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Abstract

the mechanisms are not completely understood.

Background: Knockdown of Akt1 promotes Epithelial-to-Mesenchymal Transition in breast cancer cells. However,

Methods: Western blotting, immunofluorescence, luciferase assay, real time PCR, ELISA and Matrigel invasion assay
were used to investigate how Akt1 inhibition promotes breast cancer cell invasion in vitro. Mouse model of lung
metastasis was used to measure in vivo efficacy of Akt inhibitor MK2206 and its combination with Gefitinib.

Results: Knockdown of Akt1 stimulated (3-catenin nuclear accumulation, resulting in breast cancer cell invasion. -
catenin nuclear accumulation induced by Akt1 inhibition depended on the prolonged activation of EGFR signaling
pathway in breast cancer cells. Mechanistic experiments documented that knockdown of Akt1 inactivates PIKfyve
via dephosphorylating of PIKfyve at Ser’'® site, resulting in a decreased degradation of EGFR signaling pathway.
Inhibition of Akt1 using MK2206 could induce an increase in the expression of EGFR and {3-catenin in breast cancer
cells. In addition, MK2206 at a low dosage enhance breast cancer metastasis in a mouse model of lung metastasis,
while an inhibitor of EGFR tyrosine kinase Gefitinib could potentially suppress breast cancer metastasis induced by

Akt1 inhibition.

metastasis.
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Conclusion: EGFR-mediated (3-catenin nuclear accumulation is critical for Akt1 inhibition-induced breast cancer

Background

Breast cancer is the most common cancer in women
and the second leading cause of female cancer death
worldwide because of distant metastasis [1]. Numerous
studies have shown that abnormal activation of the Akt
signaling pathway promotes tumorigenesis by enhancing
cancer cell survival, growth in breast cancer [2, 3]. Thus, a
number of small-molecule inhibitors targeting Akt have
been developed to test their activities against breast cancer
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in clinical trials [4, 5]. However, accumulating evidences
from several laboratories revealed that Akt isoforms
exhibit distinct functions in cancer progression in spite of
their high sequence and structural homology [6-8].

The serine/threonine kinase Aktl, one of the three
isoforms in the Akt family, has emerged as a suppressor
of tumor metastasis in breast cancer [9, 10]. For
example, Aktl activation accelerates cell proliferation
but inhibits cell motility and invasion in breast cancer
cells, whereas Aktl inhibition promotes Epithelial-to-
Mesenchymal Transition in breast cancer [11-13]. How-
ever, the mechanism and downstream signals by which
Aktl inhibition regulates each step of breast cancer
metastasis are not completely understood.

[B-catenin is a major component of cell-cell adhesion
structures and functions as a controller of cell migration,
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colony formation and stem cell properties through trans-
location into nucleus [14, 15]. Aberrant B-catenin accu-
mulation in the cytoplasm usually translocates to the
nucleus and was associated with tumor relapse and me-
tastasis in breast cancer patients [16]. A study by Tzeng
HE found inhibition of PI3K (phosphatidyl inositol
3-kinase) significantly enhanced the nuclear transloca-
tion of B-catenin in breast cancer cells [17]. Recently,
Gao F et al. found endothelial Aktl loss promotes pros-
tate cancer metastasis via nuclear translocation of
[B-catenin [18]. Therefore, we concerned about whether
[B-catenin nuclear accmulation as an alternative pathway
was responsible for breast cancer metastasis induced by
Aktl inhibition.

In this study, we discovered that knockdown of Aktl
induced B-catenin nuclear accumulation in breast cancer
cells, while inhibition of B-catenin nuclear accumulation
using XAV-939 could reverse Aktl knockdown-induced
breast cancer invasion.

Materials and methods

Reagents and antibodies

RPMI 1640 and fetal bovine serum (FBS) were purchased
from Gibco (Grand Island, NY, USA). Dimethylsulfoxide
(DMSO), Hoechst 33342, XAV-939, Gefitinib and
YM201636 were purchased from Sigma (St. Louis, MO,
USA). U0126 was purchased from Cell Signaling Technol-
ogy (Beverly, MA, USA). Polyclonal anti-human p-catenin
antibody, monoclonal anti-human EGFR antibody, mono-
clonal anti-human phospho-EGFR (Y'%®) antibody,
monoclonal anti-human B-actin antibody and the corre-
sponding horseradish peroxidase-conjugated second anti-
bodies were purchased from Santa Cruz Biotechnologies
(Santa Cruz, CA, USA). Monoclonal anti-human EEA.1,
monoclonal anti-human phospho-ERK;, (Thr*®) anti-
body, polyclonal anti-human ERK;, and monoclonal
anti-human Lamin B antibody were purchased from Cell
Signaling Technology (Beverly, MA, USA). The secondary
anti-mouse or anti-rabbit antibodies conjugated with
Alexa Fluor 488 or Alexa Fluor 568 was purchased from
Invitrogen (Carlsbad, CA, USA). Two different Aktl
specific siRNAs purchased from GE Dharmacon (Lafa-
yette, CO, USA) were used: ACA AGG ACG GGC ACA
TTAA (1'siRNA), CAA GGG CAC TTT CGG CAAG
(27siRNA).

