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Abstract
Background  Experimental studies suggested that intercellular adhesion molecule 4 (ICAM-4) might be implicated 
in ischemic stroke, but the population-based evidence on the relationship between ICAM-4 and ischemic stroke were 
limited. Herein, we performed a two-sample Mendelian randomization (MR) analysis to investigate the associations of 
genetically determined plasma ICAM-4 with the risks of ischemic stroke and its subtypes.

Methods  A total of 11 single-nucleotide polymorphisms associated with ICAM-4 were selected as instrumental 
variables based on the genome-wide association studies (GWAS) with 3,301 European individuals. Summary-
level data about ischemic stroke and its subtypes were obtained from the Multi-ancestry GWAS launched by the 
International Stroke Genetics Consortium. We used the inverse-variance weighted method followed by a series of 
sensitivity analyses to evaluate the associations of genetically determined ICAM-4 with the risks of ischemic stroke 
and its subtypes.

Results  Genetically determined higher ICAM-4 levels were significantly associated with increased risks of ischemic 
stroke (in the IVW method fitted to multiplicative random effects model: odds ratio [OR] per standard deviation [SD] 
increase, 1.04; 95% confidence interval [CI], 1.01–1.07; P = 0.006; in the IVW analysis with fixed effects model: OR per 
SD increase, 1.04; 95% CI, 1.01–1.07; P = 0.003) and cardioembolic stroke (in multiplicative random effects model: OR 
per SD increase, 1.08; 95% CI, 1.02–1.14; P = 0.004; in fixed effects model: OR per SD increase, 1.08; 95% CI, 1.03–1.13; 
P = 0.003). There was no association of ICAM-4 with the risks of large artery stroke and small vessel stroke. MR-Egger 
regression showed no directional pleiotropy for all associations, and the sensitivity analyses with different MR 
methods further confirmed these findings.

Conclusions  We found positive associations of genetically determined plasma ICAM-4 with the risks of ischemic 
stroke and cardioembolic stroke. Future studies are needed to explore the detailed mechanism and investigate the 
targeting effect of ICAM-4 on ischemic stroke.
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Background
Stroke is the leading cause of death and severe disabil-
ity around the world [1]. In 2019, there were 101  mil-
lion stroke cases globally, of which ischemic stroke was 
77.19 million and accounted for more than 70%.1 Smok-
ing, excessive alcohol consumption, obesity, hyperten-
sion, hyperlipidemia, and diabetes are well-established 
risk factors for ischemic stroke [1, 2]. Although interven-
tions against these traditional risk factors have obtained 
substantial progress, ischemic stroke is still a major pub-
lic health problem worldwide [1, 2]. Therefore, further 
studies are needed to identify novel biomarkers for the 
prevention and treatment of ischemic stroke.

Intercellular adhesion molecule 4 (ICAM-4), also 
known as the Landsteiner-Wiener blood group glyco-
protein, was a member of the ICAM family expressed 
primarily on erythrocytes and erythroid precursor cells 
[3–5]. Compared to other members of ICAMs, ICAM-4 
could bind various integrins (e.g., CD11a/CD18, CD11b/
CD18, α4β1, αIIbβ3, and αv integrins) on cell surface [3, 
5]. Previous studies suggested that the interaction of 
ICAM-4 with integrins played a critical role in cell adhe-
sion, hemostasis and thrombosis [6–8]. In addition, 
ICAM-4 was reported to mediate the abnormal adhe-
sion of sickle cell to endothelial cells, and then induced 
platelet-erythrocyte aggregation and blocked blood flow 
[9]. Platelet-erythrocyte aggregation and endothelial cell 
dysfunction were well known implicated in the throm-
bosis, [6–8, 10] so we hypothesized that ICAM-4 played 
a key role in ischemic stroke etiology. However, to date, 
there is limited population-based research on the effect 
of ICAM-4 in the risk of ischemic stroke.

