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Abstract

The immune system is capable of distinguishing between danger- and non-danger signals, thus inducing either an
appropriate immune response against pathogens and cancer or inducing self-tolerance to avoid autoimmunity and
immunopathology. One of the mechanisms that have evolved to prevent destruction by the immune system, is to
functionally silence effector T cells, termed T cell exhaustion, which is also exploited by viruses and cancers for immune
escape In this review, we discuss some of the phenotypic markers associated with T cell exhaustion and we summarize
current strategies to reinvigorate exhausted T cells by blocking these surface marker using monoclonal antibodies.
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Background
Exhausted T cells can be distinguished from other T cell
dysfunctions such as anergy and senescence based on
their underlying molecular mechanisms [1]. Whereas an-
ergy is introduced during priming due to the absence of
costimulatory signals and senescence is growth arrest
after extensive proliferation [2] exhausted T cells arise
from cells, which initially gained effector function, but
become gradually silenced due to continous T cell recep-
tor (TCR) stimulation from persistent antigen [3].
T cell exhaustion has been initially observed in mice in-

fected with the lymphocytic choriomeninigits virus (LCMV),
where a chronically persistent virus strain rendered virus
specific cytotoxic T cells non-functional. Using the same
mouse model, reversibility of T cell exhaustion could be
demonstrated [4, 5].
Exhausted T cells have also been observed in response to

several other virus infections like simian immunodeficiency
virus (SIV), human immunodeficiency virus (HIV), hepa-
titis B virus (HBV), hepatitis C virus (HCV) and human T
lymphotropic virus 1 (HTLV1) [6–15]. However, mice with
impeded T cell exhaustion develop severe spontaneous

autoimmune diseases and succumb to fatal CD8 T cell-
mediated immune pathologies during early systemic
LCMV infection, showing that T cell exhaustion substan-
tially contributes to peripheral tolerance and to moderate
immune responses [16, 17]. In line with that, presence of
exhausted T cells in patients with autoimmune diseases
correlates with favorable prognosis [18]. T cell exhaustion
has also been observed in tumor patients, where the ex-
haustion of tumor specific T cells is suggested to impede
clearance of the tumor, thus contributing to tumor im-
mune escape [19–23]. Characteristics of exhaustion are are
continuous enhancement of T cell dysfunction due to
persistent antigen exposure, an increased expression of
multiple inhibitory receptors (IR), theprogressive loss of ef-
fector cytokine secretion (IL-2, Interferone gamma [IFNγ],
Tumor necrosis factor alpha [TNFα]), analtered cell me-
tabolism and a markedly different transcriptional pro-
file [20, 21, 23–26]. The gradual dysfunction of
exhausted T cells is accompanied by the expression of
IRs, which wire inhibitory signals to the nucleus upon
interaction with ligands on target cells (Fig. 1 and
Table 1). However, recent reports reveal that T cells do
not uniformly exhaust during chronic diseases or can-
cer, but that specific subsets with different memory-like
or proliferative potentials emerge upon exposure to
persisting anigen [27–29]. As blocking iR/ligand inter-
actions (so called immune checkpoint inhibition) seems
an appealing strategy to partially reverse T cell exhaus-
tion and to possibly regain anti-cancer immunity, a set
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of most promising inhibitory receptors (although their
expression is not exclusively restricted to exhausted T
cells) and current approaches to impede their function
in context of current cancer therapies are discussed in
this review:

Inhibitory receptors associated with T cell
exhaustion
Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4)
CTLA-4 counteracts the positive signal mediated by
CD28 by competing for the same ligands (CD80/86)

Fig. 1 Inhibitory/costimulatory receptors and their corresponding ligands. Schematic overview of inhibitory/ costimulatory receptors expressed by T
cells interacting with their counterpart on antigen-presenting cells (APCs) or tumor cells. Additionally, various blocking antibodies against inhibitory
receptors or their ligands in clinical trials are depicted with the aim of reversing T cell exhaustion

Table 1 Expression, ligands and signaling pathways of immune checkpoint molecules (based on [210] and [211])

Immune checkpoint receptors (synonym) Cellular expression Ligand Intracellular motif Signaling pathways

CTLA-4 (CD152) T cells CD80, CD86 YxxM SHP2, LCK/ZAP70/PI3K
PP2A/AKT

PD-1 (CD279) T cells, B cells, DCs, NKT cells,
Monocytes

PD-L1, PD-L2 ITIM, ITSM SHP1, PI3K/AKT
SHP2, LCK/ZAP70/PI3K,
RAS

TIGIT (VSIG9, VSTM3) T cells, NK and NKT cells CD155, CD112 2 × ITIM NF-kB, PI3K and MAPK

