and APP are mainly expressed in CSCs (Fig. 6c).
In addition, previous studies suggested that ITGB5 and
IL18 are related to tumor invasiveness [40, 43], whereas
CXCL1 and SEMA4F are associated with cell proliferation
[47, 48]. Moreover, HMGB1 and SCD1 have been demon-
strated to be closely correlated with drug resistance in gli-
oma [49, 50]. However, little is known about the role of
ACVR1B and PODXL2 on gliomas.

Discussion
The evolution of tumor is a complicate progress, which
involves the interactions between neoplastic and
non-neoplastic cells infiltrating in the tumor microenvir-
onment. The advantages of scRNA-seq provide unprece-
dented opportunities to investigate the cell-to-cell
communications inside tumor. In this study, we system-
atically explored the communication networks between

different cell types in glioma and gained insights into
tumor microenvironment.
In the microenvironment of gliomas, different kinds of

cells were infiltrating and macrophages were enriched in
tumor core site. We revealed that tumor cells could ac-
complish some biological processes through autocrine
and paracrine ways. For instance, the neurite outgrowth
inhibitor (Nogo) of RTN4 could play a newfound role in
carcinogenesis through AKT signaling pathway, and
knockdown of RTN4 could postpone tumor proliferation
in mice [51]. We found that RTN4 and its receptors are
highly expressed in the neoplastic cells of glioma (Add-
itional file 1: Figure S1B), indicating that glioma cells
may promote tumor proliferation through autocrine
RTN4 signaling. Besides, glioma cells could also induce
macrophages via producing diverse ligands and intri-
guing macrophages in tumor niche. In return, macro-
phages in tumor site stimulate tumor processes and
facilitate tumor progression [39]. We identified possible
interactions in gliomas based on large-scale scRNA-seq

a

c
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Fig. 6 Prognostic predictor for glioma patients based on XGBoost. a The performance of the prognostic predictor Kaplan-Meier survival analysis
for the patients in CGGA dataset (n = 315 and P-value =0). b Importance rank of the top 10 genes in the prognostic classifier. Importance scores
stand for the importance of genes in the predicting model. c Bar chart of average expression for the top 10 genes in CSCs and macrophages.
TPM: transcript per million
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data and some of those interactions have been proved to
play important roles in tumor development. Moreover,
our results were further validated using the TCGA bulk
RNA-seq data of glioma. The ligand-receptor pairs iden-
tified by us could provide potential guidance and refer-
ence for experimental design.
In the crosstalk inside gliomas, the ligand-receptor sig-

nal pairs were associated with various biological pro-
cesses, some of which may influence tumor progression.
For instance, IL-8 has been shown to be strongly corre-
lated with brain cancer grades [41, 42], and it was barely
detected in normal CNS area but highly expressed in
brain cancers [39]. We found that IL-8 is mainly
expressed by macrophages in TME rather than glioma
cells, and its receptor, SDC1, is highly expressed in
CSCs. BGN were highly expressed in CSCs and its cell
surface receptors of TLR2 and LY96, encoding toll-like
receptors 2 and 4, were highly expressed in macro-
phages. High content of reactive oxygen species (ROS)
accumulated in hypoxia environment could promote
tumor proliferation and the inhibition of toll-like recep-
tors 2 and 4 may restrain ROS functions [52]. Therefore,
BGN secreted by CSCs may function with toll-like re-
ceptors 2 and 4 in macrophages to help CSCs to survive
in hypoxia and maintain rapid growth. In addition,
CD46 (membrane cofactor protein), could facilitate the
inactivation of C3b by serum factor I [53], but the role
of CD46 in protection tumor cells from the attack of
complement system remains unknown. We observed
that CD46 is highly expressed in CSCs which may
defense CSCs from the attack of complement-mediated
inflammatory response. This may explain that CSCs are
able to survive in the environment with high content of
C3 secreted by macrophages and escape the attack from
complement system.
Since the ligands and receptors identified by us were

significantly associated with the clinical outcomes of gli-
oma, we built a robust model to predict the survival risk
of patients to help clinical decisions using the advanced
machine learning algorithm. Although the outcomes of
patients could relate to the factors of age and general
health conditions, our model still achieved good per-
formance. Accordingly, our identified possible interac-
tions in gliomas could be useful for the treatment and
drug design of glioma [54, 55].
Taken together, our results provide a landscape of the

autocrine interactions in glioma neoplastic cells as well
as the crosstalk between macrophages and glioma
stem-like cells, which may facilitate the identification of
potential therapeutic targets for precision medicine.

Conclusions
Glioma is known for its heterogeneity and worse prog-
nostic outcomes. In this study, we firstly revealed the

cell-to-cell interactions inside gliomas using manifold
learning based on a large amount of scRNA-seq data.
Further analyses of the scRNA-seq and TCGA RNA-seq
data of glioma provide a landscape of the autocrine in-
teractions in glioma neoplastic cells as well as the cross-
talk between macrophages and glioma stem-like cells.
Some ligands and receptors identified by us could sig-
nificantly affect prognostic outcomes and function via
different pathways. Our machine learning model is able
to accurately predict the prognosis of glioma patients
based on the ligand-receptor interactions.

Additional file

Additional file 1: Table S1. 16 autocrine ligand-receptor pairs with
significant Spearman’s correlation coefficients higher than 0.4. the first
time they are cited. Table S2. 90 genes associated with stemness in
glioma. Figure S1. Spearman’s correlation coefficients of two ligand-
receptor pairs (GDFR-GFRA1 and RTN4-CNTNAP1) in TGCA LGG dataset.
Figure S2. Enriched pathways for ligands highly expressed in stem-like
cells and receptors highly expressed in macrophages (Pathway
commons). Figure S3. Kaplan-Meier survival analysis for ITGB3 in TCGA
LGG dataset. Figure S4. Enriched pathways for ligands highly expressed
in macrophages and receptors highly expressed in stem-like cells
(Pathway commons). Figure S5. PCA of IDH-mutated and IDH-wildtype
gliomas based on the genes of ligand-receptor pairs. Figure S6.
Performance of model built by randomly selected genes. (DOCX 546 kb)
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