Mendelian randomization (MR) is an emerging epi-
demiologic method in which genetic variants associated 
with the exposure of interest are served as instrumental 
variables to assess the causal effect of a lifelong exposure 
on diseases [11, 12]. MR design had previously been used 
to assess the effects of circulating cytokines, serum bili-
rubin, lipoprotein lipid, and apolipoproteins on the risk 
of ischemic stroke [13–15]. Besides, two-sample MR 
design could greatly increase the scope of MR analysis 
with advantages of two independent samples [16]. Hence, 
we explored the associations of genetically determined 
ICAM-4 levels and the risks of ischemic stroke and its 
subtypes (cardioembolic stroke [CES], large artery stroke 
[LAS], and small vessel stroke [SVS]) via a two-sample 
MR study.

Methods
Study design
The present study was reported using the Strengthen-
ing the Reporting of Observational Studies in Epidemi-
ology using Mendelian Randomization (STROBE-MR) 
guideline [17]. As shown in Fig.  1, we designed a two-
sample MR study to systematically investigate the asso-
ciations of genetically determined ICAM-4 levels and 
the risks of ischemic stroke and its subtypes. We selected 
single-nucleotide polymorphisms (SNPs) that achieved 
genome-wide significance (P < 5.0 × 10− 8) for the ICAM-4 
levels identified by Sun et al. as instrumental variables in 
the MR analysis [18]. The summary genetic data about 
ischemic stroke and its subtypes were obtained from 
the Multi-ancestry Genome-Wide Association Study 
launched by the International Stroke Genetics Consor-
tium (MEGASTROKE) [19]. All participants in the pres-
ent MR analysis were subjects of European ancestry. 
The protocol and data were approved by the ethics com-
mittee of the original genome-wide association studies 
(GWASs), and written informed consent was obtained 
from each participant prior to data collection.

Instrumental variables for ICAM-4
The summary genetic data about ICAM-4 were derived 
from a genomic atlas analysis of the human plasma 
proteome conducted by Sun et al. [18] They randomly 
selected two non-overlapping sub-cohorts from INTER-
VAL study, which comprised about 50,000 participants 
nested within a randomized trial of varying blood dona-
tion intervals [18, 20]. After genetic quality control, Sun 
et al. analyzed 2,994 proteins in 3,301 individuals from 
European with approximately 10.5  million SNPs (avail-
able from the IEU GWAS database: https://gwas.mrcieu.
ac.uk/). The SNPs that were identified to be associated 
with plasma ICAM-4 levels at the genome-wide sig-
nificance level (P < 5.0 × 10− 8) and were not in linkage 
disequilibrium (LD) with other SNPs (r2 < 0.1 within 
a clumping window of 500  kb) were selected as genetic 
instruments for plasma ICAM-4 levels. In addition, if the 
ICAM-4-associated SNP was not available in the MEGA-
STROKE dataset, a proxy SNP (r2 > 0.8) was selected by 
default based on a 1000 Genomes European reference 
panel. Overall, a total of 11 SNPs were selected as the 
genetic instruments for plasma ICAM-4 in this MR study 
(Table 1).

Data source for ischemic stroke and its subtypes
In the present study, genetic association data of ischemic 
stroke and its subtypes were obtained from the previ-
ously published GWAS released by the MEGASTROKE 

Keywords  Ischemic stroke, Intercellular adhesion molecule 4, Risk, Mendelian randomization

https://gwas.mrcieu.ac.uk/
https://gwas.mrcieu.ac.uk/


Page 3 of 8Sun et al. Thrombosis Journal           (2023) 21:40 

project, which was a large-scale international collabora-
tion launched by the International Stroke Genetics Con-
sortium [19]. This dataset was based on a meta-analysis 
of 29 European-ancestry GWASs with 8  million SNPs, 
involving 34,217 ischemic stroke cases and 406,111 con-
trols. Among these ischemic stroke cases, 7,193 cases 
were CES, 4,373 cases were LAS, and 5,386 cases were 
SVS according to the Trial of Org 10,172 in Acute Stroke 
Treatment criteria [21].