LAG-3 (CD223) T cells, B cells, DC, NK cells MHCII KIEELE not determined

2B4 (CD244) T cells, NK cells, Monocytes,
Basophiles

CD2, CD48 ITSM not determined

BTLA (CD272) T cells, B cells, DC, Macrophages,
Myeloid cells

HVEM, CD80 ITIM, ITSM SHP1, PI3K/AKT
SHP2, LCK/ZAP70/PI3K

TIM3 (HAVCR2) T cells, B cells, NK cells, NKT cells,
DCs, Macrophages

Gal-9 Y235, Y242 PI3K
BAT3/LCK

VISTA (PD1-H) T cells, DCs, Macrophages,
Monocytes, Neutrophils

not determined not determined not determined

CD96 (Tactile) T cells, NK cells, Myeloid cells CD155 ITIM not determined
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with higher affinity [30–32]. CTLA-4 transmits signals
by intracellularily binding the phosphatases PP2A and
SHP-2. In addition, CTLA-4 is able to entrap its ligands
CD80/CD86 by trans-endocytosis followed by degrad-
ation [33, 34].
CTLA-4 is up-regulated upon activation on naïve T cells

and constitutively expressed on regulatory T cells (Tregs),
since CTLA-4 is a transcriptional target of Foxp3, a key
transcriptional factor of this subset [35, 36]. The role of
CTLA-4 in immune suppression and tolerance has been
validated in autoimmune mouse models such as type I
diabetes and multiple sclerosis, where CTLA-4 blockade
results in increased severity of the inflammatory phenotype
[37]. CTLA-4 knockout mice provide additional evidence
for its role as negative regulator of the immune response,
due to the enhanced lymphoproliferative disorder and
multiorgan tissue destruction [38, 39]. Paradoxically, al-
though CTLA-4 decreases effector functions of CD4+ and
CD8+ T cells, it increases the suppressive capacity of Tregs.
For example, specific CTLA-4 knockdown or blockade on
Tregs results in T cell mediated autoimmune disease and
contributes to antitumor immunity. Additionally, CTLA-4
expressing Tregs mediate the downregulation of CD80/
CD86 on antigen presenting cells and thereby reduce
activation of naïve T cells [40, 41]. In context of cancer,
it is suggested that CTLA-4 expression on low-affinity
tumor specific T cells attenuates their proliferation which
could be possibly overcome by CTLA-4 blockade. In
addition, CTLA-4 expression on tumor specific Tregs
could contribute to tumor immune escape by increasing
the suppressive anti-tumor immunity and by downregulat-
ing CD80/CD86 on antigen presenting cells [42].
Thus, CTLA-4 dampens T cell activation, decreases

the efficacy of antigen presenting cells to activate T cells
and augments Treg mediated immune suppression.

Programmed cell death 1 (PD-1)
Whereas CTLA-4 predominantly regulates initial T cell ac-
tivation, the inhibitory receptor programmed cell death 1
(PD-1) is dampening effector T cell functions [43, 44]. Tran-
sient PD-1 cell surface expression is initiated upon Tcell ac-
tivation, but sustained expression is a characteristic marker
of T cell exhaustion [45]. However, recent data show that
PD-1 is not required for initiating T cell exhaustion and that
absence of PD-1 even promotes accumulation of exhausted
CD8+ T cells in mice [46]. The intracellular domain consists
of an immunoreceptor tyrosine- based inhibitory motif
(ITIM) and an immunoreceptor tyrosine- based switch
motif (ITSM). PD-1 engagement with its ligand (PD-L1 or
PD-L2) results in ITIM/ ITSM phosphorylation and subse-
quent recruitment of the phosphatases SHP1/ SHP2, which
negatively regulate PI3K/ AKT and RAS signaling pathways
[47–49]. In addition to CTLA-4 Tregs also express PD-1 on
their cell surface [50]. During chronic infections such as

LCMV, two subsets of exhausted T cells have been identi-
fied according to their transcriptional profile and expression
of the inhibitory receptor PD-1 [51].
T cells with an increase in the transcription factor T-bet

and an intermediate expression of PD-1 (T-bethigh PD-1int)
retain residual secretion of IFNγ, TNFα and a limited
proliferation rate. On the contrary, high levels of Eomeso-
dermin (Eomes) and PD-1 (Eomeshigh PD-1high) exhibited
higher Blimp1and granzyme B production, co-expression
of additional inhibitory receptors (CD160, Lag-3, 2B4,
Tim-3) and are associated with a severe state of exhaus-
tion, despite of a greater cytotoxic activity compared to
T-bethigh PD-1int T cells. Additionally, T-bethigh PD-1int

