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Abstract 

Background:  The problem of correct inpatient scheduling is extremely significant for healthcare management. 
Extended length of stay can have negative effects on the supply of healthcare treatments, reducing patient acces-
sibility and creating missed opportunities to increase hospital revenues by means of other treatments and additional 
hospitalizations.

Methods:  Adopting available national reference values and focusing on a Department of Internal and Emergency 
Medicine located in the North-West of Italy, this work assesses prediction models of hospitalizations with length of 
stay longer than the selected benchmarks and thresholds. The prediction models investigated in this case study are 
based on Artificial Neural Networks and examine risk factors for prolonged hospitalizations in 2018. With respect cur-
rent alternative approaches (e.g., logistic models), Artificial Neural Networks give the opportunity to identify whether 
the model will maximize specificity or sensitivity.

Results:  Our sample includes administrative data extracted from the hospital database, collecting information on 
more than 16,000 hospitalizations between January 2018 and December 2019. Considering the overall department 
in 2018, 40% of the hospitalizations lasted more than the national average, and almost 3.74% were outliers (i.e., they 
lasted more than the threshold). According to our results, the adoption of the prediction models in 2019 could reduce 
the average length of stay by up to 2 days, guaranteeing more than 2000 additional hospitalizations in a year.

Conclusions:  The proposed models might represent an effective tool for administrators and medical professionals to 
predict the outcome of hospital admission and design interventions to improve hospital efficiency and effectiveness.
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Background
Hospital admission is a costly and limited resource [1], 
but it is also a necessary step in the trajectory of most 
diseases. As outpatient care and home care have been 
financed and developed, inpatient care has evolved into 

a high-technology, high-intensity, multidisciplinary 
intervention. Hospital networks are adapting to this evo-
lution, with progressive concentration of skills and struc-
tures and unavoidable transformations of their internal 
organization [2]. Although clinicians are often inclined to 
resist this change, they should see it as an opportunity for 
improvement and professional enhancement. Optimal 
clinical care should be pursued together with efficiency 
and frugality in the use of resources. In fact, these two 
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purposes are not contradictory, since shorter hospital 
stays have obvious economic effects but, when associ-
ated with a rigorous clinical pathway, they also have huge 
health benefits, e.g., limiting the risks of hospital infec-
tion [3], thrombosis [4], and reduced physical autonomy 
[5]. Moreover, inefficiency invariably causes reduced 
accessibility: overcrowding of emergency departments 
and medical units is an alarming cause of delayed access 
to life saving services. Smooth in-hospital flows require 
a complex mix of conditions that have to come together 
in the pursuit of a shared goal. These conditions include: 
clinical choices, logistics, information technology and 
quality of health records, connections between units and 
services, and also personal motivation and team work-
ing. At the basis of any effort to change, however, there is 
the ability to select measurable indicators, together with 
tools for predicting the type of hospital stay and its pos-
sible outcomes, and this is precisely the purpose of our 
work.

Literature review: length of stay and prediction models
Length of stay (LOS) is one of the most widely used and 
easily available efficiency indicators [6]. This indicator 
assesses the speed of the clinical pathway and has the 
advantage of being uniformly measured and quite com-
parable. In the last two decades, several prediction mod-
els have been developed by scholars using consolidated 
techniques (e.g., Markov models, Multistage models, 
Discrete-Event models) to study LOS and the impact 
of selected covariates on this outcome (e.g., sex, age, 
admission method, diagnosis, severity of illness, hospital 
characteristics). As for the observations under investiga-
tion, the literature is quite heterogeneous, focusing on 
specific medical units or departments, as well as single 
hospitals or the whole healthcare system. Some authors 
adopt a continuous-time hidden Markov model with 
discrete states to model inpatient behavior, represent-
ing the flow of patients around departments of geriat-
ric medicine and investigating the effect of two selected 
covariates on occupancy time, i.e., age and sex [7]. Other 
authors propose a Gamma mixture risk-adjusted model 
to analyze maternity LOS within obstetrical Diagnosis 
Related Groups (DRGs) and connected determinants, 
i.e., patients’ demographic characteristics, health provi-
sion factors, and other clinical and hospital factors [8]. In 
both cases, the determination of pertinent factors would 
help hospital administrators and clinicians to efficiently 
manage LOS and expenditure. Taking a Texas Medical 
Center in Houston into account, Kapadia and colleagues 
model the flow of patients in a pediatric intensive care 
unit using a discrete Markovian process [9]. The aim of 
their work is to represent the flow of patients in relation 
to their illness (measured through the Pediatric RISk of 

Mortality, PRISM) in order to minimize total costs asso-
ciated with hospitalization. Note that the PRISM score is 
based on seven physiological and seven laboratory vari-
ables, each reflecting an organ system dysfunction, which 
are combined together into a score that represents a 
proxy for the severity of the illness and the risk of mortal-
ity in the current hospitalization [10]. The results suggest 
that stochastic models, like Markov chains and Monte-
Carlo simulations, can be very successful in assessing 
LOS if the illness risk is well defined.

Jeon and colleagues propose another study, with prac-
tical values that are useful in resource planning, rely-
ing on 5  years’ retrospective data for patients admitted 
to the Belfast City Hospital with a diagnosis of stroke 
[11]. Using a phase-type recovery model, they investi-
gate LOS according to patients’ age, type of stroke (i.e., 
hemorrhagic, cerebral infarction, and transient ischemic 
attack) and mode of discharge (i.e., the patient may die, 
be transferred to a nursing home, or be discharged to the 
individual’s usual residence). On the other hand, Akker-
man and Knip analyze the department of cardiac surgery 
of a Dutch hospital, looking at the relationships among 
patients’ LOS, beds availability, and hospital waiting lists 
[12]. In detail, they investigate patients’ LOS in hospital 
wards following cardiac surgery, describing and evalu-
ating several scenarios for hospital management using 
Markov chain theory and simulation experiments.

Taking a large integrated healthcare delivery system 
into account (more than 300,000 hospitalizations occur-
ring over 2 years in 17 hospitals), Harrison and Escobar 
adopt Multistage models to describe LOS distributions, 
trying to establish whether such models could be used for 
patient groups restricted by diagnosis, severity of illness, 
and the hospital supplying the treatments [13]. Consider-
ing the Irish healthcare system and focusing on delayed 
discharges, Rashwan and colleagues illustrate a system 
dynamics methodology used to model the flow of elderly 
patients, in order to better understand the dynamic 
complexity behind this phenomenon [14]. According to 
their results, there is evidence that the proposed system 
dynamic methodologies can support healthcare man-
agement in analyzing both different care pathways and 
delayed discharges of patients, optimizing their LOS. 
Finally, concentrating on elderly patients treated by the 
Regional Healthcare System of Italy’s Abruzzo Region, 
Gordon and colleagues introduce a new methodology, 
based on a series of conditional Coxian phase-type distri-
butions, that clusters patients according to their covari-
ates (i.e., age, gender, and admission method) and LOS 
in hospital and then models patient pathways, making it 
possible to predict their LOS in hospital and community 
care [15]. This approach can shed new light on the rates 
at which patients move between healthcare suppliers (i.e., 
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hospital and community care), supporting managers in 
reducing the negative effects of bed occupancy and of the 
premature discharge of patients without a suitable period 
of convalescence.