Statistical analysis
A two-sample MR analysis was performed to estimate the 
associations of genetically determined plasma ICAM-4 
with the risks of ischemic stroke and its subtypes using 
summarized data of the SNP-ICAM-4 and SNP-ischemic 
stroke. We used F statistics with the formula F = (N−K−1

K

) ( R2

1−R2 ) to measure the strength of instrumental vari-
ables, where R2 was the proportion of variation in plasma 
ICAM-4 levels explained by the instrumental SNPs, 
N was the sample size, and K was the number of SNPs 
used as genetic instruments of plasma ICAM-4 [22]. In 

Table 1  Characteristics of genetic variants proxied for intercellular adhesion molecule 4
SNP Chr Position (build 37) Nearest Gene EA OA EAF Beta SE P value
rs113415585 1 25,554,998 SYF2 A G 0.03694 -0.5040 0.0739 9.12 × 10− 12

rs149152056* 1 25,705,424 RHCE T C 0.03092 -0.4119 0.0711 6.92 × 10− 9

rs2375113 1 25,525,915 SYF2 G A 0.20298 0.2540 0.0301 3.31 × 10− 17

rs28608145 1 25,520,341 SYF2 G C 0.97613 -0.6041 0.0875 5.01 × 10− 12

rs4649080* 1 25,737,116 RHCE T C 0.08227 -0.4015 0.0484 1.02 × 10− 16

rs61774838 1 25,482,196 IFITM3P7 A G 0.13531 -0.2645 0.0381 4.07 × 10− 12

rs72660908 1 25,583,610 RSRP1 G C 0.45371 -0.6177 0.0230 4.68 × 10− 159

rs72660919 1 25,677,605 TMEM50A A G 0.16694 0.3113 0.0376 1.35 × 10− 16

rs760970 1 25,578,944 RSRP1 G A 0.88987 -0.5808 0.0389 1.86 × 10− 50

rs79017607 1 25,519,831 SYF2 C T 0.03393 0.4519 0.0713 2.34 × 10− 10

rs79561453 1 25,564,304 SYF2 C G 0.05498 -0.4092 0.0577 1.29 × 10− 12

*Proxy SNPs (rs150766331 and rs116137570) correlated (r2 > 0.8) with SNPs that were not available in the MEGASTROKE dataset

Abbreviations: SNP: single-nucleotide polymorphism; Chr: chromosome; EA: effect allele; OA: other allele; EAF, effect allele frequency; SE: standard error

Fig. 1  An overview of the present mendelian randomization study design. The assumption is that (1) instrumental variables are associated with 
intercellular adhesion molecule 4 levels, (2) instrumental variables are not associated with confounders, (3) and instrumental variables affect ischemic 
stroke or its subtypes only through the effects on intercellular adhesion molecule 4 levels
Abbreviations: SNP, single-nucleotide polymorphism; IVW, inverse-variance weighted; MR-RAPS, mendelian randomization robust adjusted profile score
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general, a mean F statistic greater than 10 ensured neg-
ligible bias from weak instruments [23]. In addition, an 
online web tool named mRnd (https://shiny.cnsgenom-
ics.com/mRnd/) was used to calculate the statistical 
power of the present MR study [24].

Conventionally, under the causal null hypothesis that 
all instrumental variables were valid and pleiotropic bal-
anced, the inverse-variance weighted (IVW) method 
with the greatest statistical power was the most efficient 
way to combine them into a single variant-specific causal 
estimate and it generally was used as the primary analy-
sis method in MR study [25–27]. Therefore, we used the 
IVW method as the main analysis to evaluate the asso-
ciations of genetically determined plasma ICAM-4 with 
the risks of ischemic stroke and its subtypes in the pres-
ent MR study. The heterogeneity among genetic instru-
ments was assessed via Cochran’s Q statistic, which was 
a weighted sum of the squared distances of the variant-
specific estimates from the overall IVW estimate [27, 28]. 
A large value of the Q statistic meant that the variant-
specific ratio estimates differ by more than expected due 
to chance alone and significant P-value with Q-statistic 
was usually set to 0.05 [28, 29]. To avoid possible causal 
estimates bias that might be caused by fitting different 
models, we conducted the random-effect IVW model 
and fixed-effect IVW model to further explore the asso-
ciation between ICAM-4 and ischemic stroke [27, 30].