Cell culture and RNA interference

All cell lines used in this study were purchased from the
Cell Bank of the Chinese Academy of Science (Shanghai,
China). These cells were cultured in the RPMI1640
medium supplemented with 10% fetal bovine serum
(FBS) at 37°C in a humidified incubator containing 5%
CO2. RNA interference was performed using Lipofecta-
mine® RNAIMAX (Life Technologies) according to the
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manufacturer’s instructions. 24 h after transfection, cells
were collected.

Luciferase assay

MCE-7 and MDA-MB-231 cells at 80% confluence were
co-transfected with myr-Aktl or siRNA, TCF-driven
TOPflash reporter plasmid (Millipore) (400 ng) and con-
trol Renilla luciferase (25ng) using 1.5 pl of Lipofecta-
mine 2000 (Life Technologies). After 24 h of co-culture,
the transfected cells were lysed and the supernatant was
collected for dual luciferase activity measurements (Pro-
mega, Madison, WI). Luciferase activity was normalized
for transfection efficiency and graphed as ratio of TOP-
flash/FOPflash activity.

Matrigel invasion assay

2 x 10° cells were seeded on top of 8 um chamber coated
with a Matrigel (Corning, Bedford, MA, USA), 600 uL
RPMI 1640 supplemented with 10% FBS were placed in
the lower compartment. The inhibitors used in this
study were added to both the top and bottom chambers
of the Transwell. After incubation for 24 h, cells were
fixed with 4% paraformaldehyde, stained with 0.1% crys-
tal violet. The number of invading cells was determined
by counting five high-power fields (x 40) randomly on
each membrane.

Quantitative real-time polymerase chain reaction assay
Total RNA of breast cancer cells was extracted using
TRIzol (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s instructions. Extracted RNA (1 pg) was
used for reverse transcription with MMLV reverse tran-
scriptase (Takara, Tokyo, Japan). Quantitative real-time
PCR was carried out using SYBR Premix Ex Taq™ II
(Takara, Japan) and the amplification conditions con-
sisted of an initial incubation at 95°C for 10 min,
followed by 40 cycles of 95°C for 10 s and 60 °C for 30s.
The results were analyzed using comparative threshold
cycle (Ct) method for relative quantification. Glyceralde-
hyde phosphate dehydrogenase (GAPDH) was used as
internal control.

Enzyme-linked immunosorbent assay (ELISA)

Levels of human EGF, HB-EGF, TGF-a, B-Cellulin and
amphiregulin in the cell culture supernatant were mea-
sured using ELISA kits (R&D Systems, Minneapolis,
MN) in accordance with the instructions provided by
the manufacturer. Absorbance was measured at 450 nm
by Vmax Kinetic microplate reader (Molecular Devices,
Sunnyvale, CA).

Cell fraction and Western blot
The total proteins were isolated from cancer cell lines using
RIPA buffer. The nuclear proteins were isolated from cancer
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cell lines using Nuclear and Cytoplasmic Protein Extraction
Kit (Beyotime, Shanghai, China) following the manufac-
turer’s instructions. Equal amounts of proteins were sepa-
rated using 10% SDS-PAGE, and then transferred onto
PVDF membranes. Afer blocking in 5% nonfat milk in PBS,
the membranes were incubated with the indicated primary
and secondary antibodies and detected by using the ECL
plus reagents (Beyotime, Shanghai, China).

Co-immunoprecipitation

Breast cancer cells transfected with plasmids were ho-
mogenized for 1h in ice-cold lysis buffer containing 20
mM Tris-HCl (pH7.4), 100mM NaCl, 1% NP40, and
complete protease inhibitor cocktail. The homogenates
were then centrifuged at 12000 rpm for 10 min to yield
the total protein extract in the supernatant. Protein ex-
tracts were then incubated with anti-Aktl antibody at 4°
C for 3 h. Protein A/G agarose (Santa Cruz Biotechnol-
ogy) was added to the samples, and the incubation was
continued for another 12h. Subsequently, the beads
were washed 6 times with lysis buffer and boiled with
SDS loading buffer at 100 °C for 5 min, then subjected to
SDS-PAGE.

Immunofluorescence assay

Cells were fixed for 10 min with 4% paraformaldehyde at
room temperature, blocked with 5% BSA for 1 h at room
temperature and stained overnight with primary anti-
body for B-catenin or EGFR and EEA.1 at 4°C. Then
cells were incubated for 1h with appropriate secondary
antibody. The nuclei were then stained with Hoechst
33342, images were captured by confocal fluorescent
microscope.

