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Abstract

Background: Outbreaks of vector-borne diseases (VBDs) impose a heavy burden on vulnerable populations. Despite
recent progress in eradication and control, malaria remains the most prevalent VBD. Integrative approaches that
take into account environmental, socioeconomic, demographic, biological, cultural, and political factors contributing
to malaria risk and vulnerability are needed to effectively reduce malaria burden. Although the focus on malaria risk
has increasingly gained ground, little emphasis has been given to develop quantitative methods for assessing
malaria risk including malaria vulnerability in a spatial explicit manner.

Methods: Building on a conceptual risk and vulnerability framework, we propose a spatial explicit approach for
modeling relative levels of malaria risk - as a function of hazard, exposure, and vulnerability - in the United Republic of
Tanzania. A logistic regression model was employed to identify a final set of risk factors and their contribution to malaria
endemicity based on multidisciplinary geospatial information. We utilized a Geographic Information System for the
construction and visualization of a malaria vulnerability index and its integration into a spatially explicit malaria risk map.

Results: The spatial pattern of malaria risk was very heterogeneous across the country. Malaria risk was higher in
Mainland areas than in Zanzibar, which is a result of differences in both malaria entomological inoculation rate and
prevailing vulnerabilities. Areas of high malaria risk were identified in the southeastern part of the country, as well as in
two distinct “hotspots” in the northwestern part of the country bordering Lake Victoria, while concentrations of high
malaria vulnerability seem to occur in the northwestern, western, and southeastern parts of the mainland. Results were
visualized using both 10×10 km2 grids and subnational administrative units.

Conclusions: The presented approach makes an important contribution toward a decision support tool. By
decomposing malaria risk into its components, the approach offers evidence on which factors could be targeted
for reducing malaria risk and vulnerability to the disease. Ultimately, results offer relevant information for
place-based intervention planning and more effective spatial allocation of resources.
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Background
Despite recent progress in reducing malaria morbidity
and mortality as a result of the expansion and intensifi-
cation of malaria control programs, approximately half
of the world remains at risk of contracting the disease
[1], and in 2012 about 207 million cases and 627,000
malaria-related deaths were observed [2]. Currently, most
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strategies for malaria prevention and control tend to con-
centrate on reducing exposure to mosquitos or treating
infections [2,3]. While these strategies do provide tangible
health benefits, integrative approaches (accounting for
socioeconomic, cultural, behavioral, environmental, and
political aspects) that also aim at reducing individual vul-
nerabilities to the disease are needed as countries achieve
very low levels of transmission [4-6].
In recent years, a range of malaria risk assessments

has been carried out, focusing on (i) malaria transmis-
sion risk [7-11], (ii) malaria risk factors [12-14], (iii) the
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links between climate change and malaria risk [15-17],
and (iv) spatial population datasets for mapping popula-
tions at risk [18-20].
Malaria risk assessments focus on the probability of

harmful consequences resulting from interactions be-
tween the hazard (or the disease; measured by the ento-
mological inoculation rate [EIR]) and the vulnerability of
the exposed population; thus, they are commonly carried
out once the hazard is prevalent. Vulnerability assess-
ments focus on identifying and analyzing a wide range
of socioeconomic, demographic, biological, cultural, and
governance-related factors that can potentially impact
human susceptibility and lack of resilience to the disease.
Therefore, mapping vulnerability and integrating the
results in a spatial explicit risk assessment can provide
evidence for planning preventative interventions, by tar-
geting factors that can reduce susceptibility and increase
resilience. Although the focus on malaria risk and vul-
nerability is increasingly gaining ground in the malaria
literature [21], little emphasis has been given to integrat-
ing spatial explicit information on prevailing vulnerabil-
ities into malaria risk assessments.
This paper addresses these issues, and aims to model

malaria vulnerability in the United Republic of Tanzania
using a spatial explicit approach and combine it with
existing hazard/disease information (i.e., EIR) to produce
a malaria risk map.

Methods
Study area
The United Republic of Tanzania (from now on referred
to as Tanzania) is located in eastern Africa between lati-
tude 1° and 12° South and longitude 29° and 40° East,
with an area of approximately 945,203 km2, including
bodies of water. Administratively, the country is divided
into 30 regions: 25 in Tanzania Mainland and five in
Zanzibar, the group of islands off the eastern coast of
Tanzania Mainland (Figure 1).
According to the 2012 Population and Housing Census

[22], Tanzania has a population of 44.9 million inhabitants,
of which 43.6 million live in Tanzania Mainland and 1.3
million in Zanzibar. The majority of the country is
sparsely populated (population density of 51 persons/
km2), with the exception of Dar es Salaam (3,133 per-
sons/km2) and Ugunja West (2,581 persons/km2). The
current growth rate is 2.7%, and 28.3% of the population
live in urban areas [22].
The country has a tropical climate that varies regionally,

due to topography. With the exception of a narrow coastal
strip, most of the country belongs to the East African high-
lands. The coastal regions are warm and humid, while the
highland areas are more temperate. Driven by the move-
ment of the Inter‐Tropical Convergence Zone (ITCZ), the
country reveals two bimodal rainfall patterns: the north
and the east experience two distinct wet periods – the
short rains in October to December and the long rains in
March to May, whilst the southern, western, and central
parts of the country have one wet season that happens in
October to April or May.
According to the 2013 World Malaria Report [2],