Clearly, according to the aforementioned literature, 
the problem of correct inpatient scheduling is relevant 
for healthcare management. On the one hand, the care 
pathways and internal organization of beds can affect 
the patients’ chances to receive treatment and be hos-
pitalized. On the other hand, bed occupancy represents 
a missed opportunity to increase hospital revenues by 
means of other treatments and/or hospitalizations, 
increasing the supply of healthcare services on the mar-
ket. Considering public healthcare systems, this means 
longer waiting lists and growing inefficiency, which pol-
icy makers will have to face. Although the literature pro-
poses interesting and effective methods to identify the 
best settings and approaches to managing beds [16, 17], 
there is a gap concerning the latter point, i.e., estimating 
the opportunity cost of such interventions, and this is a 
fundamental step to support the implementation of the 
proposed interventions by policy makers. With the pur-
pose of filling this knowledge gap, our paper applies a 
deep learning technique, i.e., Artificial Neural Networks 
(ANNs) to identify inpatients with a negative outcome 
and then, assuming effective interventions by the medi-
cal professionals, quantifies the increase in revenues for 
the additional hospitalizations that might be achieved. 
According to Shahid and colleagues, ANNs are leverag-
ing machine-learning techniques that can support physi-
cians with their diagnosis, as well as managers to support 
their decisions and to improve delivery of efficient care 
[18]. Indeed, according to Shahid and colleagues, ANNs-
based solutions applied on the meso- and macro-level of 
decision-making suggests the promise of its use in con-
texts involving complex, unstructured or limited infor-
mation, supporting an effective and efficient supply of 
care by medical institutions.

In detail, our work analyzes LOS according to selected 
covariates extracted from an administrative hospital 
database, adopting national benchmarks and thresholds 
to identify “too long” hospitalizations and presenting 
predictive models based on ANNs. Both the methodol-
ogy applied to the case study (i.e., ANNs) and the data-
set used (with more than 16,000 hospitalizations and 20 
covariates) represent further contributions to the current 
knowledge, supporting both hospital administrators and 
clinicians in efficiently managing LOS and expenditure. 
Indeed, these prediction models may represent an effec-
tive tool for administrators and medical professionals to 
predict the outcome of hospital admission, selecting the 
patient groups at higher risk of negative outcomes, and to 
design interventions to improve hospital efficiency.

Methods
We investigate the Department of Internal and Emer-
gency Medicine (DIEM) of a general hospital located 
in the North-West of Italy. In detail, the DIEM is struc-
tured around 13 clinical units: cardiology, hematology, 
geriatrics, infectious diseases, internal medicine, emer-
gency medicine, nephrology, neurology, coronary care, 
gastroenterology, oncology, respiratory diseases, and 
rheumatology.

Administrative data were extracted from the hospital 
database, collecting information on more than 16,000 
hospitalizations between January 2018 and December 
2019. Then, the data were combined together (as inputs 
or outputs), applying ANNs, to create prediction mod-
els that may be adopted by physicians to support their 
managerial and clinical decision making. Such decision-
making support, based on ANNs, may be able to identify 
patients with negative outcomes, guiding physicians and 
managers in the necessary interventions. In detail, con-
sidering hospitalizations in 2018, we performed a macro 
analysis on the whole sample without any distinctions 
among clinical units (i.e., the whole DIEM) and a micro 
analysis on the main clinical units and their hospitaliza-
tions. Lastly, we took hospitalizations in 2019 into con-
sideration and tested the proposed prediction models, 
estimating expected clinical and managerial benefits.

Artificial Neural Networks (ANNs)
ANNs are complex models organized in layers, (multi-
layer) formed by neurons (also called perceptrons) and 
interconnected via synapses (weights). Due to their well-
known ability to generalize behaviors [19], ANNs have 
been successfully applied to many clinical fields [18], 
such as urinary tract infections and celiac disease [19, 
20], total hip replacement surgery [21], early ruling-in/
ruling-out of patients with suspected acute myocardial 
infarction using frequent biochemical monitoring [22], 
as well as in hospital management such as, for example, 
to evaluate patients’ admissions to EDs [23, 24], patients’ 
readmission [25], and patients’ appointment scheduling 
[26].

As highlighted in Fig. 1, the first layer is called “input 
layer” and it is composed of a number of neurons (or 
nodes) equal to that of the variables analyzed (in our 
specific case, as many neurons as the available pieces of 
information on the patients). The last layer is the “output 
layer”, from which the results of the models are derived. 
The number of nodes in this layer depends on the type 
of answer expected. Typically, there is only one neuron 
because the result is expressed in dichotomous form. 
Between the input layer and the output layer there are 
hidden layers, which can be more than one. The literature 
points out that a single hidden layer can approximate 
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any functional form [27, 28]. The number of neurons 
in the hidden layers must be found empirically [29, 30], 
although some authors have tried to define specific rules 
[31–33].1 The links between the layers are the “synapses”, 
mathematically called weights, which collect information 
about the relationships between the input variables and 
the expected outputs. These relationships are formalized 
through activation functions that are generally non-lin-
ear in the first layer (i.e., tansig, logsig, hardlim, and so 
on). In our model, these functions are non-linear from 
the input layer to the hidden one (tansigmoidal in the 
first architecture and logsigmoidal in the second one)2 
and linear from the hidden layer to the output one. The 
relationships between the layers are collected in weight 
matrixes and their analysis makes it possible to evalu-
ate the contribution of each piece of information to the 
definition of the expected outputs [34–36]. The Multi-
Layer Perceptron (MLP) network is represented in Fig. 1 
and its links are feed-forward because the connections 
come from the input layer to the hidden one and from 
the hidden layer to the output one. Backward or recursive 
relationships are not considered in this framework. The 
feed-forward MultiLayer Perceptron works with a super-
vised learning technique through a back-propagation 
algorithm. Note that there are some network frameworks 

that use an unsupervised procedure, i.e., Self-Organizing 
Map or Kohonen networks [38].

The supervised learning with the back-propagation 
algorithm works following this procedure: the initial 
sample is divided into two sub-samples, i.e., the training 
sample and the validation sample. In the first phase, only 
elements from the training sample are introduced into 
the model and, through the back-propagation algorithm, 
the network attempts to minimize the mean-square out-
put error over the entire training set. The ANN computes 
weights matrixes until a predefined error threshold is 
reached [37]. In this step, the model is fed information 
about the patients but also about the selected target. This 
stage is very important because the ANN learns from the 
data and collects, within weight matrixes, information 
about the relationships between the variables. It clearly 
emerges that dividing the initial sample into training and 
validation is critical: the training set must represent all 
possible types of patients with their specific characteris-
tics. In our case, we adopt the following proportions: 2/3 
in the training sample and 1/3 in the validation sample.