give rise to Eomeshigh PD-1high in an antigen driven
manner and therefore count as a progenitor subset
[51]. However, opposing data show that during chronic
infection, a small subset of CD8+ T cells which were T
cel factor 1 (Tcf1)+, PD-1+ and Eomes+ sustained a
memory-like T cell response [28].
The blockade of the PD-1/PD-L1 axes in chronic in-

fected LCMV mice sufficiently induces an antiviral state,
by which two subpopulations of CD8 cells were identi-
fied. Whereas Eomeshigh PD-1high T cells exhibit a poor
response to PD-1 pathway blockade, T-bethigh PD-1int

virus specific CD8 T cells efficiently reverse exhaustion
and induce protective immunity in vivo suggesting that
only a small fraction of exhausted T cells might over-
come exhaustion by blocking PD-1 signaling [52].

T cell immunoreceptor with Ig and ITIM domains (TIGIT)
Genome wide search for genes specifically expressed on
immune cells and consisting of an extracellular Ig do-
main, type I transmembrane region together with either
ITIMs or immunoreceptor tyrosine-based activation mo-
tifs (ITAMs), have revealed the existence of an additional
inhibitory receptor namely T cell immunoreceptor with
Ig and ITIM domains (TIGIT) [53, 54]. It belongs to the
type 1 transmembrane proteins with an cytoplasmatic
tail containing an immunoglobulin tail tyrosine (ITT)-
like phosphorylation motif and ITIM [55]. Its expression
is widely distributed across various T cell subsets including
follicular helper T cells (TFH), Tregs, activated/memory T
cells, natural killer (NK) and natural killer T (NKT) cells
[53, 54, 56]. TIGIT attachment to poliovirus receptors
(PVR) CD155/ CD112 results in the Grb2 mediated-
recruitment of the SHIP1 phosphatase and downstream
inhibition of NF-kB, PI3K and MAPK pathways [57, 58].
PVRs are expressed on APCs, endothelial cells, epithelial
cells, but also on a number of tumor cells, which are indu-
cible by Ras activation, Toll-like receptor (TLR) engage-
ment and genotoxic stress [59–64].
Similar to CTLA-4/CD28 interactions, TIGIT shares

the same ligands as the costimulatory molecule CD226
and competes for ligation resulting in the inhibition of T
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cell activation [65]. Interestingly, TIGIT is also capable
of directly preventing the homodimerization of CD226
[65] leading to impaired TIGIT/CD226 balance, which
impedes CD8 and NK cell antitumor and antiviral T cell
response [66, 67]. Additionally, experiments in CD226
deficient mice showed impaired T cell proliferation, re-
duced immunological synapse formation and antitumor
cytotoxicity [68]. Whereas an agonistic TIGIT antibody
decreases T cell activation via CD3/CD28 stimulation,
TIGIT knockdown enhances T cell proliferation, effector
cytokine production such as IFNγ, IL-2 while decreasing
IL-10 levels [69]. Additionally, circulating TIGIT+ TFH

cells produce higher levels of IL-21 and IL-4 and de-
creased IFNγ secretion compared to TIGIT− TFH cells
promoting the differentiation and activation of B cells
upon chronic stimulation [56]. Notably, the transcription
factor FoxP3 regulates TIGIT expression and further-
more TIGIT+ Tregs exhibit higher suppressive functions
compared to TIGIT− Tregs [70, 71]. Besides the expres-
sion of additional inhibitory receptors, TIGIT+ Tregs are
promoting Th2 responses by attenuating the secretion of
the pro-inflammatory cytokines IFNγ and IL-17 [71].
Pre-clinical tumor studies showed that the specific co-

inhibition of the TIGIT and PD-1 checkpoint axis causes a
significant enhancement of anti-melanoma immune re-
sponses by increasing the effector function of cytotoxic T
cells [72, 73]. Additionally, TIGIT positive tumor infiltrat-
ing CD8 T-cells could be detected in other solid-tumor
entities such as small-cell lung carcinomas and colorectal
carcinomas [65, 74]. Taken together, the combination of
an anti-TIGIT and anti-PD-1 therapy could be a promis-
ing approach with associated stratified tumor entities in
the future.