Tanzania is among the six countries with the highest
malaria burden in the World Health Organization (WHO)
African region. Although malaria is largely under control
in Zanzibar, it is still a major public health problem on the
mainland. Despite recent progress in reducing the burden
of the disease, malaria was the second major cause of dis-
ease burden in 2010, as measured by disability-adjusted
life years (DALYs). In terms of the number of years of life
lost (YLL), HIV/AIDS (21%), malaria (14%), and lower
respiratory infections (9%) were the top-three-ranking
causes in the country in 2010 [23].
According to the President’s Malaria Initiative (PMI),

stable malaria transmission with seasonal variation oc-
curs in approximately 20% of the country, while unstable
seasonal malaria occurs in another 20%. The remaining
endemic areas are characterized as stable perennial trans-
mission [24]. As a consequence, approximately 93% of the
mainland population lives in areas where malaria is trans-
mitted, while the entire population of Zanzibar is prone to
malaria infection [24]. Although the promotion and distri-
bution of (long-lasting) insecticide-treated nets (LLINs/
ITNs), the implementation of indoor residual spraying
(IRS), and the scale-up of both artemisinin-based com-
bination therapy (ACT) and intermittent preventive
treatment in pregnancy (IPTp) have substantially re-
duced morbidity and mortality in the past decade, there
are still approximately 60,000 to 80,000 malaria-attributable
deaths every year [25,26]. The most vulnerable groups (e.g.,
the poor, children under 5, pregnant women) carry the
highest burden [3,26-28].

Modeling framework
For the construction of the spatial risk and vulnerability
surfaces an iterative modeling framework, pursuing a
traditional Multi-Criteria Assessment (MCA) approach
[29], was applied following guidelines proposed by the
Organization for Economic Co-operation and Develop-
ment [30]. The modeling process is displayed in Figure 2.
Relevant modeling phases include: (1) definition of the
conceptual risk and vulnerability framework; (2) identifi-
cation of potential hazard, vulnerability, and exposure
indicators based on a systematic review of literature,
selection criteria, and data availability; (3) data prepro-
cessing; (4) analysis and imputation of missing data; (5)
outlier detection and treatment; (6) assessment and re-
duction of existing multicollinearities; (7) normalization;
(8) logistic regression analysis for evaluating the relation-
ship between potential explanatory risk factors (identified



Figure 1 United Republic of Tanzania, detailed by regions and districts. The map shows the number of people per 10×10 km2 grid square,
as well as the spatial distribution of Plasmodium falciparum (Pf ) malaria stratified by endemicity class (as provided by the Malaria Atlas Project [1]).

Figure 2 Modeling framework. Includes all stages of the modeling process, from conceptualization to visualization. Grey boxes indicate
modeling phases; white boxes represent input/output layers.
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in phase two) and malaria endemicity; (9) weighting and
aggregation of indicators and domains in a vulnerability
index; (10) aggregation of hazard (EIR) and vulnerability
in a malaria risk map; (11) sensitivity analysis; (12) valid-
ation; and (13) visualization of modeling results.
A spatial explicit model that builds on gridded datasets

was selected to reflect the spatial distribution of malaria
risk and vulnerability independent of a-priori defined
boundaries, such as administrative units. We used both
regions and districts as additional reporting units, since
the National Malaria Control Program (NMCP) spatially
targets some interventions (e.g., IRS) at this level. Thus,
results can provide evidence for local policymaking and
intervention planning.

Conceptual framework
As no universal definition exists for risk and vulnerabil-
ity (yet) [3,31], it is essential to choose an approach that
is appropriate for the context in which the risk and vul-
nerability assessments are embedded [32] and consider-
ing the hazard that is addressed (e.g., climate change,
natural hazards, vector-borne diseases, etc.). Conceptual
frameworks are valuable tools for the operationalization
of the multifaceted nature of risk and vulnerability, as
they guide the development of appropriate models as
well as the systematic identification of indicators [33].
In the context of vector-borne diseases like malaria,

risk is a function of the hazard (e.g., represented by the
entomological inoculation rate - EIR) and the vulnerabil-
ity of exposed population groups (Figure 3).
The interrelation of these three components (hazard,