Once the weights and ANN framework are defined (i.e., 
type of activation functions between layers; number of 
hidden layers and their nodes; other technical parame-
ters, such as the search function for the optimal gradient, 
etc.), these parameters are applied to the validation sam-
ple, which is introduced into the ANN without any infor-
mation on the selected outcomes. The ANN applies the 
framework to the new data in order to evaluate results 
and the ability of the model to provide correct classifi-
cation. In our model, information about the patients is 
introduced into the input layer with the aim to obtain an 

Fig. 1  Artificial Neural Network architectures (logsig and tansig functions)

1  In this work, we have empirically found that the optimum number of hidden 
neurons is 5.
2  The tansigmoidal function has a logsigmoidal form with a codomain 
range from − 1 to + 1, while the logsigmoidal function’s codomain ranges 
from 0 to + 1.
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outcome for each patient, indicating whether the selected 
outcomes are likely (1 if they are, 0 if they are not).

Afterwards, we apply the algorithm aimed at maxi-
mizing either the specificity or the sensitivity value of 
our model, i.e., we can decide whether to maximize the 
network’s ability to identify the number of true negatives 
or true positives [38]. Concerning computational issues 
of the algorithm, a bootstrap procedure is used in this 
study in order to improve the robustness of estimates. 
Moreover, since in the training phase ANN weights are 
randomly set every time, that algorithm allows us to run 
the ANN for a defined number of times (i.e., 100 repli-
cations). Finally, the algorithm presented here runs in 
the training phase and yields network parameters trying 
to ensure, if possible, minimum levels of sensitivity (i.e., 
0.80) and specificity (i.e., 0.70) defined at the beginning of 
the computation. Thus, when a physician introduces new 
patient data into the model to forecast a negative out-
come, the answer obtained about a potential future event 
is specifically based on levels of sensitivity and specific-
ity set ex-ante. Analyses were performed using the MAT-
LAB (release R2019b, 64bit) software.

Applications with smart solutions
The main application of this new technology is the adop-
tion of smart solutions (e.g., a mobile app) to customize 
the stratification of patients admitted to the DIEM [39]. 
Clinical information about the patients might be col-
lected at his/her admission to the Department and then 
processed by the algorithm based on ANNs to support 
the decision making process regarding hospitalization 
and specialist investigations. On the one hand, the adop-
tion of these smart solutions gives the opportunity to 
customize risk stratification in real time, according to the 
specific clinical case (i.e., the patient’s health status). On 
the other hand, further collection of data about incom-
ing patients makes it possible to gather new evidence 
to refine the algorithm, so that updated versions of our 
innovative technology will become ever more effective at 
every access. In other words, ANNs and its application 
to smart solutions can provide an effective learning deci-
sion-making system to support health services.

Input and output specification
According to the empirical strategy and the proposed 
methodology based on ANNs, two model definitions 
have to be identified, i.e., which inputs and outputs are 
adopted for the macro and micro analysis respectively. In 
both analyses, two outcomes are introduced:

•	 long hospitalization, which is a dummy variable equal 
to 1 if the hospitalization is longer than the national 
average, 0 otherwise;

•	 outlier hospitalization which is a dummy variable 
equal to 1 if the hospitalization is longer than a spe-
cific reference value, 0 otherwise.

In the estimation of these outcomes, we consider all 
types of hospital discharges (e.g., to the patient’s home, 
to another hospital, as well as death). The former out-
come is based on a dynamic and variable benchmark, 
which is equal to the average of all hospitalizations 
occurred under a specific DRG code for a selected year 
(data source: Annual Report published by the Italian 
Ministry of Health, 2018). The latter outcome is based 
on a static threshold, which has been fixed for every 
specific DRG by the Italian Ministry of Health in 2008 
through a dedicated regulation (i.e., Decreto Ministero 
della Salute del 18 Dicembre 2008). Obviously, the 
threshold is higher than the benchmark, which means 
that the outliers are a sub-sample of the long hospi-
talizations, and this is exactly why we decided to adopt 
both outcomes in our analysis, so that we may be able 
to estimate an interval for our potential interventions 
(i.e., between the benchmark and the threshold).

For what concerns the macro analysis, that is to say, 
the model specification in which we consider the whole 
sample of observations without any distinctions regard-
ing departments (i.e., among clinical units), the inputs 
are the following:

•	 sex, which is a dummy variable equal to 1 if the 
patient is male, 0 otherwise;

•	 age, a matrix of four dummy variables according to 
the seniority class of patients, i.e., “18–40”, “41–65”, 
“66–75”, “> 75”;

•	 presence of cancer, which is a dummy variable 
equal to 1 if the patient has received a diagnosis of 
cancer;

•	 type of admission, which is a matrix of three dummy 
variables according to the access, i.e., “urgent hospi-
talization with direct access”, “urgent hospitalization 
from the emergency rooms” or “planned hospitaliza-
tion”;

•	 time slot, which is a matrix of three dummy variables 
according to the access, i.e., “morning”, “afternoon” or 
“night”;

•	 day of admission, which is a matrix of seven dummy 
variables according to the access, ranging from Mon-
day to Sunday.

•	 principal discharge diagnosis, which is a matrix of 
eleven dummy variables according to general areas 
of these diagnosis, i.e., selecting the 10 classes with 
the highest number of cases, which represent at 
least over 80% of the observations, plus one residual 
dummy variable.
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In the micro analysis, that is to say, the model specifi-
cation in which we look at single clinical units and their 
hospitalizations, the inputs are the same as in the macro 
analysis, but the selected top 10 diagnosis classes, which 
are more specific in this case, and the presence of inter-
nal transfers among the same units are also investigated. 
Note that we use the clinical unit to which patients are 
first admitted as our selection criterion. Finally, note 
that the micro analysis focuses on the most representa-
tive clinical units, i.e., internal medicine, cardiology, 
emergency medicine, geriatrics, respiratory diseases, 
neurology, and oncology. Obviously, taking the 2018 
hospitalizations into account, one model for each clini-
cal unit is run in order to collect specific weights that can 
explain the relation between inputs and outcomes.