Lymphocyte-activated gene-3 (LAG-3)
The cell surface protein lymphocyte-activated gene-3
(LAG-3) shows structural homologies to CD4 and binds
MHCII with a higher affinity compared to CD4 [75, 76].
LAG-3 was also shown to interact with LSECTin, a sur-
face lectin of the DC-SIGN family which is expressed on
dendritic cells and also on tumor tissue [77]. LAG-3 is
expressed on various cells such as B-cells, NK-cells, plas-
macytoid dentritic cells, activated CD4, Tregs and CD8
T cells [78–81]. In the case of T cells, LAG-3 is transiently
expressed upon activation and becomes internalized and
degraded in the lysosomal compartments [82]. On the cell
surface, LAG-3 co-distributes with TCR-CD3, binds to
MHCII and inhibits CD4-dependent downstream signaling
via its cytoplasmatic KIEELE motif and interestingly, not
by disrupting CD4- MHCII engagement [83, 84]. As a re-
sult, LAG-3 exhibits a negative impact on T cell activation
and effector function in vivo and vitro. Upon LAG-3 block-
ade in vitro T cell proliferation and cytokine production
(mainly Th1 cytokines) increases and LAG-3 deficient T

cells generate a larger pool of memory cells due to a de-
layed cell cycle arrest [85, 86]. An additional subtype of
Tregs has been described coexisting in parallel to the clas-
sical CD4+Foxp3+ Treg cells called type 1 regulatory T cells
(Tr1), which are lacking the expression of the transcription
factor Foxp3 [87]. Tr1 cells exhibit immunosuppressive
functions such as IL-10 and TGF-β secretion, however,
LAG-3 blockade results in decreased suppressive activity
in vivo and vitro pointing out a role for LAG-3 in Treg in-
duction and expansion [88]. Similar to other exhaustion
markers, LAG-3 is up-regulated in cancer and chronic in-
fections. During chronic LCMV infections in mouse
models combinatorial blockade of PD-1 and LAG-3 initi-
ates synergistic control of viral load and improves T cell re-
sponse in vivo [89]. Also various human cancer entities as
well as tumor mouse models exhibit co-expression of PD-1
and LAG-3 on tumor-infiltrating T cells (TILs) [90, 91].
Interestingly, single inhibition of either LAG-3 or PD-1
alone does not result in improved control of chronic infec-
tion or tumor growth, pointing out the complex interac-
tions among inhibitory receptors, whereby dual blockade
synergistically reverses the exhausted phenotype [89, 91].

2B4
The receptor 2B4 (CD244) belongs to the signaling
lymphocyte activation molecule (SLAM) subfamily
within the immunoglobulin superfamily (IgSV). All
members of this family contain two or more immunore-
ceptor tyrosine-based switch motifs (ITSMs) in their
cytoplasmatic tail including the receptors CD229, CS1,
NTB-A and CD84 [92]. 2B4 is expressed by NK cells, γδ
T cells basophils and monocytes, upon activation on
CD8+ T cells and binds with high affinity to CD48 on
lymphoid and myeloid cells [93–95]. An additional bind-
ing partner of CD48 is CD2, which is suggested to con-
tribute to the formation of lipid rafts and provides
costimulatory signals [96]. Similar to the situation of
TIGIT, 2B4- CD48 interaction exhibits either direct
intracellular signaling or disruption of CD2-CD48 en-
gagement. Interestingly, 2B4 is not a simple inhibitory
receptor, indeed it can also exert costimulatory func-
tions, depending on various factors. For example, 2B4
expression level, usage of downstream adaptor proteins
(SAP or EAT-2) and it depends also on which of the four
ITSMs is posphorylated [97–99].
2B4 is associated with T cell exhaustion. Various studies

revealed, that exhausted CD8+ T cells exhibit increased
2B4 expression during chronic human diseases such as
LCMV, HBV, HCV, HIV and also melanoma [100–105].
Interestingly, the adaptor protein SAP contributes to a
positive 2B4 signaling, which is higher expressed in effector
T cells compared to exhausted T cells, whereas the
exhausted ones display elevated 2B4 levels in chronic
LCMV infection [100, 106]. This leads to the suggestion,
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that the SAP/2B4 ratio is decreased, contributing to the T
cell dysfunction during chronic antigen exposure.

B and T lymphocyte attenuator (BTLA)
The cell surface protein B and T lymphocyte attenuator
(BTLA) shares structural similarities with PD-1 and
CTLA-4 and is expressed on T cells, B cells, macrophages
and mature dentritic cells (DC) [107, 108]. Just like LAG-3,
BTLA is transiently up-regulated upon TCR engagement
and down-regulated on fully activated T cells, albeit retain-
ing PD-1 and CTLA-4 expression [108]. Interestingly, only
Th1 polarized cells maintain BTLA cell surface expression
but not Th2 cells [107, 108]. The herpesvirus entry medi-
ator (HVEM), which is expressed on various cell types
(DCs, NK cells, T and B cells), binds to BTLA and also to
the inhibitory receptor CD160 and the costimulatory re-
ceptor LIGHT [109, 110]. BTLA- HVEM engagement in T
cells leads to tyrosine phosporylation on the conserved
intracellular ITIM, inducing recruitment of the Src hom-
ology domain 2 (SH2)-containing protein tyrosine
phosphatases SHP-1 and SHP-2 resulting in diminished
CD3-induced secretion of IL-2 and T cell proliferation
[108, 111].
Since BTLA is described as an inhibitory receptor, it is