vulnerability, and exposure) reflects the vital importance
of feedback when dealing with the malaria transmission
cycle. For example, ITN usage or IRS minimizes vulner-
ability, but by also reducing vector populations they can
fundamentally affect transmission and thus impact both
the hazard/disease and exposure components of the frame-
work. Within this context, we define vulnerability (VU) as
the predisposition of the society and its population to the
Figure 3 Conceptual risk and vulnerability framework. Risk is defined a
of exposed population groups (adapted from [34,35]).
burden of malaria, taking into account spatial differences
in their susceptibility and lack of resilience. Thereby, sus-
ceptibility represents the propensity of individuals to be
negatively affected by malaria as a result of both generic
and biological susceptibility factors, while lack of resilience
refers to the inability to respond and absorb negative im-
pacts as a result of lacking capacity to anticipate, cope with,
or recover from the (burden of the) disease [34,35]. In this
paper we consider generic susceptibility (SUS), biological
susceptibility (BIO), and the lacking capacities to anticipate
(C2A) and to cope (C2C) as different domains of vulner-
ability (VU):

VU ¼ f SUS;BIO;C2A;C2Cð Þ

Each domain is composed by different factors: socioeco-
nomic (e.g., education, knowledge, behavior, occupation,
income, livelihoods, etc.), biological (e.g., age, acquired
immunity, drug resistance, nutritional/health status), and
institutional (e.g., health services and policy, including
access to health care, quality of care, malaria control strat-
egies, etc.).
By decomposing the complex and multidimensional

nature of malaria risk into its different components (i.e.,
hazard, exposure, vulnerability), and vulnerability into its
different domains and factors, the framework guides the
conceptualization and operationalization of malaria risk
and vulnerability in a spatial explicit model.

Data sources
Guided by the conceptual framework and based on a
systematic review of literature and available data, a pre-
liminary set of 20 socioeconomic, demographic, environ-
mental, and governance-related vulnerability indicators,
as well as one hazard/disease-related indicator, were iden-
tified (see Table 1).
These indicators were extracted from several data

sources, as shown in Table 1. The 2011–12 HIV/AIDS
and Malaria Indicator Survey (THMIS) [26] provided
s a function of hazard (here proxied by the EIR) and the vulnerability



Table 1 Malaria risk factors, resolution, reference year, expected relationship with malaria (sign, weight),
and data source

Indicator name Resolution Date Signa Weightsb Data source

Hazard/disease-related (HAZ) indicators

HAZ_01: Entomological inoculation rate (EIR) 2010 + 0.476 Malaria Atlas Project

General susceptibility (SUS) indicators

SUS_01: Agricultural areas (%) 300 m 2009 + 0.023 ESA GlobCover

SUS_02: Density of violent conflicts (km2) Point layer 1997-2012 + - c ACLED

SUS_03: Location of refugee camps Point layer 2013 - 0.003 UNHCR

SUS_04: Poor housing conditions (%) Point layer 2011/12 - 0.022 THMIS

SUS_05: Occupation: forestry/agriculture/fisheries (%) Point layer 2011/12 - 0.019 THMIS

SUS_06: Rural extentc 1 km 2002 - - c MODIS

SUS_07: Water bodies (%) 300 m 2009 + 0.020 ESA GlobCover

Biological susceptibility (BIO) indicators

BIO_01: Children under the age of 5 (%) 1 km 2010 - 0.005 WordPop

BIO_05: Women of childbearing age (%) 1 km 2010 + 0.005 WorldPop

BIO_06: Number of HIV infected individuals (15–49 years) Polygon layer 2007 - 0.054 UNAIDS

BIO_08: Number of stunting children under 5 years Polygon layer 2007 + 0.020 FAO

Lack of capacity to anticipate (C2A) indicators

C2A_01: No/primary education (%) Point layer 2011/12 + 0.038 THMIS

C2A_02: Does not know how to avoid malaria (%)c Point layer 2011/12 + - c THMIS

C2A_03: No phones (cell/landline) (%) Point layer 2011/12 + 0.062 THMIS

C2A_04: Child did not sleep under net last night (%) Point layer 2011/12 - 0.066 THMIS