Measurement of phosphatidylinositol-5-phosphate (PI5P)
in cells

Breast cancer cells were plated at 1 million cells per 10
cm plate and labeled with 10 uCi/mL 3H-myo-inositol
for 48 h. At 48 h, the cells were transfected with siRNA,
After 4h, the medium was replaced with normal 1640
medium supplemented with 10% FBS and cells were
allowed to grow for another 24 h. Phosphoinositides in-
cluding PI5SP were extracted, deactylated and separated
by high performance liquid chromatography as previous
described [19].

Mouse model of lung metastasis

All animal procedures were performed with the approval
of the Institutional Animal Care and Use Committee at
Henan University. Tumor metastasis assays were per-
formed using an intravenous breast cancer mouse model
as previous described [11]. Briefly, 4 T1 cells (1 x 10°)
were injected into the lateral tail vein of Balb/c mice. To
ensure all mice bore actively growing lung tumors before
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the drug treatment, pulmonary metastasis was allowed
to develop for 7 days. On day 8, a low dose of MK-2206
(60 mg/kg) or/and Gefitinib (200 mg/kg) was adminis-
tered orally once daily, three times per week for two
weeks. Then the mice were sacrificed and lungs were
removed. After fixed with 4% paraformaldehyde for 1
day, lung metastases nodules were counted.

Statistical analysis

Statistical analyses were performed with GraphPad Prism
5 for Windows (GraphPad Software, La Jolla, CA). All
data are expressed as mean + SEM. For normalized data
analysis, data was confirmed that normality assumption
was satisfied and analyzed using paired sample t-test
(dependent t-test) and/or further confirmed with non-
parametric test Wilcoxon signed rank test. For all other
analyses, Student’s two-tailed t-test or ANOVA test were
used to determine significant differences between treat-
ment and control values. Differences with P <0.05 were
considered statistically significant.

Results

B-Catenin nuclear accumulation contributes to Akt1
inhibition-mediated breast cancer metastasis

In order to explore the mechanisms by which Aktl inhib-
ition promotes breast cancer metastasis, we first used two
specific siRNA to knockdown Aktl in four distinct breast
cancer cell lines including MCF-7 (ER", PR, HER2", wild
type EGFR, wild type PTEN, wild type p53), BT-474 (ER",
PR*, HER2", wild type EGFR, wild type PTEN, mutant
p53), MDA-MB-231 (ER", PR™, HER2", wild type EGFR,
wild type PTEN, mutant p53)and SKBR3 (ER™. PR™. -
HER2", wild type EGFR, wild type PTEN, mutant p53)
cells. As expected, the protein expression of Aktl was
downregulated in these breast cancer cells after treated
with 20 nM Akt1 siRNA for 24 h (Fig. 1a). In addition, the
expression of P-catenin total protein was upregulated
when Aktl was knocked down in these breast cancer cells
(Fig. 1a). Multiple studies suggested aberrant [-catenin
accumulation in the cytoplasm usually translocates to the
nucleus where it acts as a transcriptional co-activator to
activate a series of genes that are associated with cell
migration and invasion [15, 20]. Hence, we further de-
tected the expression of P-catenin nuclear protein in
breast cancer cells after Aktl knockdown. Using Western
blot assay, we found the nuclear protein expression of
[-catenin was upregulated in these cells treated with Aktl
siRNA (Fig. 1a). In order to confirm these results, we then
select MCF-7 and MDA-MB-231 cells to perform im-
munofluorescence staining. As shown in Fig. 1b, MCF-7
and MDA-MB-231 cells displayed strong -catenin stain-
ing in the cytoplasm and nucleus after Aktl knockdown
(Fig. 1b). Nuclear-localized p-catenin usually interacts
with transcription factors of the T cell factor (TCF) family
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Fig. 1 Akt1 inhibition promoted breast cancer cell invasion through inducing B-catenin nuclear accumulation. (a) Western blot of Akt1, B-catenin
total and nuclear protein expression in MCF-7, BT-474, MDA-MB-231 and SKBR3 cells after treated with two Akt1 siRNA. 3-actin and Lamin B1
were used as an internal control respectively. Note that Akt1 siRNA could knockdown the protein expression of Akt1, but upregulate the
expression of B-catenin total and nuclear protein in these four distinct breast cancer cells, n=5 per group. (b) Immunohistochemical staining of
B-catenin (Green) in MCF-7 and MDA-MB-231 cells after treated with two Akt1 siRNA. Cell nuclei were stained with Hoechst 33342 (Blue). Note
that Akt1 siRNA could induce nuclear 3-catenin accumulation in MCF-7 and MDA-MB-231 cells, n =3 per group. (c) Akt1 siRNA enhanced the -
catenin-dependent transcriptional activity. The firefly luciferase activity of each sample was normalized to the Renilla luciferase activity. **p < 0.01,
**¥p < 0.001 compared with Control group, one-way ANOVA, n =5 per group. (d) Expression of myr-Akt1 in MCF-7 and MDA-MB-231 cells
reduced the expression of B-catenin total protein as well as its nuclear accumulation. (e) Expression of myr-Akt1 in MCF-7 and MDA-MB-231 cells
reduced the B-catenin-dependent transcriptional activity. The firefly luciferase activity of each sample was normalized to the Renilla luciferase
activity. ***p < 0.001 compared with Vector group, A two-tailed unpaired t-test, n=5 per group. (f) Western blot analysis showing that the AXIN