Empirical strategy
The results of the prediction models computed according 
to the aforementioned specifications are evaluated on the 
basis of the following indexes:

•	 incorrect classification, i.e., the proportion of actual 
positives and actual negatives that are not correctly 
identified as such, in relation to the selected outcome 
and the whole population of patients;

•	 sensitivity, i.e., the proportion of actual positives 
that are correctly identified as such, in relation to 
the selected outcome and the population of positive 
patients;

•	 specificity, i.e., the proportion of actual negatives 
that are correctly identified as such, in relation to 
the selected outcome and the population of negative 
patients;

•	 false positive rate (Type I error), i.e., the proportion 
of patients identified as false positives, in relation to 
the selected outcome and the population of actual 
negative patients;

•	 false negative rate (Type II error), i.e., the proportion 
of patients identified as false negatives, in relation to 
the selected outcome and the population of actual 
positive patients;

•	 Positive Likelihood Ratio, i.e., the change in pre-test 
probability caused by a positive test results, with val-
ues that range between 1 and + ∞ (the higher, the 
better);

•	 Negative Likelihood Ratio, i.e., the change in pre-test 
probability caused by a negative test results, with val-
ues that range between 0 and 1 (the lower, the bet-
ter);

•	 Area Under the Curve, i.e., the area under the 
receiver operating characteristic curve, with values 
that range between 0 and 1 (the higher, the better).

These indexes represent the expected quality of our 
prediction models, i.e., the ability of our models to cor-
rectly identify patients in relation to the selected out-
come. Finally, to complete the analysis, we have also 
estimated the Garson index for each variable intro-
duced into the ANN, which represents its percent-
age contribution to the outcomes under investigation 
[35], as well as the expected sign of their contribution 
according to the NN synaptic weights [40].

Data and descriptive statistics
Table  1 presents some descriptive statistics about the 
clinical units under investigation and the whole DIEM, 
highlighting the characteristics of the hospitalized 
patients and the variables introduced as inputs in the 
model definition.

All the variables are expressed as average values, 
highlighting differences among our clinical units. Note 
that Table 1 considers exclusively the whole DIEM (first 
column), and then the medical units under investiga-
tions in the micro analysis, i.e., the most representative 
clinical units (internal medicine, cardiology, emergency 
medicine, geriatrics, respiratory diseases, neurology, 
and oncology). Tables 7 and 8 in Appendix show a more 
complete picture of our DIEM, showing all medical 
units.

Afterwards, considering the outcomes under inves-
tigation, Table  2 shows the percentage of hospitaliza-
tions in the clinical units, highlighting main differences. 
Considering the overall DIEM, 40% of the hospitaliza-
tions lasted more than the national average, and almost 
3.74% were outliers. Note that, based on the afore-
mentioned specification, these hospitalizations are a 
sub-sample of the whole set of longer hospitalizations. 
Finally, Table  2 illustrates other descriptive statistics 
on the DIEM units and their performance in 2018. In 
detail, the table shows the average LOS estimated on 
the basis of administrative data and the expected aver-
age LOS according to the national benchmarks. By 
comparing the two columns, we can identify the effi-
ciency gap. For example, on average, the geriatrics 
unit has an overall LOS equal to 12.516  days for its 
hospitalizations, while the national average LOS was 
9.808  days. This would translate into an average loss 
of more than 2 days for every hospitalization. Tables 9 
and 10 in Appendix report all medical units, as well as 
the number of available beds and the number of hos-
pitalizations in 2018. This information will be used to 
estimate the managerial impact of the proposed stratifi-
cation rule. Lastly, Table 11 in Appendix show the cor-
relation matrix among the main inputs introduced in 
the model definition.
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Results
This section presents the results of our prediction mod-
els based on hospitalizations in 2018 (Table 3). In detail, 
taking the selected outcomes into account, the table dis-
plays the results in relation to the indexes defined in the 

previous section, as well as the number of observations 
(i.e., hospitalizations) used to validate every ANN (1/3 of 
the sample). Finally, in order to provide a more complete 
picture of our models and identify possible intervention 
strategies, Table  4 shows the weight of the covariates 

Table 1  Inputs adopted in the model specification

The variable “transfers” is used exclusively in the micro-analysis (i.e., with the most representative medical units)

Variables DIEM (%) Internal 
medicine 
(%)

Cardiology (%) Emergency 
medicine 
(%)

Geriatrics (%) Respiratory 
diseases 
(%)

Neurology (%) Oncology (%)

Age

 18–40 (years) 4.72 2.30 1.46 4.83 0.00 1.95 6.33 1.61

 41–65 (years) 24.57 15.27 29.12 19.93 0.23 21.84 25.18 42.97

 66–75 (years) 21.88 18.46 32.36 20.64 6.54 25.59 19.42 31.53

 > 75 (years) 48.84 63.97 37.06 54.60 93.24 50.63 49.06 23.90

Presence of cancer 15.73 10.23 1.14 5.00 6.20 20.17 8.35 94.98

Sex (% male) 55.55 50.26 65.69 55.59 39.80 61.34 54.24 56.43

Transfers (every 100 
hospitalizations)

– 0.09 0.2 0.16 0.04 0.06 0.09 0.08

Time slot

 Morning 33.20 16.50 74.10 12.70 19.50 31.30 34.20 57.20

 Afternoon 48.80 60.60 16.70 68.40 56.80 54.80 43.70 33.50

 Night 18.10 22.90 9.20 18.90 23.70 13.90 22.00 9.20

Day

 Monday 13.90 13.20 14.50 13.80 12.40 12.20 12.50 17.10

 Tuesday 16.30 14.00 19.80 15.90 13.90 18.20 14.20 17.70

 Wednesday 16.60 16.10 17.30 14.30 15.30 16.10 17.00 16.10

 Thursday 15.80 14.20 20.20 15.50 15.90 15.30 16.40 16.70

 Friday 16.30 15.90 17.80 15.10 15.60 17.50 14.20 16.70

 Saturday 11.70 14.90 4.10 13.20 15.10 11.80 13.50 8.80

 Sunday 10.15 11.70 6.30 12.20 11.80 8.80 12.10 7.00

Urgent hospitalization 
(direct)

12.8 2.40 4.00 3.40 1.80 21.30 12.40 18.50

Urgent hospitalization 
(from ER)

69.0 93.60 24.70 96.20 96.60 62.40 86.00 42.00

Planned hospitalization 18.2 4.10 71.40 0.40 1.60 16.30 1.60 39.60

Table 2  Clinical units and outcomes under investigation

a Average number of days

Clinical unit Hospitalization lengtha Long hospitalizations 
(LOS > national average) (%)

Outlier hospitalizations 
(LOS > national threshold) 
(%)(Case study) (National 

benchmark)

Cardiology 5.352 5.764 19.38 1.62

Geriatrics 12.516 9.808 59.19 5.98

Internal medicine 10.076 9.744 41.66 4.23

Emergency medicine 9.387 9.412 39.14 4.38

Neurology 9.724 9.339 37.84 2.88

Oncology 11.533 10.717 36.75 2.41

Respiratory diseases 10.525 9.738 48.26 2.36

Total (DIEM) 9.891 9.219 40.06 3.74
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Table 3  Results of our prediction models based on hospitalizations in 2018, considering the validation set (1/3 of the sample)

See “Empirical strategy” section for a clear explanation of these indexes

Outcome Index DIEM Internal 
medicine

Cardiology Emergency 
medicine

Geriatrics Respiratory 
diseases

Neurology Oncology

Long hos-
pitalizations 
(> national 
average)