C2A_05: No indoor residual spraying (%) Point layer 2011/12 - 0.028 THMIS

Lack of capacity to cope (C2C) indicators

C2C_01: Travel time to closest urban center (hours) 1 km 2000 + 0.018 JRC

C2C_02: No health insurance (%) Point layer 2011/12 - 0.001 THMIS

C2C_03: No bicycle/motorcycle/car or truck (%) Point layer 2011/12 - 0.083 THMIS

C2C_04: Density of health-related projects (km2) Point layer 2011/12 - 0.057 World Bank
aSign indicates if high indicator values increase (+) or decrease (−) risk. The sign is derived from the regression analysis. bWeights are derived from the coefficients
of the regression analysis. cThese indicators were removed from the analysis as they were not statistically significantly (p-value < 0.05) related to malaria
endemicity in the study area.
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the following information (all variables are binary): (i)
poor housing conditions, based on rudimentary or
natural floor, wall, and ceiling material [27,13]; (ii) occu-
pation of the respondent was agriculture, fishing, or for-
estry [3,27,36,37]; (iii) primary education or less [3,38];
(iv) lacking knowledge on how to avoid malaria [38]; (v)
lacking ownership of cell phones or landlines [27], used
as a proxy for access to information; (vi) child did not use
an ITN/LLIN the night before the interview [3,14,27,37];
(vii) house had not been sprayed in the previous 12
months [13,27]; (viii) lack of any health insurance [12];
and (ix) lack of physical household assets in regards to
mobility (bicycle/motorcycle/car/truck) [12,39]. Following
a workflow published by Lamarange et al. [40], we created
continuous prevalence surfaces from DHS data using a
kernel estimator approach. This was done in R statistical
software [41] using the prevR package.
WorldPop (formerly known as AfriPop) provides gridded
population data at a resolution of 1 km [42], and the fol-
lowing information was obtained: (i) women of childbear-
ing age, here considered as 15 to 49 years old [3,13,27,43]
and (ii) children under the age of 5 [3,14,27,28,43]. Both
variables were standardized by the total population, utiliz-
ing a total population grid also available at WorldPop.
The prevalence of stunting among children under 5

[3,13,37,43] by the district level was downloaded from
the Food and Agriculture Organization (FAO; http://
www.fao.org/geonetwork/srv/en/main.home). Subnational
HIV prevalence [3,13] for people aged 15 to 49 (ref-
erence year 2007) was downloaded from the Joint
United Nations Programme on HIV/AIDS (UNAIDS;
http://www.unaids.org/en/regionscountries/countries/
unitedrepublicoftanzania/). To convert these two preva-
lence datasets into continuous surfaces we used a dasymetric

http://www.fao.org/geonetwork/srv/en/main.home
http://www.fao.org/geonetwork/srv/en/main.home
http://www.unaids.org/en/regionscountries/countries/unitedrepublicoftanzania/
http://www.unaids.org/en/regionscountries/countries/unitedrepublicoftanzania/
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mapping approach [44]. All analyses were done in ESRI
ArcGIS 10.1 (ESRI, Redlands, CA).
To account for the impacts of the local environment

on human malaria susceptibility [27,36,45], the 2009 ESA
GlobCover land use/land cover (LULC) product (300 m
resolution) was acquired (www.edenextdata.com). Based
on the LULC dataset two additional surfaces were created:
(i) relative share of water bodies and (ii) relative share of
agricultural areas (i.e., irrigated crop land, rainfed crop
land, closed to open broad-leaved forest regularly flooded,
closed broad-leaved forest permanently flooded, closed to
open vegetation regularly flooded).
Africa-wide data on political conflict from 1997 to

2012 are available through the Armed Conflict Location
and Event Dataset (ACLED; http://www.acleddata.com/)
and were used to obtain a surface of conflict density per
km2. Two types of events that might have an impact on
health care systems, including access to health care, were
taken into account [36]: (i) battle, including cases when
no territory was exchanged, rebels won territory, and
government regained territory; and (ii) violence against
civilians. Nonviolent protests and riots were not in-
cluded, since they can be interpreted as proxies for polit-
ical empowerment and participation.
Information on the current location of refugee settle-

ments [46,47] was obtained from the United Nations
High Commissioner for Refugees (UNHCR; http://www.
unhcr.org/pages/49e45c736.html). A global map of acces-
sibility (http://bioval.jrc.ec.europa.eu/products/gam/index.
htm) that shows the travel time in hours to urban centers
was gathered from the Joint Research Center (JRC) of the
European Commission (EC), and used as a proxy for ac-
cess to health facilities [27,36,46]. Donor aid for health-
related projects [46,48] was acquired from the World
Bank (http://data.worldbank.org/country/tanzania). We
obtained a grid with rural extents [25,27,36] from Mod-
erate Resolution Imaging Spectroradiometer (MODIS)
500-m satellite data [49,50]. Moreover, a gridded surface
showing the spatial distribution of Plasmodium falcip-
arum entomological inoculation rate (EIR) was down-
loaded from the Malaria Atlas Project website [1] as a
hazard/disease indicator. Lastly, a layer representing esti-
mated levels of Plasmodium falciparum malaria endem-
icity was acquired from the same website and used as an
input (dependent variable) for the regression model, as
well as to validate the final malaria risk surface.
Data preprocessing
All surfaces were resampled to the same cell size (10×10
km2) and cropped to the boundaries of the study area.
As malaria risk and vulnerability are human-centered
concepts [48], areas covered by major water bodies were
not included in the analysis.
We used descriptive statistics and box plots to evalu-
ate the degree of missing data as well as potential out-
liers. While no major problems were observed regarding
missingness, outliers were found in three indicators
(number of HIV infected individuals, number of stunting
children under 5, and population density) and treated
using a winsorization approach [30]. To assess if multi-
collinearity was an issue among the variables comprising
each domain, we calculated the Pearson correlation coef-
ficient (r) and the variance inflation factor (Additional
file 1: Tables S1-S8). We did not observe high correlations
(r > 0.9) or a high VIF value (VIF > 5). Consequently, all
variables were included in the regression analysis. To ren-
der the variables comparable, all indicators were standard-
ized (vi′) to a value ranging from 0 to 100 using linear
min-max normalization defined as:

vi′ ¼ vi−vminð Þ
vmax−vminð Þ � 100

where vi refers to the observed value of the variable in
pixel i, and vmin and vmax represent the minimum and
maximum values, respectively, of the variable. Detailed
maps showing the spatial patterns of all indicators uti-
lized in this study are presented of the Supplemental
Material (see Additional file 1: Figure S1).