stabilizer XAV939 could reverse Akt1 siRNA induced (3-catenin nuclear accumulation, n=5 per group. (g-h) Transwell assay with Matrigel
demonstrated that Akt1 knockdown could enhance the invasion ability of MCF-7 and MDA-MB-231 cells, while XAV-939 reversed Akt1 siRNA-
induced breast cancer invasion. **p < 0.01, ***p < 0.001, one-way ANOVA, n=5 per group

J

and promotes the target gene expression [21, 22]. There-
fore, the TOP/FOP Flash reporter assay was employed to
examine B-catenin transcriptional activity in MCF-7 and
MDA-MB-231 breast cancer cells. As the results shown
MCE-7 and MDA-MB-231 cells treated with Akt specific
siRNAs displayed higher -catenin transcriptional activity
compared with control group (Fig. 1c). Then, we
expressed constitutively activated, myristoylated Aktl
(myr-Aktl) or empty vector in MCF-7 and MDA-MB-231
cells to investigate the expression of -catenin, the trans-
fection efficiency of myr-Akt1 is above 70% in MCF-7 and
MDA-MB-231 cells. As shown in Fig. 1d, active Aktl
significantly reduced the total protein expression of
[-catenin as well as its nuclear accumulation. The TOP/

FOP Flash reporter assay also suggested [-catenin tran-
scriptional activity was downregulated in MCF-7 and
MDA-MB-231 cells expressing myr-Akt1(Fig. 1e). Collect-
ively, these results indicated Aktl inhibition promoted the
expression of B-catenin as well as its nuclear accumula-
tion. To study whether P-catenin nuclear accumulation
contributes to Aktl inhibition induced breast cancer cell
invasion, the Axin stabilizer XAV-939 was used in the
following study. As a stabilizer of Axin, XAV-939 pro-
motes the degradation of pB-catenin, thus leading to de-
creased [-catenin nuclear translocation [23, 24]. In line
with these reports, we found that knockdown of Aktl in-
duced PB-catenin nuclear accumulation was reversed by
XAV-939 in MCF-7 and MDA-MB-231 cells (Fig. 1f).
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Meanwhile, we found the ability of tumor cell invasion in-
creased dramatically after treated with Aktl specific
siRNA in MCF-7 and MDA-MB-231 breast cancer cells
using transwell assay with Matrigel, while XAV-939 could
reverse the enhanced invasive ability of breast cancer cells
induced by Aktl knockdown (Fig. 1g-h). Together, these
results indicated that p-catenin nuclear accumulation con-
tributes to Aktl inhibition-mediated breast cancer cell
invasion.

Activation of EGFR contributes to B-catenin nuclear
accumulation induced by Akt1 knockdown in breast
cancer cells

It has been reported inhibition of PI3K significantly
enhanced the nuclear translocation of -catenin through
promoting Wnt ligands (including Wnt2b, Wnt3, Wnt5b
and Wntl0Oa) expression in MDA-MB-231 cells [17].
Considering that Akt is one of the dominant down-
stream effector of PI3K signaling [25, 26], we asked
whether aberrant expression of Wnt ligands contributed
to P-catenin nuclear accumulation in MCF-7, BT-474,
MDA-MB-231 and SKBR3 cells treated with Aktl siRNA.
Unexpected, we did not observe the upregulation of
Wnt2b, Wnt3, Wnt5b and Wntl0a mRNA expression in
these Aktl siRNA treated cells (Fig. 2a). Obviously, Aktl
inhibition induced B-catenin nuclear accumulation was
not caused by Wnt pathway activation in breast cancer
cells. On the other hand, the mRNA expression of
[B-catenin in MCF-7, BT-474, MDA-MB-231 and SKBR3
cells treated with Aktl siRNA was not changed compared
with the control group (Fig. 2b), indicating the upregu-
lated protein expression of pB-catenin was not dependent
on transcriptional regulation.

Numerous studies have demonstrated activation of
EGER usually stabilized and enhanced B-catenin nuclear
accumulation [27, 28], this raises the possibility that
B-catenin nuclear accumulation in Aktl-imparied cells
may be induced by the activation of EGFR. To test the
hypothesis, we first examined whether Aktl inhibition
could induce EGFR activation in breast cancer cells. As
expected, our results shown that the phosphorylation
levels of EGFR at Tyr'%® which is an indicator of EGFR
activation was increased significantly in MCF-7, BT-474,
MDA-MB-231 and SKBR3 cells (Fig. 2¢). In addition, an
increase in EGFR total protein expression was also ob-
served in these Aktl knockdown breast cancer cells (Fig.
2¢). These results implied that the activation of EGFR
may contribute to [B-catenin nuclear accumulation in
breast cancer cells.