Incorrect clas-
sification

42.96% 47.66% 42.09% 42.09% 36.82% 41.67% 42.67% 39.16%

Sensitivity 69.34% 68.98% 77.50% 63.51% 70.86% 62.07% 70.45% 67.21%

Std. Err. 0.014 0.034 0.0.7 0.04 0.034 0.045 0.049 0.06

[95% Conf. 
interval]

(0.666–0.72) (0.618–0.755) (0.668–0.861) (0.552–0.713) (0.635–0.775) (0.523–0.709) (0.598–0.797) (0.54–0.787)

Specificity 48.59% 40.46% 53.17% 54.22% 52.07% 54.84% 49.31% 57.14%

Std. Err. 0.012 0.03 0.027 0.033 0.045 0.044 0.042 0.048

[95% Conf. 
interval]

(0.462–0.51) (0.345–0.467) (0.476–0.506) (0.475–0.609) (0.428–0.612) (0.456–0.638) (0.409–0.578) (0.471–0.667)

False positive 
rate (type I 
error)

51.41% 59.54% 46.83% 45.78% 47.93% 45.16% 50.69% 42.86%

False negative 
rate (type II 
error)

30.66% 31.02% 22.50% 36.49% 29.14% 37.93% 29.55% 32.79%

Positive likeli-
hood ratio

1.35 1.16 1.66 1.39 1.48 1.37 1.39 1.57

Negative like-
lihood ratio

0.63 0.77 0.42 0.67 0.56 0.69 0.60 0.57

Area under 
the curve

0.59 0.55 0.65 0.59 0.61 0.58 0.60 0.62

Occurrence 
(outcome = 1)

1148 187 80 148 175 116 88 61

Number of 
obs. (hospitali-
zations)

2819 449 411 373 296 240 232 166

Outlier hos-
pitalizations 
(> national 
threshold)

Incorrect clas-
sification

47.85% 46.67% 18.49% 37.80% 40.54% 33.33% 44.40% 34.94%

Sensitivity 62.73% 73.68% 71.43% 77.78% 77.78% 66.67% 85.71% 75.00%

Std. Err. 0.046 0.101 0.171 0.098 0.098 0.192 0.132 0.216

[95% Conf. 
interval]

(0.53–0.72) (0.488–0.908) (0.29–0.963) (0.523–0.924) (0.523–0.924) (0.223–0.956) (0.421–0.996) (0.194–0.994)

Specificity 51.72% 52.44% 81.68% 61.41% 58.27% 66.67% 54.67% 64.81%

Std. Err. 0.01 0.024 0.019 0.026 0.029 0.031 0.033 0.037

[95% Conf. 
interval]

(0.498–0.536) (0.476–0.572) (0.776–0.853) (0.597–0.702) (0.522–0.641) (0.602–0.727) (0.479–0.613) (0.569–0.721)

False positive 
rate (type I 
error)

48.28% 47.56% 18.32% 38.59% 41.73% 33.33% 45.33% 35.19%

False negative 
rate (type II 
error)

37.27% 26.32% 28.57% 22.22% 22.22% 33.33% 14.29% 25.00%

Positive likeli-
hood ratio

1.30 1.55 3.90 2.02 1.86 2.00 1.89 2.13

Negative like-
lihood ratio

0.72 0.50 0.35 0.36 0.38 0.50 0.26 0.39

Area under 
the curve

0.57 0.63 0.77 0.70 0.68 0.67 0.70 0.70

Occurrence 
(outcome = 1)

110 19 7 18 18 6 7 4

Number of 
obs. (hospitali-
zations)

2,819 449 411 373 296 240 232 166
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used in the ANNs, which is expressed as Garson indexes 
[35], and the expected sign of their contribution, which is 
expressed as a function of the NN synaptic weights [40].

Focusing on Table 3 and considering the macro analy-
sis, the prediction ability of our model is equal to 69.34% 
(sensitivity) and 48.59% (specificity) in case of hospitali-
zations longer than the national average; while it is equal 
to 62.73% (sensitivity) and 51.72% (specificity) in case 
of hospitalizations longer than the national threshold. 
In other words, according to the results and the sample 
under investigation, our prediction models can identify 
correctly more than sixty percent of the hospitalizations 
with an expected excessive LOS. Focusing on the micro 
analysis, we observe a certain level of heterogeneity in 
our prediction models, which could be due to the internal 
organization of our medical units, and the impact of our 
inputs on the correct identification of the outcome under 
investigation (e.g., scheduling). Obviously, the values of 
sensitivity and specificity reflect the strategy adopted 
by authors in orienting the model [39]. Indeed, authors 
decided to maximize the ability of our prediction models 
in identifying correctly the subjects with hospitalizations 
longer than the selected values (i.e., national average 
or national threshold), guaranteeing the possibility for 

selected interventions aimed to save financial resources 
and, even more important, to improve the health condi-
tions of these patients.

These interventions could be oriented to the internal 
organization of these hospitalizations, coherently with 
the insights proposed in Table  4. Indeed, depending on 
the selected outcome and the unit under investigation, 
the Table 4 indicates the contribution of every covariate 
in predicting that outcome (expressed as a percentage) 
and whether the impact is positive or negative (high-
lighted in the tables in green or red respectively). In 
other words, the red cells indicate that the variable can 
decrease the probability of obtaining the selected out-
come, while the green cells indicate that the variable can 
increase the probability of obtaining the selected out-
come. Note that we also consider the top 10 diagnoses as 
covariates (i.e., the diagnoses with the highest number of 
hospitalizations), although they are not presented here.

Focusing on patients’ admission to the DIEM (first 
column of Table 4), according to the estimated indexes, 
hospitalization during the night can contribute to the 
final outcome in the proportion of 2.46% (i.e., 2.46 is 
the weight of this covariate), reducing the likelihood of 
a LOS longer than the national average. Similarly, if the 

Table 4  Garson indexes and covariates in the analysis with “long hospitalizations (LOS > national average)” as outcome

Covariate DIEM
(%)

Internal 
medicine
(%)

Cardiology
(%)

Geriatrics
(%)

Respiratory 
diseases
(%)

Emergency 
room (%)

Neurology
(%)

Oncology
(%)

Sex (if male) 2.07 3.09 3.00 2.26 2.05 2.79 2.99 3.42
Cancer (if present) 4.06 1.19 1.61 2.31 2.06 2.99 3.14 –
Age
18–40 3.30 3.40 2.95 – 3.57 1.40 2.25 3.77
41–65 4.15 4.04 4.44 4.64 2.16 1.92 3.04 2.55
66–75 1.65 2.20 3.24 3.26 2.05 5.07 2.51 2.98
> 75 2.10 3.11 4.38 3.92 3.01 5.49 3.21 3.74