Correlates of endemicity
Logistic regression has been widely used in epidemio-
logical studies to identify relevant correlates of disease
[14,51-54]. Since our model is spatially explicit, and all in-
formation is represented by grids, we applied logistic re-
gression using the pixel as the unit of analysis to appraise
the relationship between malaria endemicity (measured as
the proportion of people infected in the pixel, as reported
by the Malaria Atlas Project), and a set of 21 social, demo-
graphic, economic, environmental, biological, institutional,
and disease-related variables (Table 1). A total of 10,476
pixels (10×10 km of spatial resolution) were available for
the regression analysis, and the model is represented by:

ln
Pi

1−Pi

� �
¼ β0 þ β1x1;i þ ⋅⋅⋅þ βnxn;i

where Pi is the expected value of the dependent variable yi
at pixel i (i.e., the likelihood of malaria prevalence), x re-
fers to the n independent variables (i.e., the potential risk
factors), and β are the estimated regression coefficients.
The fit of the model was evaluated using several tests,

including the likelihood ratio test (LRT), an assessment
of the prediction accuracy, and McFadden’s pseudo R-
squared. The LRT was performed by comparing the pro-
posed model with a restricted model where the explanatory
variables of interest were omitted, while the p-values of the
test were calculated using the chi-square distribution. The

http://www.edenextdata.com
http://www.acleddata.com/
http://www.unhcr.org/pages/49e45c736.html
http://www.unhcr.org/pages/49e45c736.html
http://bioval.jrc.ec.europa.eu/products/gam/index.htm
http://bioval.jrc.ec.europa.eu/products/gam/index.htm
http://data.worldbank.org/country/tanzania
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prediction accuracy of the model was evaluated by splitting
the data into two subsets using random sampling: (i) a
training dataset with 75% of the observations (n = 7,834)
and (ii) a testing dataset with the remaining 25% of the
observations (n = 2,633). The training data were used to
predict malaria endemicity for the testing data, and for
ease of interpretation, both predicted and observed
endemicity values were categorized as low (0.0-0.33),
medium (0.33-0.66), and high (0.66-1.0). All statistical
analyses were performed in R statistical software using
the glm command [41].

Composite vulnerability index
Standardized values (vi′) were used to produce a surface
representing each of the four domains of vulnerability pre-
viously described (SUS, BIO, C2A, C2C), considering the
weighted sum of the variables in each domain and using
the coefficients from the regression analysis (Table 1) as
weights. The vulnerability index (VU) was then obtained
as the weighted sum of all vulnerability indicators accord-

ing to the following equation: VU ¼
Xn

i¼1
wiv′i , where n

equals the number of vulnerability indicators, and wi are
the weights for each normalized dataset vi′; these weights
were obtained from the coefficients of the logistic regres-
sion results and were normalized to add up to 1. The final
VU surface was normalized within a range from 0 to 1,
where 0 indicates no malaria vulnerability, and 1 repre-
sents the highest vulnerability.

Mapping malaria risk
We used EIR estimates as a proxy for malaria hazard. The
EIR layer was normalized to a range from 0 to 1 and then
combined with the normalized VU surface using a multi-
plicative weighted aggregation, RISK = ((w ∗ EIR) ∗ ((1 −
w) ∗VU), where the weight for the EIR surface was
obtained from the logistic regression analysis (Table 1). A
multiplicative approach to aggregation was chosen to
ensure that risk is 0 if one of the two components (i.e.,
vulnerability or hazard/exposure) is 0. For ease of inter-
pretation the final risk surface was standardized within
a range from 0 to 1, where 0 reflects no malaria risk, and
1 represents the highest risk. We did not include an expli-
cit exposure variable since the number of people is already
indirectly included in the other components of risk.

Sensitivity analysis
We assessed the sensitivity of the modeled risk and vul-
nerability surfaces to the choice of indicator weights. We
conducted a sensitivity analysis, which targets one index
construction stage at a time (here: weighting), while all
other stages (normalization, aggregation, etc.) are held
constant [55-57]. In addition to using standardized re-
gression coefficients as indicator weights (Table 1), we
thus modeled malaria risk and vulnerability using weights
based on principal component analysis (PCA) [30] and
equal weights (see Additional file 1: Table S9). Following a
workflow proposed by Hagenlocher et al. [58], risk and
vulnerability surfaces obtained from these two additional
weighting schemes were compared with those obtained
utilizing weights based on the logistic regression (see
Additional file 1: Figure S3). Three assessments were
used: (i) the absolute difference between the pixel values
of the surfaces; (ii) the Pearson correlation coefficient
between the surfaces; and (iii) the local Moran’s I statis-
tic [59] applied to the absolute differences obtained in
(i) in order to identify areas where the differences were
significantly large or small [58].