In the sensitivity analyses, we employed various MR 
methods (the penalized IVW, [31] maximum likelihood, 
[32] MR-Robust Adjusted Profile Score [MR-RAPS], [33] 
and MR-Egger regression [34]) to assess the robustness of 
our findings. The penalized IVW penalized the weights 
of SNPs with pleiotropy [31]. The maximum likelihood 
method was applied to provide relatively reliable esti-
mates in the presence of measurement error in the SNP-
exposure effect [32]. The MR-RAPS analysis could solve 
the bias of horizontal pleiotropy and weak instruments 
[33]. The MR-Egger regression method could evaluate 
the average pleiotropic effects across all SNPs via the 
intercept term [34].

Results were presented as odds ratios (ORs) with 95% 
confidence intervals (CIs). A Bonferroni-corrected signif-
icance level of 2-sided P < 0.0125 (0.05/4 [ischemic stroke 
and 3 ischemic stroke subtypes]) was considered as the 
statistically significant evidence for a causal association. 
All analyses were performed using R software (version 
4.1.1; R Development Core Team) with R packages named 
gtx, TwoSampleMR, and MendelianRandomization.

Results
A total of 11 SNPs were used as genetic instruments 
for plasma ICAM-4 levels in the present study, and the 
details of genetic instruments were provided in Table 1. 
11 genetic instruments identified together explained 

34.90% variances of plasma ICAM-4 levels, and the sta-
tistical power in this MR study ranged from 97 to 100% 
(Table S1). The F-statistics of instrumental variables was 
160.60, indicating that there was no weak instrument bias 
(Table S1).

Causal effects of ICAM-4 levels on ischemic stroke and its 
subtypes
The results from the Cochran’s Q test (Table S2) con-
tained the Q statistic, degrees of freedom, and Q statis-
tic associated P-value, and we observed no evidence of 
heterogeneity between genetic variants (all P > 0.05). As 
illustrated in Fig.  2, the IVW analysis with multiplica-
tive random effects model demonstrated that genetically 
determined ICAM-4 levels were positively associated 
with the risks of ischemic stroke (OR per SD [standard 
deviation] increase: 1.04; 95% CI: 1.01–1.07; P = 0.006) 
and CES (OR per SD increase: 1.08; 95% CI: 1.02–1.14; 
P = 0.004). In contrast, there was no significant asso-
ciation of genetically determined ICAM-4 with LAS 
(OR per SD increase: 1.06; 95% CI: 1.00-1.12; P = 0.043) 
and SVS (OR per SD increase: 1.03; 95% CI: 0.97–1.09; 
P = 0.302). In the IVW analysis fitting fixed effects model, 
genetically determined high ICAM-4 levels were associ-
ated with increased risks of ischemic stroke (OR per SD 
increase: 1.04; 95% CI: 1.01–1.07; P = 0.003) and CES 
(OR per SD increase: 1.08; 95% CI: 1.03–1.13; P = 0.003) 
but not with LAS (OR per SD increase: 1.06; 95% CI: 
0.99–1.13; P = 0.090) and SVS (OR per SD increase: 1.03; 
95% CI: 0.97–1.09; P = 0.338). Associations between each 
instrumental variant for ICAM-4 levels and the risks of 
ischemic stroke and CES were presented in Fig. 3.

Sensitivity analyses
We conducted sensitivity analyses with a series of 
MR methods to assess the robustness of our findings 
(Table  2). Genetically determined ICAM-4 was posi-
tively associated with the risk of ischemic stroke in the 
sensitivity analyses with the penalized IVW method (OR 
per SD increase:1.04; 95% CI:1.01–1.07; P = 0.006), maxi-
mum likelihood method (OR per SD increase: 1.04; 95% 
CI:1.01–1.07; P = 0.003), and MR-RAPS method (OR per 
SD increase: 1.04; 95% CI:1.01–1.07; P = 0.003). Simi-
larly, the penalized IVW analysis (OR per SD increase: 
1.08; 95% CI:1.02–1.14; P = 0.004), maximum likelihood 
analysis (OR per SD increase: 1.08; 95% CI:1.03–1.14; 
P = 0.003), and MR-RAPS analysis (OR per SD increase: 
1.08; 95% CI:1.03–1.14; P = 0.003) showed that genetically 
determined high ICAM-4 levels were associated with an 
increased risk of CES. In addition, MR-Egger regression 
suggested that there was no directional pleiotropy for 
these associations (all P > 0.05; Table 2).