In order to further confirm that B-catenin nuclear accu-
mulation was stimulated by EGFR signal in Aktl-impaired
cells, we tested the effect of Gefitinib, an inhibitor of EGFR
tyrosine kinase on the [B-catenin nuclear accumulation in
the breast cancer cells treated with Aktl siRNA. Using
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Western blot assay we found that Aktl knockdown-in-
duced p-catenin nuclear accumulation was almost com-
pletely blocked by Gefitinib (20 uM for 24 h) in MCF-7 and
MDA-MB-231 cells (Fig. 2d). On the other hand, we also
found Aktl siRNA-induced the increase in the cell number
invaded through Matrigel could be dramatically attenuated
by Gefitinib in MCF-7 and MDA-MB-231 cells (Fig. 2e-g).
Collectively, these results suggested the activation of EGFR
mediates -catenin nuclear accumulation in Aktl-impaired
breast cancer cells.

Knockdown of Akt1 induced the sustained activation of
EGFR through inactivating PIKfyve in breast cancer cells
As mentioned above, knockdown of Aktl induced sus-
tained activation of EGFR in breast cancer cells. This
raises the possibility that the activation of EGFR may be
induced by its ligands including epithelial growth factor
(EGF), Heparin-binding epidermal growth factor-like
growth factor (HB-EGF), transforming growth factor o
(TGF-a), B-Cellulin and amphiregulin in Aktl-impaired
cells. To test our speculation, the cell culture medium was
harvested and analyzed by ELISA assay. Unexpected, no
significant alteration was observed on the secretion of
EGF, HB-EGF, TGF-a, B-Cellulin and amphiregulin in
MCE-7 and MDA-MB-231 cells transfected with AKT1
siRNA compared with the control group (Fig. 3a-b). These
results implied that the activation of EGFR in Aktl im-
paired breast cancer cells occurred independently of its
ligands binding. Then, we wonder whether the increased
in EGFR total protein expression in Aktl impaired breast
cancer cells was dependent on its transcriptional regula-
tion. To test this notion, we detected the mRNA expres-
sion of EGFR using real-time PCR. However, the results
revealed that knockdown of Aktl in MCF-7 and MDA-
MB-231 cells failed to promote the mRNA expression of
EGER (Fig. 3¢), suggesting that additional target is contrib-
uting to the overexpression of EGFR in Aktl impaired
breast cancer cells.

Er EE et al. have found inhibition of Aktl reduces the
degradation of EGFR through inactivating PIKfyve, which
correlates with an increase in the localization of EGFR in
early endosomes in MCF-10A cells [29]. Therefore, we
determined whether the increased phosphorylation levels
of EGFR at Tyr'®® and EGFR total protein in Aktl
impaired breast cancer cells was due to the reduction in
degradation through inactivating PIKfyve. To test this
hypothesis, we first examined the concentration of
phosphatidylinositol-5-phosphate (PI5P) which was used
to reflect PIKfyve activity in previous studies [29, 30]. As
Fig. 4a shown, knockdown of Aktl decreased PI5P pro-
duction in MCF-7 and MDA-MB-231 cells, implying that
the activity of PIKfyve was inhibited after Aktl knock-
down. As mentioned above, a decreased PIKfyve activity
was associated with an increased in the localization of



Li et al. Cell Communication and Signaling (2018) 16:82 Page 6 of 13
P
A 3 Control 3 Control [ Control 3 Control
« 159 MCF-7 B 1#siAktl w 157 BT-474 3 1#siAktl w15 . 0 1#siAktl 45 3 1#siAktl
g % W 2#siAkel S« B 2 siAktl e s MDAMB-231 g 2ysiaks 0 s SKBR3 B 24 siAktl
2 s2 oF oF
ﬁEN % € 10 @ E 10 0 E
P <) < Lo
] -] -] -]
X € X € x € X €
o8 & o ® o ®
o 205 o 205 o 205 o2
2 = >C 2= 2=
® s E s E =
=2 =2 &z 3
& 0.0 & o & o 3 0.0
Wnt2b Wnt3 Wnt5b Wnt10a Wnt2b Wnt3 Wnt5b Wnt10a Wnt2b Wnt3 Wnt5b Wnt10a Wnt2b Wnt3 Wnt5b Wnt10a
B C _ Mcr? BT-474  MDAMB-231  SKBR3 D MCF-7 MDA-MB-231 .
1.5.00 corl B 1#siakel M 2#siAkel = + + — — — + + — — 1%siAkt1
5.5 ¥z ¥z £z : 2 - - + + — — — + + 2%siakt1
255 33 33 =33 37 + o
§s8 _ _ _ A
$EZ10 S 2w 8 LN 0% W 0% N - + — + + + Gefitinib
5%% .——.H -—._H—-..| e e [ p-EGFR l - lp'EGFR
°e8 s 1 23 072109 1 2209 27 11
23§ Fold 1 3.39 3.71 1 221 273 1 254 223 1 217 2.29 Fold
S =2
g2