Type of admission
Non-urgent (planned) 4.83 2.98 3.63 3.34 3.79 1.16 3.50 4.47
Urgent (direct) 3.71 3.30 2.95 4.39 4.79 3.61 2.34 3.14
Urgent (from ER) 2.41 4.66 3.17 2.55 4.26 3.94 3.94 3.48

Time of admission
Morning 2.92 4.45 2.04 2.86 2.55 1.34 3.84 3.54
Afternoon 4.62 3.18 2.81 2.97 3.34 3.11 2.11 4.30
Night 2.46 7.00 3.76 1.80 3.12 2.78 3.57 3.33

Day of admission
Monday 2.47 3.10 4.25 3.68 3.87 3.38 2.67 4.73
Tuesday 2.72 4.70 2.66 2.81 2.19 3.06 2.30 3.05
Wednesday 2.38 2.64 2.21 3.44 2.61 3.05 4.45 3.04
Thursday 1.62 0.92 2.69 2.97 2.26 2.57 3.24 1.80
Friday 2.20 2.94 3.98 2.54 1.80 3.96 3.32 1.91
Saturday 4.08 1.30 3.56 3.56 2.49 2.61 3.26 1.14
Sunday 4.21 4.54 2.26 3.86 2.51 4.71 2.89 3.91

Internal transfers (if present) – 2.62 2.17 2.16 2.94 2.44 5.18 4.07

These indexes represent the contribution of each input introduced in the model definition to explain the outcomes under investigation (expressed as percentage 
weight)
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admission occurs during the afternoon, the contribu-
tion to the final outcome is almost double (i.e., 4.62%) 
and, even more importantly, its sign is opposite (i.e., 
increasing the probability of a LOS above the national 
average). In other words, at the DIEM level (i.e., macro 
analysis), the admission of patients in the morning or 
in the afternoon can increase the expected probabil-
ity of a LOS longer than the national average, with the 
afternoon having the highest impact, while nighttime 
hospitalizations can decrease the likelihood of that 
outcome. Obviously, this information can be combined 
with the other information (e.g., main diagnosis, day 
and type of admission), so that managers and medical 
professionals may identify ways to reduce the current 
LOS, working both on current admission procedures 
and scheduling.

By looking at the covariates in the micro analysis 
(i.e., investigation of the single units), we can observe 
a certain degree of heterogeneity in our results, which 
is probably due to the different internal organization 
of the units and the clinical pathways adopted. Note 
that separate ANN frameworks have been run for 
each clinical unit; therefore, it is not surprising that 

the Garson indexes and relative contributions of the 
covariates are different among them, since they repre-
sent the detected heterogeneity. What about the mana-
gerial and clinical implications of our results?

Clinical, managerial and economic implications of ANNs 
prediction models
Let us assume that the DIEM decides to adopt inter-
ventions necessary to improve its performance in 2019, 
based on the prediction models relying on the data 
extracted for 2018. In particular, let us imagine that the 
hospital management decides to use dedicated human 
resources to monitor all the patients identified as positive 
for the first outcome (i.e., hospitalizations with expected 
length above the national average and, thus, classified as 
longer) or, alternatively, to reorganize current hospital 
admissions according to the results displayed in Tables 4 
(e.g., planning non-urgent hospital admissions on spe-
cific days). Finally, let us assume that the planned inter-
ventions are efficient, that is to say, they are successful in 
reducing the length of hospitalizations so as to reach the 
selected benchmark (i.e., the national average).

Fig. 2  Simulation of the prediction models based on ANNs: LOS in 2019. *Average number of days
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Figure  2 shows the results of this simulation follow-
ing the aforementioned hypothesis (i.e., efficient inter-
ventions for all patients selected as positive to the first 
patient management outcome). In detail, the first col-
umn presents the observed average length of hospitali-
zations based on the 2019 activities, while the second 
column shows the expected average length according 
to the national benchmarks. Finally, the third column 
displays the theoretical LOS assuming that the DIEM 
carries out interventions on the patients identified as 
positive using the prediction models based on ANNs, 
and also assuming that the interventions are completely 
efficient (i.e., the DIEM reduces the length of all the 
selected hospitalizations so as to reach the national 
benchmark). By comparing the reported values, the 
readers can easily observe the impact of the supporting 
decision rule proposed here, which may significantly 
reduce the length of hospitalizations. On average, con-
sidering the whole department and the macro predic-
tion model, LOS could decrease from 9.41 to 7.23 days, 
that is to say, on average, the department could make 
hospitalizations shorter by more than 2  days. Note 
that, by working on the patients identified as positive to 
the selected outcome and reducing their LOS, we may 
obtain a performance indicator that would be much 
better than the national average (i.e., 7.23 vs. 9.23).

The extra days gained thanks to this intervention 
could be used for other hospitalizations, lessening the 
current overcrowding and increasing the revenues 
of the department. Focusing on the latter outcome, 
Table  5 shows the economic impact of this improve-
ment, reporting the number of additional hospitaliza-
tions and expected additional revenues. These revenues 
are estimated adopting the average hospitalization 
values collected in 2018, based on the specific DRG 
of these hospitalizations and current reimbursement 
values.

On average, adopting the prediction model presented 
here to identify patients at risk of prolonged LOS, the 
DIEM could expect additional revenues equal to more 
than 12  million Euro. Considering the single clini-
cal units and using the prediction models showed in 
Table 5, we can observe that the most significant con-
tribution is expected for Neurology, Emergency medi-
cine, Cardiology and Internal medicine (i.e., economic 
impact higher than 1 million Euro). This is exactly the 
contribution of our prediction model based on ANNs 
to the management of patients: it can support medical 
professionals in the identification of the most critical 
cases and then, as they carry out the interventions that 
they deem necessary, it can improve outcomes and the 
efficiency of clinical units.

What about the second prediction model aimed at 
identifying outlier hospitalizations? Following the same 
approach as above and assuming effective interventions 
on all the patients with the identified outcome, our cal-
culations reveal that the DIEM could shorten the aver-
age LOS up to 9.11 days, with a reduction equal to 0.30. 
This improvement could provide 288 additional hos-
pitalizations and additional revenues amounting to € 
1,318,428.27. Note that outlier hospitalizations only rep-
resent 3.74% of the total hospitalization sample under 
investigation (see Table 3), and this is why the expected 
impact is lower. Taking the clinical units into account, 
the most relevant economic implications are expected for 
Internal medicine, with 139 additional hospitalizations 
and expected additional revenues equal to € 456,320.00.

As highlighted in “Methods” section, the outliers are 
a sub-sample of the longer hospitalizations, and this is 
precisely why we decided to adopt both outcomes in our 
analysis, so that we would be able to estimate an interval 
for our potential interventions (i.e., between the bench-
mark and the threshold). Looking at the results, we can 
identify that interval, which is between € 1,318,428.27 
and € 12,153,936.00 in terms of additional revenues and 
between 288 and 2650 in terms of additional days.