https://shiny.cnsgenomics.com/mRnd/
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Discussion
To the best of our knowledge, this is the first study with 
sufficient statistical power to investigate the associations 
of genetically determined ICAM-4 levels with the risks of 
ischemic stroke and its subtypes. In this MR study with 
446,696 European participants, we found that genetically 
determined high ICAM-4 levels were associated with 
increased risks of ischemic stroke and CES, but not LAS 

or SVS. Sensitivity analyses using a series of MR methods 
further confirmed these identified associations.

As the key molecules involved in progression of 
the ischemia, the upregulation of ICAMs was able to 
enhance leukocyte-endothelial cell interactions and 
induce neutrophils infiltrate into damaged brain tis-
sue, thereby aggravating the damage of blood-brain bar-
rier [10]. ICAM-4, an important member of the ICAMs, 
was well-established to be implicated in hemostasis and 

Fig. 3  Associations between genetic instruments of ICAM-4 and the risks of ischemic stroke and cardioembolic stroke. The line indicates the 
estimate for the associations of intercellular adhesion molecule 4 (ICAM-4) levels with ischemic stroke and cardioembolic stroke using inverse-variance 
weighted method. Circles indicate associations of each genetic variant related to ICAM-4 levels with the risks of ischemic stroke and cardioembolic stroke. 
Genetic error bars indicate 95% confidence intervals
 A, ischemic stroke; B, cardioembolic stroke

 

Fig. 2  Main analysis for associations of genetically determined ICAM-4 levels with ischemic stroke and its subtypes
Abbreviations: ICAM-4, intercellular adhesion molecule 4; IVW, inverse-variance weighted; SNP, single-nucleotide polymorphism; SE: standard error; OR, 
odds ratio; 95% CI, 95% confidence interval
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thrombosis [6, 7]. Data from animal studies had revealed 
that ICAM-4 contributed to the adhesion of endothelial 
cells, thrombosis, and vaso-occlusion through interacting 
with activated platelets and leukocytes [35, 36]. Vivian 
et al. found that ICAM-4 could induce massive erythro-
cytes incorporation into thrombus and activate platelets, 
while blockading ICAM-4 could cause a reduction of 
fibrin and thrombus [8]. Therefore, it has been suggested 
that ICAM-4 may be associated with the development 
of thrombosis and ischemic stroke, but the population-
based evidence is limited so far.

We conducted a systematical MR study to investigate 
the associations of genetically determined ICAM-4 lev-
els and the risks of ischemic stroke and its subtypes. In 
this MR study, genetically determined high ICAM-4 lev-
els were observed to be associated with the increased risk 
of ischemic stroke, suggesting that it might be a promis-
ing predictive marker for ischemic stroke. Besides, in the 
analysis of ischemic stroke subtypes, we found that there 
were possible mechanism-specific detrimental effects 

of genetically determined ICAM-4 on CES but not LAS 
or SVS. Given that ischemic stroke subtypes might dif-
fer for the genetic pathophysiological mechanisms, [37] 
CES had a higher inflammatory environment, macro-
phage, and platelet content in thrombus than the other 
stroke subtypes [38, 39]. Therefore, we speculated that 
elevated ICAM-4 levels were significantly associated with 
increased risks of ischemic stroke and CES via mediat-
ing aggregation and abnormal adhesion of inflammatory 
cells, macrophages, and platelets. Further studies are 
warranted to explore the detailed mechanism underlying 
the association of ICAM-4 with ischemic stroke and CES.

Our findings had significant public health and clinical 
implications. The present MR study was the first to pro-
vide population-based evidence for the associations of 
ICAM-4 levels with the risks of ischemic stroke and its 
subtypes from a genetic point of view. Collectively, our 
study showed that elevated ICAM-4 levels increased 
the risks of ischemic stroke and CES, suggesting that 
ICAM-4 might be acted as a promising biomarker to 
identify high-risk individuals for active monitoring and 
early intervention of ischemic stroke. In addition, it was 
of clinical interest to explore whether targeting ICAM-4 
or its downstream effectors could reduce the risks of 
ischemic stroke, especially CES.