associated with peripheral tolerance. BTLA deficient mice
develop autoimmune hepatitis- like disease with elevated
levels of self antibodies, activated CD4+ T cells in the per-
iphery, inflammatory cell infiltration of various organs and
reduced survival [112]. Similar results have been achieved
by the usage of BTLA-deficient T cells exhibiting increased
susceptibility to experimental autoimmune encephalomy-
elitis EAE [108]. Interestingly, a single administration of ag-
onistic BTLA antibodies at the time of autologous
haematopoietic stem cell transplantation prevents the de-
velopment of graft- versus- host disease by the inhibition of
CD4+ Foxp3− effector T cell expansion [113]. Furthermore,
agonistic BTLA antibodies prolong murine cardiac allograft
survival by decreasing IL-2 and IFNγ production and shift-
ing the differentiation towards the Treg phenotype [114].
Additionally to the function as receptor, BTLA can also be-
have as ligand. This have been proved by several studies, in-
dicating that HVEM elicits pro- survival signal for effector
and memory T cells expressing HVEM [115–117].
Overexpression in human cancer [118], especially in

hematological tumors [119], is linked to impaired tumor
specific T-cell activity [23, 120]. Focusing on malignant
melanoma, the triple blockade of PD1, TIM3 and BTLA
leads consecutively to an increased expansion, prolifera-
tion and cytokine production of tumor-associated antigen-
specific CD8+ T-cells [121]. Comparably to malignant
melanoma, a heterogeneous amount of PD-1, Tim-3,
CTLA-4, LAG-3, and BTLA were expressed on intratu-
moral CD8+ T cells from 32 patients with NSCLC. Fur-
thermore, these findings could be linked to progression of

the disease [122]. Interestingly, this investigation could
clearly demonstrate, that the expression of these immune
checkpoint inhibitors was time-dependent showing an
early PD-1 and late LAG-3/BTLA expression [122].
Another study with NSCLS could relate the expression of
PD-L1, PD-L2, PD-1, TIM-3, B7-H3, BTLA and CTLA-4
to the carcinogenesis relevant epithelial-mesenchymal
transition [123]. In another animal model, investigating
thyroid carcinoma, a combination of vaccination with
BTLA inhibition lead to tumor regression [124]. Further-
more, it was shown that BTLA plays a role in suppression
of tumor-associated antigen-specific CD8+ T-cell kind
allogeneic stem-cell transplantation [125].