Finally, Table 6 focuses on the interventions that could 
be adopted to improve LOS, simulated by our predic-
tion models for 2019 and considering three key diagno-
sis groups (i.e., heart failure, pneumonia, and sepsis). The 
second column of the table presents the observed aver-
age length of hospitalizations, while the third column 
displays the expected average length of hospitalizations 
according to the national benchmark. The fourth col-
umn, instead, shows the hypothetically achievable LOS if 
the DIEM adopts interventions on the patients identified 
by the prediction models based on ANNs, and assum-
ing that these interventions are efficient (i.e., assuming 

Table 5  Simulation of the prediction models: economic impact 
in 2019

Clinical unit Additional 
hospitalizations

Additional revenues

Neurology 276 € 1,062,940.31

Oncology 103 € 455,507.30

Respiratory diseases 176 € 687,060.68

Geriatrics 17 € 58,250.64

Emergency medicine 361 € 1,357,471.05

Cardiology 291 € 1,615,504.42

Internal medicine 374 € 1,227,035.69

Total (DIEM) 2650 € 12,153,936.00
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that the DIEM can reduce the length of hospitalizations 
enough to reach the reference values).

Focusing on these three key diagnosis groups rather 
than on the clinical units, Table 6 indicates where there 
might be opportunities to reduce LOS through the spe-
cific clinical pathways that regulate the treatment of 
patients. Obviously, this approach provides more eas-
ily readable and understandable outputs, shedding new 
light on the link between LOS and clinical pathways. 
For example, the prediction models are able to iden-
tify and support the appropriate monitoring of patients 
with heart failure and, assuming that the interventions 
are effective, 1437 additional days might become avail-
able for hospitalizations, which means 200 additional 
hospitalizations (considering the average LOS for this 
diagnosis group). According to our data, 90% of the addi-
tional days and hospitalizations are concentrated in two 
specific types of diagnosis: “unspecified congestive heart 
failure (code 4280)” and “left heart failure (code 4281)”. 
Therefore, medical professionals may work to modify 

the current clinical pathways for these two conditions, 
belonging to the macro classification “heart failure”, in 
order to optimize LOS.

Discussion
The problem of correct inpatient scheduling is extremely 
significant for healthcare management [41, 42]. On the 
one hand, extended LOS duration can have negative 
effects on the supply of healthcare treatments, reduc-
ing patient accessibility. On the other hand, there can 
also be negative effects on the budget of healthcare sup-
pliers, creating missed opportunities to increase hos-
pital revenues by means of other treatments and/or 
additional hospitalizations. Finally, considering the mar-
ket of healthcare services, social planners would have to 
tackle the consequences of lower supplier competitive-
ness, which could be even more relevant if we consider 
the current regulations on patients’ rights in cross-border 
healthcare (i.e., Directive 2011/24/EU of the European 
Parliament and of the Council of 9 March 2011).

Table 6  Simulation of the prediction models for 2019 according to main clinical diagnosis groups

a Average number of days

Diagnosis Number of 
hospitalizations

LOS (case study)a LOS (national 
benchmark)a

LOS (with 
ANNs 
support)a

Additional days Additional 
hospitalizations

Unspecified congestive heart failure 
(code 4280)

302 10.025 9.223 7.649 718 94

Left heart failure (code 4281) 223 9.494 8.658 6.879 583 85

Unspecified heart failure (code 4289) 27 9.775 9.321 7.250 68 9

Total (heart failure) 581 9.669 8.937 7.195 1437 200

Unspecified bacterial pneumonia (code 
4829)

136 10.303 10.846 8.502 245 29

Unspecified bronchopneumonia (code 
485)

151 10.952 10.801 8.470 375 44

Pneumonia, unspecified agent (code 
486)

127 8.881 10.205 7.420 186 25

Total (pneumonia) 523 10.407 10.812 8.377 1062 127

Streptococcal (code 0380) 30 14.731 14.571 12.223 75 6

Unspecified staphylococcus (code 
03810)

3 6.061 13.316 6.061 0 0

Staphylococcus aureus (code 03811) 41 22.161 14.798 14.163 328 23

Other staphylococci (code 03819) 19 20.266 14.432 13.326 132 10

Pneumococcal (code 0382) 9 19.385 14.323 15.122 38 3

Anaerobic (code 0383) 4 18.331 16.353 13.069 21 2

Unspecified gram-negative bacteria 
(code 03840)

21 15.551 13.316 10.903 98 9

Escherichia coli (code 03842) 148 12.566 13.542 10.819 258 24

Pseudomonas (code 03843) 26 13.586 14.297 12.407 31 2

Other gram-negative microorganisms 
(code 03849)

36 17.167 14.666 14.137 109 8

Other sepsis (code 0388) 19 14.751 13.956 11.783 56 5

Unspecified sepsis (code 0389) 119 13.609 13.699 11.636 235 20

Total (sepsis) 475 14.861 13.960 11.952 1382 116
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According to our evidence, we can identify the main 
areas where managers could implement an internal re-
organization to increase hospital’s efficiency and the 
effectiveness of its treatments, as well as the expected 
economic outcomes of these interventions. Indeed, 
the interpretation of the collected results can shed new 
light on the internal organization of medical units and 
its role as LOS driver. For instance, at macro level (i.e., 
considering the DIEM), results suggest that hospitaliza-
tions during the weekend (i.e., Saturday or Sunday) can 
have a negative impact on the expected LOS, increasing 
its probability of being longer than the national average. 
At the same time, ceteris paribus, hospitalizations dur-
ing the night can decrease this probability. These insights 
could be clearly explained by the internal organization 
of these medical units and the impossibility to supply 
promptly treatments and interventions to hospitalized 
patients (e.g., during the weekend). At the same time, 
considering hospitalization during the night, we can 
imagine there could be more opportunities to plan prop-
erly patients’ therapeutic path, as well as more possibili-
ties to pay appropriate attention to their diagnosis and 
the successive interventions. This could be explained by a 
lower demand of care in this specific moment (i.e., during 
the night), which can lead to minimize waste of time and 
resources in the initial steps.

Nevertheless, managers cannot control all LOS driv-
ers. Results suggest that planned hospitalizations have a 
longer LOS, which is perfectly coherent with the type of 
access and it is outside the control of local management. 
With respect to this specific point, we might support 
the necessity to coordinate the territorial competence of 
ERs and the supply of treatments by policy makers, so 
that there could be an equilibrium between planned and 
urgent hospitalizations (according to Table 1, the number 
of non-urgent hospitalizations is less than 20%). Indeed, 
in order to contain the health expenditure, the number 
of medical centers and the supply of treatments have 
decreased significantly in the last years, creating a con-
gestion effect that has increased the waiting lists and the 
access to the medical facilities by urgent cases (up to 80% 
in our case study).