Results
Correlates of malaria
Multivariate logistic regression analysis suggested that
18 out of 21 factors were significantly (p-value < 0.05) re-
lated to Pf endemicity in the study area (Table 1).
No significant association was found between Pf en-

demicity and conflict density, knowledge on how to
avoid malaria, and rural extent. Some variables showed
unexpected relationships with malaria endemicity (e.g.,
IRS, bed net usage by a child, children under the age of
5, and poor housing conditions), although this has been
reported previously by other studies. For example, a
negative association between malaria prevalence and no
usage of bed nets was also observed in Tanzania [60]. In
the case of IRS, this intervention has been implemented
only in some districts bordering Lake Victoria and in
Zanzibar. Thus, the potential impact is highly localized
and may not be captured in a regression model that as-
sumes that relationships are stationary across space. The
model had a good fit, as indicated by a highly significant
LRT statistic (p < 0.01), and an R Square of 0.76.

Malaria risk and vulnerability
Figure 4 shows the VU surface calculated for Tanzania, as
well as each of its four domains (SUS, BIO, C2A, and
C2C), using a 10×10 km grid; administrative boundaries –
regions and districts – are shown for reference. Grid cells
of relative high levels of vulnerability are displayed in
shades of red, while those of low vulnerability are dis-
played in shades of blue. Malaria vulnerability is generally
higher in Mainland areas (mean = 0.66, in a scale from 0
to 1) compared to Zanzibar (mean = 0.37). Concentrations
of high malaria vulnerability seem to occur in the north-
western, western, and southeastern parts of the Mainland
(Figure 4, panel 1).
By showing the four domains that compose vulnerabil-

ity it is possible to observe that high vulnerability does
not necessarily imply that all four domains are high. For
example, areas in the northwestern part of the country



Figure 4 Modeled surfaces of vulnerability to malaria, including the four vulnerability domains. Panel 1 shows the vulnerability to
malaria. Panels 1a to 1d show the four domains of vulnerability: generic susceptibility (SUS), biological susceptibility (BIO), lack of capacity to
anticipate (C2A), and lack of capacity to cope (C2C). All surfaces have a 10 km spatial resolution.
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reveal relatively high levels of vulnerability (Figure 4,
panel 1), a result of low capacity to anticipate or cope
with the disease (Figure 4, panels 1c and 1d), despite the
relatively low generic and biological susceptibility to
malaria (Figure 4, panels 1a and 1b). This has important
implications for selecting and targeting strategies to re-
duce vulnerability to malaria.
Figure 5 shows the computed malaria risk for Tanzania

(Panel 1), as well as its two components: hazard (Panel 1a)
and vulnerability of exposed population groups (Panel 1b).
There is a notable similarity between the risk (Panel 1)
and hazard (Panel 1a) surfaces, a result of the large coeffi-
cient for EIR that resulted from the logistic regression
model (Table 1).
Thus, although malaria vulnerability is relatively high

for most parts of the Mainland (with the exception of
the northeastern parts bordering Kenya, and a small area
to the north of Lake Malawi), malaria risk is relatively
low for large parts of the country as low levels of EIR
prevail. High levels of malaria risk concentrate in the
southeastern part of the country, as well as in two dis-
tinct “hotspots” in the northwestern part of the country,
bordering Lake Victoria (Figure 5, panel 1). Malaria risk
is higher in Mainland areas (mean = 0.09, in a scale from
0 to 1) compared to Zanzibar (mean = 0.002), as a result
of very low levels of both Pf malaria EIR and malaria
vulnerability in Zanzibar.
Figure 6 shows the malaria risk index and its compo-
nents aggregated at the district level, a resolution often
utilized by policymakers. At this aggregation level, the
district with highest malaria risk was Ruangwa District
in the Lindi Region (score of 1), which presented a high
index of vulnerability (0.78) and a very high EIR (score
of 1). In contrast, the districts with lowest malaria risk
were Micheweni District (score of 0) in Pemba North,
Mkoani District (score of 0) in Pemba South, Mbeya
Urban District (score of 0, in a scale from 0 to 1) in the
Mbeya region, and North A District (0.0, in a scale from
0 to 1) in Unguja North. Although all of them revealed
medium vulnerability to the disease (between 0.32 and
0.44), they were classified as no risk areas as EIR was 0.
While the aggregation process removes the variability
within the district, and thus the maps portray a smoothed
scenario, the spatial patterns identified in Figure 5 are also
discernible in Figure 6. However, assessing the magnitude
of the variability is important. Thus Figure 7 shows the
standard deviation of the malaria risk index and its two
components within each district. Districts with high vari-
ability are displayed in shades of red, and those with low
variability in shades of blue.
High standard deviation suggests high variability within

the district, and therefore interventions to reduce risk
should be targeted spatially, addressing local idiosyncrasies
observed in EIR and/or vulnerability. As an example, all