T-cell immunoglobulin and mucin- containing protein 3
(TIM3)
The inhibitory receptor T-cell immunoglobulin and
mucin- containing protein 3 (TIM-3) is regulated by the
transcription factor T-bet and expressed on various T cell
subsets including Th1, CD8+, Tregs but also on DCs, mac-
rophages and monocytes [126, 127]. Although TIM-3 is
thought to exhibit suppressive functions it does not con-
tain an ITIM motif in its intracellular domain like PD-1 or
TIGIT. It binds to the soluble molecule S-type lectin
Galectin-9 (Gal-9), which is upregulated by IFNγ leading
to the downstream recruitment of the Src family tyrosine
kinase Fyn and the p85 phosphatidylinositol 3-kinase
(PI3K) adaptor [128, 129]. As a result, Th1 mediated
immunity is impaired by reducing IFNγ production, in-
creased apoptosis in Th1 and cytotoxic CD8+ T cell in vitro
[130, 131]. Other ligands for TIM3 are carcinoembryonic
antigen cell adhesion molecule 1 (CEACAM1) [132],
HMGB1 [133] and phosphatidylserine [134]. In preclinical
studies, it could be shown that, blockade of TIM-3 signal-
ing enhances the skewing from Th2 to Th1 subsets,
thereby reducing allergen induced airway inflammation. In-
hibition of Gal-9 amplifies symptoms of experimental auto-
immune encephalomyelitis acute graft-versus host disease
and type I diabetes in non-obese (NOD) mice [135–138].
The role of TIM-3 is currently being controversially dis-
cussed. Some studies display a negative impact on Th1 and
Th17 polarization in vitro, while others suppose that Gal-9
triggers Treg differentiation or inhibits Th17 skewing in a
TIM-3 independent manner [139–142]. Antagonistic TIM-
3 antibodies increases the secretion of Th1 and Th17
effector cytokine production in vitro, elevated Th1 and
Th17 differentiation in vivo and diminishes Treg conver-
sion in vitro and in vivo [138, 143, 144]. TIM-3 expression
on CD8+T cells is associated with high degree of dysfunc-
tion in various chronic infections, but also in lymphoma
and melanoma patients [145–148]. As discussed in the last
section, antagonizing TIM-3 signaling contributes to
tumor regression and control of viral load, which can be
potentiated by additional PD-1 blockade [146, 149–151].
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V domain Ig suppressor of T cells activation (VISTA)
Cloning of a Treg specific transcript with homology to
the Ig superfamily led to the discovery of the V domain
Ig suppressor of T cells activation (VISTA) or also
known as PD-1 homolog (PD-1H) [152, 153]. This type I
transmembrane protein consists of 7 exons and shares
85,6% similarity between human and mouse [153]. Al-
though it is suggested that VISTA shares homology with
either PD-1 or PD-L1, it does not contain ITIMs or
ITAMs [152, 154]. However, due to the fact that the
cytoplasmatic tail contains two protein kinase C binding
sites and proline residues, which potentially function as
docking sites, VISTA may act as both receptor and ligand
such as the inhibitory receptor BTLA [154]. Interestingly,
the binding partner of VISTA is still unknown. VISTA
expression is not limited to T cells. Indeed, is also
expressed by DCs, macrophages, monocytes and neutro-
phils [152, 153, 155]. Besides CTLA-4, PD-1 and TIGIT,
Tregs additionally express VISTA on their cell surface,
which is suggested to contribute to Treg differentiation
and to their suppressive function. Several studies offer
solid evidence for VISTAs immunomodulatory role.
Firstly, VISTA-fusion protein promotes Treg differenti-
ation in vitro [155]. Secondly, blockade of VISTA impairs
differentiation of tumor-specific Tregs, whereby decreas-
ing Treg-mediated suppression and increases infiltration,
proliferation and effector functions of tumor-specific T
cells [156]. The role of VISTA as a negative regulator of T
cell mediated immune response has been strengthened by
the fact that VISTA deficient mice display elevated T cell
activation, proliferation, secretion of inflammatory cyto-
kines (IFNγ, TNFα, monocyte chemotactic protein-1
[MCP-1], IL-6), chemokines (interferone gamma induced
protein-10 [IP-10], monocyte interferon gamma inducing
factor [MIG], MCP-1) and multiorgan chronic inflamma-
tion. This inflammatory phenotype is synergistically en-
hanced by VISTA/PD-1 double knockout. In addition,
VISTA single knockout mice exhibit resistance towards
transplanted GL261 glioma [154, 157, 158]. Interestingly,
compared to CTLA-4 knockout mice, VISTA knockout
mice exhibit no signs for severe autoimmunity pointing
out, that other inhibitory receptors compensate for loss of
VISTA [157]. The role of VISTA in cancer immune evasion
has been demonstrated in melanoma mouse models, where
anti- VISTA antibody treatment resulted in enhanced
effector function of tumor specific T cells and to decreased
tumor growth [156].
Preclinical studies with inhibition of VISTA revealed a

progression of autoimmune encephalomyelitis [152],
whereby graft- versus-host-reaction could be inhibited
by VISTA blockade [153]. In murine tumor models
(such as fibrosarcoma [152] or melanoma [159]), VISTA
blockade could significantly improve clinic-pathological
aspects like tumor growth or overall survival rate.

Additionally, this was paralleled by enhanced anti-tumor
immunity with increased infiltration, proliferation, and ef-
fector function of T-cells [156]. Interestingly, the efficiency
of the inhibition of VISTA is independent of missing
VISTA expression on the tumor cells, and of the presence
of high PD-L1 expression [156, 160].

CD96
CD96 (also known as Tactile (T cell activation, increased
late expression)) is beside CD226 one of the ligands of
CD155 [161]. The discovery of CD96 upregulation in T
cells and NK cells within human tumors led to the the
hypothesis that the inhibition of the CD155/CD96 could
essentially influence the tumor elimination [162]. In par-
ticular, CD96−/− mice show increased NK-cell activity in
response to immune challenge and significant resistance
to cancer [163, 164]. In addition, further studies could
highlight the role of CD96 in acute myeloid leukaemia
(AML) as well as in congenital disease like C syndrome
or opitz trigonocephaly [165, 166]. Furthermore CD96
plays a key role in chronic viral disease induced by
Hepatitis B [167] or HIV-1 [168], where investigations
could reveal that CD96 expression is pathogenetically
linked to disease progression [168].