These results are coherent with previous findings. On 
the one hand, literature emphasizes that medical units 
have to take care of urgent admissions and this adds a 
lot to the resulting inpatient pathway [43]. On the other 
hand, there are factors that strictly depend on the organi-
zational process that could affect LOS [44, 45]. Indeed, 

coherently with our results, literature suggests that much 
of the variation in hospitals’ LOS is not attributable to 
patient illness, but rather it is due to differences in prac-
tice style [46] and it is potentially avoidable [47]. Moreo-
ver, as highlighted in our results, daily and timely kinetics 
of admissions are a known factor linked to the duration 
of hospital stay [44, 48].

Limits
Even though our results are interesting and may effec-
tively support physicians in their daily professional activi-
ties, our work also has some limits due to the available 
data and main assumptions (i.e., reference values and 
interventions).

First of all, the administrative data should be supported 
by more precise clinical information, if available. Indeed, 
gathering clinical and administrative information might 
help improve the current prediction models, reducing the 
number of false positives (i.e., lower cost in the patient 
monitoring phase, since there would be no risk of hospi-
talizations that are “too long”), as well as the number of 
false negatives (i.e., patients that are not monitored since 
there are wrong assumptions on their expected LOS).

Secondly, our results are solely based on the data col-
lected in the specific department under investigation, with 
its specific internal organization, which clearly affects the 
final outcomes. Accordingly, our approach might prove 
effective only if adopted by health providers with similar 
characteristics and clinical pathways. Accordingly, there are 
clear limits in the external validity of our evidence, which 
are driven by the sample, the specific internal organization 
and the socio-economic environment under investigation.

Finally, we work under the assumption that the refer-
ence values are realistic and achievable, which we cannot 
take for granted. Taking the first outcome into account 
(i.e., longer LOS), the adopted reference values are based 
on the national average according to the DRG classifica-
tion. This means that they are estimated considering all 
hospitalizations in Italy, classified under that specific 
DRG code upon discharge and assuming homogeneous 
procedures that could make the collected values compa-
rable. Therefore, even if the data could be normalized to 
avoid outliers, the reference values might still be influ-
enced by the sample selection, i.e., by the heterogeneity 
among regional healthcare systems and the specific pro-
cedures adopted by providers. If data become available, 
our DIEM should be compared with other departments 
that work within the same regional healthcare system 
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and/or other comparable providers, so as to identify 
more realistic reference values.

Future research
Although our results can shed new light on these com-
plex systems, showing how they may support manag-
ers in dealing with LOS, there are limits to the present 
analysis and ample opportunities to further develop this 
research topic. Depending on data availability, it might 
be worthwhile to analyze the whole hospitalization path 
of patients, i.e., from admission to discharge, as well as 
the cases of readmission. In particular, the adopted clini-
cal pathways might be investigated in greater depth, clus-
tering observations according to patient diagnosis and 
controlling for transfers among clinical units and the 
measures used to coordinate such transfers.

Conclusion
Adopting available national reference values and focus-
ing on a Department of Internal and Emergency Medi-
cine (DIEM) located in the North-West of Italy, this work 
assesses prediction models of hospitalizations with LOS 

longer than the selected benchmarks and thresholds. 
The prediction models investigated in this case study are 
based on Artificial Neural Networks (ANNs) and, accord-
ing to our results, they might provide administrators and 
medical professionals with an effective tool to predict the 
outcome of hospital admissions and design interventions 
to improve hospital efficiency. Indeed, assuming effective 
interventions on all the subjects identified by the predic-
tion models, the management of the DIEM could reduce 
the average LOS by up to 2 days, guaranteeing more than 
2000 additional hospitalizations in a year. An innovative 
approach that might be based on smart solutions (e.g., 
a mobile app) to customize the stratification of patients 
admitted to the DIEM and to support the professionals’ 
decision making.

Appendix
See Tables 7, 8, 9, 10, 11.    

Table 7  Clinical units and inputs (first part: patient characteristics and nature of hospitalization)

a Number of transfers every 100 hospitalizations

Clinical unit Age 
(mean 
value)

Presence of 
cancer (%)

Sex (% male) Transfers 
(mean 
value)a

Urgent 
hospitalization 
(direct) (%)

Urgent 
hospitalization 
(from ER) (%)

Planned 
hospitalization 
(%)

Cardiology 70 1.14 65.69 0.20 4.0 24.7 71.4

Hematology 58 91.26 50.00 0.04 45.1 15.0 39.9

Geriatrics 86 6.20 39.80 0.04 1.8 96.6 1.6

Infectious diseases 58 7.13 63.31 0.04 32.1 58.5 9.4

Internal medicine 77 10.23 50.26 0.09 2.4 93.6 4.1

Emergency medicine 73 5.00 55.59 0.16 3.4 96.2 0.4

Nephrology 67 7.46 49.75 0.11 28.9 63.2 8.0

Neurology 71 8.35 54.24 0.09 12.4 86.0 1.6

Coronary care 69 1.81 69.42 0.96 48.7 51.1 0.2

Gastroenterology 68 14.97 48.73 0.08 3.8 82.5 13.7

Oncology 67 94.98 56.43 0.08 18.5 42.0 39.6

Respiratory diseases 74 20.17 61.34 0.06 21.3 62.4 16.3

Rheumatology 63 0.00 18.18 0.00 18.2 31.8 50.0

Total (DIEM) 72 15.73 55.55 0.15 12.8 69.0 18.2
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Table 9  Clinical units and outcomes under investigation

Clinical unit Long hospitalizations (LOS > national average) (%) Outlier hospitalizations 
(LOS > national threshold) 
(%)

Cardiology 19.38 1.62

Hematology 47.55 8.04

Geriatrics 59.19 5.98

Infectious diseases 39.83 3.56

Internal medicine 41.66 4.23

Emergency medicine 39.14 4.38

Nephrology 56.22 10.95

Neurology 37.84 2.88

Coronary care 42.05 3.22

Gastroenterology 33.76 0.96

Oncology 36.75 2.41

Respiratory diseases 48.26 2.36

Rheumatology 59.09 4.55

Total (DIEM) 40.06 3.74

Table 10  Clinical units and managerial information

a Average number of days

Clinical unit Hospitalization length (case 
study)a

Hospitalization length (national 
benchmark)a

Beds Number of 
hospitalizations

Cardiology 5.352 5.764 28 1713

Hematology 18.699 16.039 15 300

Geriatrics 12.516 9.808 29 875

Infectious diseases 13.188 11.940 22 525

Internal medicine 10.076 9.744 37 1303

Emergency medicine 9.387 9.412 25 1090

Nephrology 14.364 9.333 8 218

Neurology 9.724 9.339 23 706

Coronary care 6.340 8.208 – 81

Gastroenterology 7.861 8.566 8 328

Oncology 11.533 10.717 18 561

Respiratory diseases 10.525 9.738 23 727

Rheumatology 13.997 9.387 2 30

Total (DIEM) 9.891 9.219 237 8457
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