—

o
o

"..{ l— — -lEGFR

[..---J }- - e -_|B-catenin

A > o & Fold 1 282307 1 203243 1 249 258 1 221 2.34 Fold 1 3.1 122508 1 28 1 2411
gt @ ; I -
o [ e | [ | e —— e [= I |

)
E F 2" wmcrr
o
1*siAkt1+Gefitinib :.
T T 8 . .
vk J z
ol 2% £
2 L i 'T g n=6 n=6 n=6 n=6
wog
e =z + + - — 1*siAkt1
= - - + + 2*siAktt
- + - + Gefitinib
G 2 15, MDA-MB-231
o
-~ °
[2¢] t)
N B 100
tlﬂ H *kk
E, S s *kk
< 3
a £ n=6| [n=6| [n=6| [n=6|
= z H T I tsiakut
- - + + 2%siAkt1
- + = + Gefitinib

Fig. 2 Activation of EGFR mediates (3-catenin nuclear accumulation in Akt1-impaired MCF-7 and MDA-MB-231 cells. (a) Real time PCR analysis of
Wnt2b, Wnt3, Wnt5b and Wnt10a mRNA expression in MCF-7, BT-474, MDA-MB-231 and SKBR3 cells after treated with Akt1 siRNA. Note that no
significant alteration is observed on Wnt2b, Wnt3, Wnt5b and Wnt10a mRNA expression after treated with Akt1 siRNA for 24 h in these four
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with Akt1 siRNA. Note that no significant alteration is observed on B-catenin mRNA expression after treated with Akt1 siRNA for 24 h in these
breast cancer cells. (c) Western blot analysis showed that knockdown of Akt1 enhanced both the phosphorylation at Tyr'® and the total protein
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EGER in the early endosomes. Indeed, an increased EGFR
co-localization with the early endosomes marker EEA.1
could be detected in MCF-7 and MDA-MB-231 cells
treated with Aktl siRNA (Fig. 4b), suggesting that PIKfyve
activity was inhibited when Aktl was knocked down in
breast cancer cells. It has been reported that Aktl acti-
vates the phosphoinositide kinase activity of PIKfyve
through phosphorylating PIKfyve at Ser®'® site, therefore
we transfected MCF-7 and MDA-MB-231 cells with WT
Flag-PIKfyve or S318A mutant PIKfyve and performed
co-immunoprecipitation assay. Our results suggested
that Flag-PIKfyve WT but not a S318A mutant PIKfyve
binds to Aktl, confirming that Aktl phosphorylates
PIKfyve at Ser!® site in breast cancer cells (Fig. 4c).
Moreover, we also examined whether expression of a

phosphorylation-mimic PIKfyve S318D mutant in
breast cancer cells could induce EGFR degradation. As
results shown in Fig. 4d, the phosphorylation-mimic
PIKfyve S318D mutant had a lower level in EGFR and
B-catenin protein expression than did WT PIKfyve in
MCE-7 and MDA-MB-231 cells. To investigate whether
inhibition of PIKfyve is required for -catenin nuclear
accumulation via the prolonged activation of EGFR in
breast cancer cells, we then treated MCF-7 and MDA-
MB-231 cells with a PIKfyve specific inhibitor YM201636.
As illustrated in Fig. 4e, both phosphorylated and total
EGFR expression was upregulated in MCF-7 and
MDA-MB-231 cells treated with 200 nM YM201636 for
24 h. Meanwhile, we also observed an increased expres-
sion of B-catenin total and nuclear protein in MCF-7 and
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MDA-MB-231 cells incubated with 200 nM YM201636
for 24 h (Fig. 4f). Of course, a strong 3-catenin staining lo-
cated in the cytoplasm and nucleus was also observed in
MCEF-7 and MDA-MB-231 cells after treated with
YM201636 (Fig. 4G). To test whether inhibition of PIK-
fyve effects breast cancer cell invasion, we then performed
transwell assay with Matrigel. As shown in Fig. 4h-i,
tumor cells incubated with 200 nM PIKfyve inhibitor
YM201636 for 24 h displayed a higher ability of migration.
Collectively, these data demonstrate that knockdown of
Aktl prolonged EGEFR activation through inactivating
PIKfyve in breast cancer cells.