The present study had several methodological 
strengths. First, MR design followed the genetic rule that 
parental alleles were randomly assigned to offspring and 
possessed reasonable causal order [11, 12]. Therefore, the 
implementation of MR approach in this study diminished 
the interference of confounding factors and reverse cau-
sation on the results, which might be more convincing 
than observational studies [11, 12]. In addition, we used 
the most comprehensive and the largest available GWASs 
about ICAM-4 levels, ischemic stroke, and its subtypes, 
[18, 19] which enabled us to provide a valid appraisal of 
the associations with the high statistical power. Finally, 
the significant associations observed in this MR study 
were subjected to multiple corrected and a series of sen-
sitivity analyses further confirmed our findings.

Our study had several limitations that needed to be 
interpreted. Firstly, MR analysis might be influenced 
by instrument bias and potential pleiotropy. However, 
the F-statistic for the genetic instruments in the pres-
ent study was greater than 10, suggesting that there was 
no weak instrument bias. Furthermore, the MR-Egger 
regression suggested no directional pleiotropy for iden-
tified associations in this MR study. Secondly, the pres-
ent study estimated the lifetime effect of plasma ICAM-4 
in the risks of ischemic stroke and its subtypes, so the 
results should not be directly extrapolated to assess 
the effect of any potential clinical intervention target-
ing ICAM-4. Finally, the summary GWAS data we used 
merely concerned European individuals, so we should 

Table 2  Sensitivity analyses for associations of genetically 
determined ICAM-4 levels with ischemic stroke and its subtypes
Outcome Parameter OR (95% CI) P 

value
Ischemic stroke
Penalized IVW OR 1.04 (1.01–1.07) 0.006

Maximum Likelihood OR 1.04 (1.01–1.07) 0.003

MR-RAPS OR 1.04 (1.01–1.07) 0.003

MR-Egger OR 0.98 (0.91–1.06) 0.657

Odds 
(intercept)

1.03 (0.99–1.07) 0.118

Cardioembolic stroke
Penalized IVW OR 1.08 (1.02–1.14) 0.004

Maximum Likelihood OR 1.08 (1.03–1.14) 0.003

MR-RAPS OR 1.08 (1.03–1.14) 0.003

MR-Egger OR 0.95 (0.82–1.10) 0.484

Odds 
(intercept)

1.06 (1.00-1.14) 0.066

Large artery stroke
Penalized IVW OR 1.06 (0.99–1.13) 0.090

Maximum Likelihood OR 1.06 (0.99–1.13) 0.088

MR-RAPS OR 1.06 (0.99–1.13) 0.091

MR-Egger OR 0.89 (0.74–1.08) 0.228

Odds 
(intercept)

1.09 (0.90–1.05) 0.055

Small vessel stroke
Penalized IVW OR 1.03 (0.97–1.09) 0.338

Maximum Likelihood OR 1.03 (0.97–1.09) 0.342

MR-RAPS OR 1.03 (0.97–1.09) 0.339

MR-Egger OR 1.10 (0.92–1.31) 0.300

Odds 
(intercept)

0.97 (0.90–1.05) 0.452

Abbreviations: ICAM-4, intercellular adhesion molecule 4; OR, odds ratio; 
95% CI, 95% confidence interval; IVW, inverse-variance weighted; MR-RAPS, 
mendelian randomization robust adjusted profile score
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cautiously utilize our conclusion in racially and ethnically 
diverse populations. However, this restriction decreased 
the possibility of spurious associations due to population 
stratification bias. Further studies are needed to con-
firm our findings among individuals of non-European 
ancestry.

Conclusions
We found positive associations of genetically determined 
high plasma ICAM-4 levels with the risks of ischemic 
stroke and CES. Further studies are needed to verify our 
findings and explore the detailed mechanism underlying 
the detrimental effects of ICAM-4 on the risk of ischemic 
stroke.
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