Figure 5 Modeled surfaces of malaria risk, including the EIR and malaria vulnerability. Panel 1 shows prevailing levels of malaria risk. Panels 1a
and 1b show the two components of malaria risk: entomological inoculation rate (EIR) and vulnerability. All surfaces have a 10 km spatial resolution.
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the pixels in Arusha District had the same value, and thus
no variability was observed for EIR and vulnerability. In
Lindi Rural District, however, the pixel values for EIR and
vulnerability vary a lot, revealing a high degree of variabil-
ity within the district.
Figure 6 Modeled surfaces of malaria risk, including the EIR and mala
malaria risk. Panels 1a to 1b show the two components of malaria risk: en
values are pixel averages obtained from Figure 5.
Contributions of different factors in each vulnerability
domain
To better understand which factors contributed the most
to the final modeled surface of vulnerability (Figure 4,
panel 1), the relative share (in percentages) of individual
ria vulnerability by district. Panel 1 shows prevailing levels of
tomological inoculation rate (EIR) and vulnerability, respectively. District



Figure 7 Standard deviation in district values of malaria risk and its two components. Panel 1 shows the variability in malaria risk. Panels
1a and 1b show the variability in the two components of malaria risk (i.e., EIR and vulnerability).
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indicators was calculated by region. Figure 8 shows the
contribution of each of the 17 final vulnerability indicators.
While some indicators contribute roughly the same across
regions (such as the relative share of water bodies), some
vary considerably, impacting the observed vulnerability
levels only in some regions (such as the number of stunted
Figure 8 Relative contribution of vulnerability indicators by region. F
indicators for each of the 30 regions.
children under 5). Contrasting Zanzibar and Mainland, im-
portant differences are in the contribution of usage of mos-
quito nets, indoor residual spraying, the lack of education,
and whether or not people have a phone. A more detailed
comparison of the indicators for Zanzibar and Mainland is
presented (see Additional file 1: Figure S2).
igure 8 shows the relative contribution of the 17 vulnerability
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Influence of indicator weights on modeled malaria risk
and vulnerability
The outcomes of the sensitivity analysis are shown in
(Additional file 1: Figures S3 to S5). Results for malaria
vulnerability show that, although the overall picture is
similar, the vulnerability surfaces vary especially in the
northwestern part of the study area when comparing the
different weighting schemes. However, as indicated by
the local Moran’s I, for most districts this variation is
not significant, which is also confirmed by the strong
Pearson correlation coefficient between the different vul-
nerability surfaces (r = 0.74 for the vulnerability surfaces
based on weights obtained from the regression and from
PCA, and r = 0.78 when comparing weights from the re-
gression analysis with equal weights). Despite the minor
impact of the weighting scheme on the modeled vulner-
ability surface, the choice of the weighting scheme has
hardly any impact on the risk surface, which is also indi-
cated by the strong positive correlation between the risk
surface created using regression coefficients as weights
and the risk surface that was created using PCA to ob-
tain indicator weights (r = 0.99), and the surface based
on equal weights (r = 0.99).

Validation
Cross-validation of the final risk map was carried out
against (i) the prevalence of malaria infection as mea-
sured by the THMIS, and (ii) the levels of Plasmodium
falciparum malaria endemicity in the country as re-
ported by the Malaria Atlas Project [1]. As the results of
the rapid diagnostic tests (RDTs) provided by the THMIS
were available for the 30 regions of the country, all data-
sets were aggregated to this level, and standardized to a
range from 0 to 100. To assess the accuracy of the model
we calculated the Pearson correlation and plotted the
normalized layers in a scatter plot (see Additional file 1:
Figure S4). The analysis revealed a strong relationship be-
tween malaria risk and malaria prevalence as measured by
the THMIS (r = 0.65) in the 30 regions.