Akt1 inhibition led to more sustained ERK signaling in
breast cancer cells

As described in previous report, EGFRs were accumulated
in the early endosomes, resulting in prolonged activation

of ERK in Akt-impaired MCF-10A cells [29]. Consistent
with the findings, we discovered that Aktl knockdown
could significantly increase ERK phosphorylation in
MCE-7 and MDA-MB-231 cells (Fig. 5a). Because previ-
ous studies have found activation of ERK was required in
B-catenin nuclear accumulation, we hence explored
whether ERK inhibitor U0126 could reverse 3-catenin nu-
clear accumulation induced by Aktl siRNA. As expected,
we found that Aktl siRNA-induced [-catenin nuclear ac-
cumulation was blocked by ERK inhibitor U0126 in
MCE-7 and MDA-MB-231 cells (Fig. 5b). Subsequently,
we also found ERK inhibitor U0126 could reverse
AKT1-induced increase in the cell number invaded
through Matrigel (Fig. 5c-e). Together, these data indi-
cated that Aktl inhibition led to increased activation of
ERK signaling in breast cancer cells, resulting in -catenin
nuclear accumulation and cancer cell invasion.
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EGFR tyrosine kinase inhibitor Gefitinib blocked breast
cancer metastasis induced by Akt1 inhibitor in vivo
MK-2206 is a pan-Akt inhibitor, which has potential to
induce EMT in breast cancer cells at a low dosage of
0.2 uM through inhibition of Aktl [11]. Therefore, we
asked whether MK-2206 enhance breast cancer metasta-
sis via EGFR mediated [B-catenin nuclear accumulation.
Using Western blot assay, we found the expression of
EGFR and p-catenin was upregulated in MCF-7 and
MDA-MB-231 cells treated with 0.2 pM MK-2206 for
24h (Fig. 6a-b). To evaluate the possibility that
MK-2206 may induce metastatic potential when they are
used in clinic for breast cancer therapy, we inoculated 4

T1 cells into the lateral tail vein of Balb/c mice to estab-
lish a mouse model of lung metastasis. Then a low dose
of MK-2206 (60 mg/kg) was administered orally and the
number of lung metastasis was counted. As shown in
Fig. 6¢-d, we found the Akt inhibitor MK2206 signifi-
cantly increased the numbers of tumor metastatic nod-
ules in tumor-bearing mice. Given that Aktl inhibition
promotes the activation of EGFR in breast cancer cells,
we further examined whether the inhibitor of EGFR
tyrosine kinase Gefitinib could suppress breast cancer
metastasis induced by Aktl inhibitor. Therefore, Gefi-
tinib (200 mg/kg) were also administered orally prior to
MK-2206 administration. The results showed Gefitinib
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significantly reduced the number of lung metastasis in
mice that received MK-2206 administration (Fig. 6c-d).
These results suggested Gefitinib may provide thera-
peutic benefits by limiting the metastatic potential when
Aktl inhibitor was used to treat breast cancer.

Discussion

Accumulating reports suggest that overexpression of
Aktl in breast cancer cells blocks cell motility and inva-
sion [31, 32]. This raised the possibility that the use of
Akt inhibitors as anti-cancer agents may potentially pro-
mote breast cancer metastasis. Indeed, activation of
Aktl has been shown to accelerate tumorigenesis but
suppresses tumor invasion in transgenic mouse models
[32, 33]. Studies from the Brugge laboratory documented
that Aktl inhibits breast cancer cell motility through the
suppression of ERK activation [34]. Recently, Li CW
have found inhibition of Aktl using MK-2206 induced
epithelial-to-mesenchymal transition through blocking

Twistl degradation in breast cancer [11]. Consistent
with these reports, our study also suggested knockdown
of Aktl promoted metastasis of breast cancer. Of course,
the unexpected effects of Aktl suppression on cancer
metastasis are reported not only in breast cancer but
also in prostate, liver, head & neck and non-small cell
lung cancer cells (NSCLC) [11, 18, 35, 36]. Our results
provided the evidence that EGFR-mediated p-catenin
nuclear accumulation is critical for the Aktl inhibition-
induced breast cancer metastasis. In support of our re-
sults, Gao F et al. found Aktl loss results in (-catenin
translocation from the barrier junctions to the cytosol
and nucleus in prostate cancer. Notably, they suggested
increased production of TGF-B1 and its receptor TGF-p
RII was responsible for p-catenin nuclear accumulation
in prostate cancer. Moreover, they also observed that
knockdown of Aktl results in a reduction in p-catenin
total protein expression in prostate cancer. In the case
of breast cancer cells, knockdown of Aktl induced an
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elevated expression of [-catenin total protein. We sup-
posed that these conflicting results may be due to the
different tumor types. In addition, we also suggested that
knockdown of Aktl-induced [-catenin nuclear trans-
location was independent of the p53 status of cells, be-
cause the same results appeared in both the cells with
wild type p53 and the cells with mutant p53.