Clinical trials exploiting reinvigoration of T cells
Although checkpoint inhibition is relatively new, it has
become a very attractive single therapy option or a com-
bination partner with other standard care of treatment
options. This chapter will summarize in a clear and con-
cise manner recently published clinical trials dealing
with checkpoint inhibition (for detailed information see
Table 2). To do so, we will concentrate on efficacy and
tolerability of the checkpoint inhibitors for CTLA-4,
PD-1 and, PD-L1 (Fig. 1), due to the fact that there is
too little or even no information about other immune
checkpoints in clinical trials at the moment. To antici-
pate efficacy and possible immune related adverse effects
(irAEs), it is important to consider which immune cells
and T cell subsets are targeted by the respective thera-
peutic antibodies. As described in the previous chapters,
expression of IRs are not solely restricted to exhausted
CD8+ Tcells but may also be expressed on T helper, Treg
or antigen presenting cells which could amplify or im-
pede therapeutic effects. Hence, CTLA-4 and PD-1/PD-
L1 specific antibodies differ in their mode of action.
Whereas CTLA-4 antibodies lower the threshold for T
cell activation (also of low affine tumor specific naive T
cells), antibodies targeting the PD-1/PD-L axis aim at
regulating effector T cell activity [42, 169]. In that sense,
PD-1/PD-L antibodies do not merely target cytotoxic CD8+

T cell subsets but can impede tumor specific Tregs, thereby
potentiating tumor specific cytolytic attacks [169]. Mono-
clonal antibodies that pharmaceutically inhibit CTLA-4 are
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ipilimumab and tremelimumab. Used as a single therapy,
ipilimumab has mostly been investigated in the setting of
malignant melanoma and non Hodgkin lymphomas
(NHL). In 2015 Eggermont et al. stated in a phase III clini-
cal trial when ipilimumab is given in an adjuvant manner
in previously resected stage III melanoma, it significantly
improved recurrence-free survival compared with placebo
[170]. In combination with glycoprotein 100 (gp100) vac-
cination or with radiotherapy, ipilimumab improved overall
survival or increased the duration of irradiated tumor re-
sponse [171–173]. Moreover, in combination with the
immunostimulator sargramostim, ipilimumab showed
longer overall survival in the same setting [174]. Beashey
et al. who treated patients suffering from aggressive NHL
with ipilimumab after allogenic hematopoetic cell trans-
plantation recorded antitumor responses as well [175].
Nevertheless, a phase II clinical trial in 2015revealed only
little clinical activity for ipilimumab when given adjuvant
after resection of advanced uveal melanoma [176].
Tremelimumab as well has been investigated not only in

the setting of advanced malignant melanoma, but also in a
number of other malignancies like advanced adenocarcin-
omas of the gastrointestinal tract, non small cell lung car-
cinoma (NSCLC) and hepatocellular carcinoma (HCC) as
well as malignant mesothelioma [177–182]. Concerning
malignant melanoma, in 2013 Ribas et al. were not able to
demonstrate a statistically significant survival advantage for
tremelimumab compared to standard-of-care chemother-
apy in patients suffering from advanced melanoma [183].
But in combination with high dose interferon-α treatment
of malignant melanomas showed significant therapeutic
benefit [184]. The clinical phase II studies dealing with
adenocarcinomas of the esophagus and the colon showed
disappointing response rates, not supporting further inves-
tigations [177, 185]. In contrast, tremelimumab showed an-
titumor and antiviral effects in patients suffering from
HCC on the basis of hepatitis C-virus infections [179].
The PD-1 inhibiting agents, Nivolumab and Pembroli-

zumab, were also used in clinical trials to treat malignant
melanoma. In a phase III clinical trial, performed by
Robert et al., nivolumab showed significant improve-
ments in overall survival and progression free survival
compared with dacarbazine. This trial setting focused on
untreated melanoma without BRAF mutation [186].
Additionally, Postow et al. and others demonstrated that
the combination of nivolumab and ipilimumab had signifi-
cant advantages over single nivolumab therapy or placebo
alone concerning progression-free survival [187, 188].
Even as a second line therapy nivolumab seems to im-
prove outcome in malignant melanoma. In this phase III
trial, ipilumumab pretreated advanced melanoma patients
were either treated with nivolumab or investigators
choice of chemotherapy. In this setting nivolumab dem-
onstrated higher objective response rates than the