Discussion
Using a logistic regression model we selected 18 indica-
tors to model malaria risk and vulnerability in Tanzania.
Our results show that malaria risk and its two compo-
nents (vulnerability and hazard) varied across the coun-
try, but also that areas at risk did not necessarily have
adverse conditions in both components. Since gridded
maps are of limited use for policymakers, results were
summarized at the district level, revealing differences in
malaria risk, EIR, and vulnerability across districts and,
in some areas, high variability within districts. Important
factors contributing to modeled vulnerability patterns in-
cluded proximity to agricultural fields and water bodies,
housing conditions, child malnutrition/stunting, and low
education, among others. By decomposing risk into its
two components we were able to show that areas with
conditions that maximize (minimize) vulnerability to mal-
aria can present high (low) risk if conditions resulting in
high (low) entomological inoculation rate prevail. This has
crucial policymaking implications. Interventions aimed at
reducing vulnerability to malaria could be less effective if
adverse conditions that result in an increase in the num-
ber of expected bites from infected mosquitoes prevail.
Moreover, these conditions vary spatially. Thus, the ideal
intervention package should address local conditions that
ultimately result in high malaria risk. Web-based spatial
decision support tools, such as the WebGIS application
presented by Kienberger et al. [61], could be a valuable
step towards a more interactive visualization and explor-
ation of these conditions. To increase user confidence in
the presented approach the impact of indicator weights on
the modeling outputs was evaluated by means of a sen-
sitivity analysis, which revealed that, despite minor dif-
ferences in the vulnerability surfaces, indicator weights
have hardly any impact on modeled malaria risk in the
study area. Comparing the three vulnerability surfaces
(see Additional file 1: Figure S3, panel 1a to 1c) it be-
comes obvious that weights based on logistic regression
reveal a much smoother result than equal weights or
weights based on PCA. This is not surprising since logistic
regression captures the contribution of each variable for
the outcome in a manner that the two other approaches
cannot. It is important to note that areas with differences
in malaria vulnerability are mostly the ones with contrast-
ing results for susceptibility and lack of capacity to antici-
pate and cope. In this case, equal weights are expected to
lead to different results when compared to a weighting
scheme that considers variable weights for each variable,
particularly when higher weights are observed among var-
iables for one particular domain and lower weights for
variables in another domain.
This study has some limitations. First, relevant vulner-

ability indicators, such as acquired immunity to malaria,
migration patterns, quality of the health care system,
availability of malaria drugs, personal beliefs and behav-
ior, and social networks, among others, were not avail-
able in spatially disaggregated format. Nevertheless, the
18 malaria risk factors considered are those often in-
cluded in malaria modeling exercises, and do provide a
good and useful description of malaria risk and vulner-
ability. Second, also related to data availability, indicators
were drawn on data from different years – the oldest
being 2002, and the most recent from 2013 (Table 1).
Some of the oldest information is likely to have changed
in some regions, such as the 2002 data on rural extent.
Third, the logistic regression model used to identify rele-
vant risk factors and weights for generating the vulner-
ability and risk surfaces is a nonspatial model, based on
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the assumption that the relationships between malaria
risk and potential risk factors are stationary [51]. Con-
sidering the heterogeneous distribution of most risk
factors across the country (Additional file 1: Figure S1),
this is likely to be a strong assumption, resulting in a
smoother vulnerability surface. Explicit approaches, such
as geographically weighted logistic regression, could bet-
ter capture the presence of spatial effects and indicate
areas where some of the variables could have positive,
negative, or no effect on the outcome (in nonspatial
models some variables can show unexpected effects as a
result of significant spatial correlation) [62]. Yet, it is un-
likely that the final risk surface would be dramatically
different than the one generated here, given the magni-
tude of the EIR effect.
Strengths of this paper include the systematic model-

ing framework, the fact that the modeling framework
can be easily replicated, and the comprehensive selection
of indicators. Upon the availability of updated informa-
tion, new risk and vulnerability maps can be generated,
and allow the assessment of potential changes (improve-
ment or deterioration) that happened across space and
over time. These changes, or lack of thereof, could then
be contrasted with specific programs implemented by the
government (e.g., child health programs, urban planning
efforts, and improvement of infrastructure).

Conclusions
This paper presented a holistic and spatial-explicit ap-
proach for assessing malaria risk in Tanzania, taking into
account differences in vulnerability and EIR. Multidi-
mensional vulnerability was modeled considering generic
and biological susceptibility and lack of resilience. The
analysis showed that the root causes of both malaria risk
and vulnerability vary considerably across the country.
The results presented make three important contribu-
tions. First, the risk, hazard (EIR), and vulnerability maps
facilitate the prioritization of areas for malaria control.
Second, the decomposition of malaria risk in its compo-
nents, vulnerability domains, and contributing factors pro-
vide local evidence of which issues need to be addressed
to effectively reduce malaria risk. Lastly, the conceptual
framework here presented can be used as a guidance tool
for future risk and vulnerability assessments and for moni-
toring changes over time.

Additional file

Additional file 1: Multicollinearity statistics and indicators.
Tables S1 to S4 give the correlation matrix and tables S5 to S8 the
multicollinearity statistics for all four vulnerability domains (SUS, BIO, C2A,
C2C). Table S9 summarizes the weights used for sensitivity analysis.
Figure S1 shows the spatial patterns, while Figure S2 displays the
normalized values (on a scale from 0 to 100) of the 22 datasets that
were included in the analysis. Figure S3 shows the impact of different
weighting schemes on malaria risk and vulnerability. Figure S4 and S5
present a comparative analysis of malaria vulnerability and malaria risk
surfaces using different weighting schemes. Figure S6 shows the
outcomes of the validation of the final risk surface using malaria
prevalence data as measured by positive RDTs.
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