It has been demonstrated that B-catenin expression was
regulated by the PI3K/Akt signaling pathway in multiple
cancer types such as hepatocellular carcinoma, renal cell
carcinoma and colorectal cancer [37-39]. For example,
when the PI3K/Akt signaling pathway was inhibited,
[-catenin was degraded by adenomatosis polyposis coli
polyprotein and its expression was reduced. In contrast, a
recent study has shown the pan-PI3K inhibitor GDC-0941
significantly enhanced the nuclear translocation of (-ca-
tenin in breast cancer cell through stimulation of the tran-
scription of Wnts [17]. However, we did not detect any
changes of Wnt ligands in breast cancer cells treated with
Aktl siRNA. We supposed the discrepancies between
these two studies may be due to the different protein
kinases were inhibited in breast cancer, because some
studies found many critical cellular processes are driven
by PI3K-dependent but Akt-independent signaling to

promote malignant phenotypes [40]. Besides Wnt ligands,
EGER signal stabilized and enhanced B-catenin nuclear
accumulation by phosphorylated regulation [28]. Indeed,
in Aktl impaired breast cancer cells, we also documented
EGFR mediates B-catenin nuclear accumulation. In sup-
port of our report, Timmermans-Sprang et al found inhib-
ition of the PI3K/mTOR pathway in breast cancer was
associated with enhanced expression of (-catenin and
EGEFR, implying that enhanced EGFR may function as a
key signaling intermediate of B-catenin nuclear accumula-
tion [41].

EGER belongs to the ErbB family of receptor tyrosine
kinases and was frequently overexpressed nearly in all
subtypes of breast cancer patients [42]. Increased ex-
pression of EGFR in the primary tumor is associated
with unregulated proliferation, malignant transform-
ation, metastasis and resistance to apoptosis of cancer
cells [43, 44]. EGFR carries out these functions through
activation of Ras-Raf-MEK-ERK, PI3K-Akt-mTOR and
Src-STAT3 pathways [45, 46]. However, inhibition of
PI3K/Akt or MEK/ERK signaling pathway has been
shown to induce the activation of multiple receptor tyro-
sine kinases (RTKs) that reactivate the pathway which
attenuates its anti-tumor effects [41, 47]. The addition of
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RTK inhibitors can prevent this reactivation of RTKs
and cause profound cell death and tumor regression
[48-50]. Consistent with these reports, we also found
that Aktl inhibition induced the overexpression of EGFR
contributing to metastasis in breast cancer in the present
study. Interestingly, we note that the knockdown of
Aktl did not induce the upregulation of EGFR mRNA
expression in breast cancer cells, suggesting that the
upregulation of EGFR is a transcription independent
regulation. Previous study found activated EGFR can be
internalized in endosomes to be degraded via lysosome-
mediated degradation pathway, while in Aktl-impaired
cells EGFRs were unable to reach the lysosomal com-
partment for degradation, resulting in an increased pro-
tein abundance of EGFR in the early endosomes [29]. In
support of this report, we did find more co-localization
of EGFR with the early endosomes marker EEA.1 in
Aktl-impaired breast cancer cells.

The phosphoinositide 5-kinase (PIKfyve) is a critical
enzyme for the synthesis of PtdIns (3,5)P2 that has been
implicated in both endosomal morphology and various
membrane transport events. For example, Kim ] et al.
found PIKfyve is a direct mediator in the transport of
EGER from the cell surface through the cytoplasmic ves-
icular space to the nucleus in human bladder cancer
cells [51]. Pharmacological inhibition of PIKfyve results
in a block to the lysosomal degradation of EGFR in nor-
mal breast epithelial cell line [29]. PIKfyve was also pro-
posed to be implicated in oncogenesis and cancer cell
migration. For example, PIKfyve promotes cell migration
and invasion through activation of Racl in lung carcin-
oma, osteosarcoma or rhabdomyosarcoma cells, while
inhibition of PIKfyve resulted in a significant decrease in
cell migration velocity and persistence [52]. Contrast
with the report, our study suggested inhibition of PIK-
fyve activity promotes cell migration and invasion in
breast cancer cells. We suppose this may because PIK-
fyve plays different roles in different cancers.

To the best of our knowledge, we disclosed for the first
time that EGFR-mediated B-catenin nuclear accumulation
is critical for the Aktl inhibition-induced breast cancer
metastasis. Of course, we did not exclude that the same
signaling pathway present in other malignancies, because
combined inhibition of EGFR and PI3K/Akt pathways
could produce synergistic anti-tumor effects in lung can-
cers [53]. Given that inhibition of Aktl enhanced breast
cancer metastasis in mice, and many pan-AKT inhibitors
are currently undergoing clinical trails for breast cancer
treatment [5, 54], it is of particular importance to deter-
mine whether such inhibitors may induce metastasis in
the treatment of breast cancer. If administration of these
agents to patients have a promoting effect on the meta-
static process, our findings indicated that the use of Akt
inhibitor and Gefitinib at the same time may provide
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therapeutic benefits. Of course, further studies are neces-
sary to determine the therapeutic benefit of combining
Akt inhibitors and EGFR tyrosine kinase inhibitor in a
clinical setting.

Conclusion

We here disclose a novel Aktl/PIKfyve/EGFR/B-catenin
signaling pathway, which contributes to the metastasis of
breast cancer. Furthermore, the tyrosine kinase inhibitor
of EGFR may provide therapeutic benefits by limiting the
metastatic potential when Aktl inhibitor was used to treat
breast cancer.
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