alternative available chemotherapy [189]. In the setting
of squamous or non squamous NSCLC, nivolumab
seems to improve survival rates in previously heavily
treated patients [190]. It even showed a better perform-
ance compared to docetaxel [191, 192]. Similar to that,
pembrolizumab prolonged overall survival compared to
docetaxel in NSCLC in a phase II/III clinical trial [193].
Obviously, patients with malignant melanoma were
treated with pembrolizumab in a clinical trial as well.
Ribas et al. were able to show that pembrolizumab pro-
longed progression-free survival and overall survival
compared to ipilimumab. In another phase I clinical
trial pembrolizumab improved objective response and
survival rates [194]. In addition, Le et al. showed
another very interesting feature of pembrolizumab.
They performed a phase II clinical trial in which they
were able to investigate that mismatch-repair deficiency
predicted clinical effect of pembrolizumab in patients
suffering from colorectal carcinoma [195], implying
that response rates and clinical benefit from anti-PD1
therapies is correlating with high non-synonymous
mutation load, which associates with the presence of
tumor associated neoantigens [195, 196]. It was sug-
gested that there is a general correlation of mutation
load within tumor DNA and efficacy of immune check-
point inhibition, irrespective of targeting PD-1 or its
ligand, likely by an increased expression of tumor asso-
ciated neoantigens [195–197]. While tumors with
deficiencies in DNA mismatch-repair were found to
have a better response toPD-1 blockade [195], it will
certainly be clinically relevant to assess other surrogate
markers which predict response to immune checkpoint
blockade. These markers could likely be mutations in
other DNA repair genes but also expression levels of
DNA-mutating enzymes, such as family members of
the AID/APOBEC deaminases, which could lead to in-
creased mutation load in tumor DNA [198]. In
addition, a similar correlation of treatment response
and mutation load has been shown for melanoma pa-
tients treated with CTLA-4 [194, 195].
Pidilizumab, another PD-1 inhibitor, was used in a

combination therapy in two different phase II clinical
studies. Relapsed follicular lymphoma patients treated
with pidilizumab in combination with rituximab exhib-
ited an overall response rate of 66% and a complete re-
sponse rate of 52% [199]. In the setting of diffuse large
B cell lymphoma, patients treated with pidilizumab
after hematopoietic stem cell transplantation showed
an overall response rate of 51% and complete response
in 34%, although 37% of patients showed a progressive
disease in the same clinical trial [200].
Unlike PD-1 targeting antibodies, the PD-L1 specific

antibody atezolizumab is not primarily used in the set-
ting of melanoma. In previously treated NSCLC patients,
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atezolizumab improved survival compared with doce-
taxel in correlation with PD-L1 expression in the tumor
and in tumor infiltrating immune cells [201]. Similar ef-
fects on survival were seen in another study dealing with
previously metastatic urothelial carcinoma [202]. In
combination with cobimetinib, a selective mitogen acti-
vated protein kinase (MAP2K1) inhibitor, atezolizumab
ameliorated response rates even in mismatch repair pro-
ficient metastatic colorectal cancer [203].
Regarding the immune related adverse events of check-

point inhibitors, all mentioned antibodies show similar
immune related adverse events (irAEs, see Tables 2 and 3).
Adverse events of grade 3 or higher affected most of the
gastrointestinal tract, the skin, the liver function and the
hematopoietic system (for more details see Tables 2
and 3). Diarrhea or colitis was observed in almost all
clinical trials. However, the majority of adverse events
were acceptable and mostly easy to manage [204–206].
Compared to standard chemotherapy, some investiga-
tors stated a much better tolerability for checkpoint
inhibitors [189, 192, 201]. Moreover, a combination of
checkpoint inhibition with ipilimumab and radiotherapy
did not show an increase in adverse events [172]. Further-
more, clinical trials investigating combination therapies
with standard of care therapies like exemestane in
breast cancer, bicalutamide in prostate cancer, rituxi-
mab in follicular lymphoma or gemcitabine in pancre-
atic cancer, showed usually a satisfactory adverse events
profile [199, 207–209]).

Conclusions
The results of numerous clinical trials using immune
checkpoint inhibitors are very encouraging. Blocking anti-
bodies for CTLA-4, PD-1 or PD-L1 seem to have a strong
therapeutic potential when given alone or in combination
with standard care of treatment in many different tumor
entities. Additionally, checkpoint inhibitors adverse events
profiles do not seem to be much worse than profiles of
standard chemotherapies, but due to the fact that recently
published clinical trials were in phase I or II, these encour-
aging data needs to be verified in more phase III clinical
trials with longer follow up and larger numbers of pa-
tients. In addition, future challenges will be to elucidate
proper pretreatments or combination therapies to increase
clinical benefit of checkpoint inhibition also in cancer with
initial low non-synonymous mutation load or low neoanti-
gen expression.
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