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Curcumin protects against palmitic
acid-induced apoptosis via the
inhibition of endoplasmic reticulum
stress in testicular Leydig cells
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Abstract

Background: Palmitic acid (PA) is a common saturated fatty acid that induces apoptosis in various types of cells,
including testicular Leydig cells. There is evidence suggesting that PA is increased in patients with obesity and that
PA-induced cell apoptosis may play an important role in obesity-related male infertility. Curcumin, a natural
polyphenol, has been reported to exert cytoprotective effects in various cell types. However, the cytoprotective
effect of curcumin against PA-induced apoptosis in Leydig cells remains unknown. Therefore, the current study was
performed to investigate the protective effects of curcumin in response to PA-induced toxicity and apoptosis in
murine Leydig tumor cell line 1 (MLTC-1) cells and explore the mechanism underlying its anti-apoptotic action.

Methods: MLTC-1 cells were cultured in Roswell Park Institute-1640 medium and divided into five groups. First four
groups were treated with 50–400 μM PA, 400 μM PA + 5–40 μM curcumin, 400 μM PA + 500 nM 4-phenylbutyric acid
(4-PBA, an endoplasmic reticulum (ER) stress inhibitor), and 500 nM thapsigargin (TG, an ER stress inducer) + 20 μM
curcumin, respectively, followed by incubation for 24 h. Effects of PA and/or curcumin on viability, apoptosis, and ER
stress in MLTC-1 cells were then determined by cell proliferation assay, flow cytometry, and western blot analysis.
The fifth group of MLTC-1 cells was exposed to 400 μM of PA and 5 IU/mL of human chorionic gonadotropin (hCG)
for 24 h in the absence and presence of curcumin, followed by measurement of testosterone levels in cell-culture
supernatants by enzyme-linked immunosorbent assay (ELISA). Rats fed a high-fat diet (HFD) were treated with or
without curcumin for 4 weeks, and the testosterone levels were detected by ELISA.

Results: Exposure to 100–400 μM PA reduced cell viability, activated caspase 3, and enhanced the expression levels
of the apoptosis-related protein BCL-2-associated X protein (BAX) and ER stress markers glucose-regulated protein
78 (GRP78) and CCAAT/enhancer binding protein homologous protein (CHOP) in MLTC-1 cells. Treating cells with
500 nM 4-PBA significantly attenuated PA-induced cytotoxicity through inhibition of ER stress. Curcumin (20 μM)
significantly suppressed PA- or TG-induced decrease in cell viability, caspase 3 activity, and the expression levels of
BAX, CHOP, and GRP78. In addition, treating MLTC-1 cells with 20 μM curcumin effectively restored testosterone
levels, which were reduced in response to PA exposure. Similarly, curcumin treatment ameliorated the HFD-induced
decrease in serum testosterone level in vivo.
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Conclusions: The present study suggests that PA induces apoptosis via ER stress and curcumin ameliorates
PA-induced apoptosis by inhibiting ER stress in MLTC-1 cells. This study suggests the application of curcumin as a
potential therapeutic agent for the treatment of obesity-related male infertility.
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Background
Obesity is known to be a major risk factor for male in-
fertility, and therefore, obesity-associated male infertility
is increasingly drawing public attention [1–4]. So far, the
mechanisms underlying obesity-induced male infertility
remain unclear. PA is the most common type of satu-
rated free fatty acids (FFAs) in the plasma. It has been
reported that FFAs, including PA, are increased in pa-
tients with obesity [5–7]. Elevation in the level of FFA,
especially the saturated ones including PA, has been sug-
gested to be closely associated with obesity-induced male
infertility [5, 6, 8]. An earlier study has demonstrated
that PA markedly suppresses cell survival and induces
apoptosis in rat testicular Leydig cells in a time- and
dose-dependent manner [9]. This suggests that Leydig
cell toxicity induced by PA contributes to, or may even
cause, reproductive abnormalities in obese men.
ER stress is defined as an imbalance between the protein

load and the folding capacity of the ER, resulting in the ac-
cumulation of unfolded or misfolded proteins in the ER
lumen. Therefore, the ER stress response is also com-
monly known as the unfolded protein response [10, 11].
ER stress or impaired ER homeostasis has been reported
to be closely associated with the pathology of reproductive
diseases [12]. In a study on obese mice, ER stress-
mediated spermatocyte apoptosis was shown to be en-
hanced through CHOP and caspase-3 activation [13]. In
addition, accumulating evidence suggests that ER stress is
activated in various tissues under conditions related to
obesity [10]. Excessive ER stress has been shown to ultim-
ately induce cellular apoptosis [14]. Although PA has been
implicated to induce apoptosis in rat testicular Leydig
cells, the involvement of ER stress in this process remains
unknown [9].
Curcumin is a phytochemical component isolated

from turmeric (Curcuma longa L., Zingiberaceae), and
because of its anti-oxidant, anti-inflammatory, and anti-
obesity activities, it has been widely used in studies on
infertility and metabolic disorders, including obesity
[15–19]. Curcumin has been reported to effectively at-
tenuate ER stress-induced cell apoptosis in various cell
types [20–22]. Nevertheless, it is still unclear whether
curcumin exhibits protective effects through inhibition
of ER stress against PA-induced injury in Leydig cells.
The aim of this study was to evaluate the effects of

curcumin on PA-induced injury in MLTC-1 cells and

further explore the mechanism by which curcumin
ameliorates cell apoptosis. Besides, we determined the
impact of curcumin on testosterone levels in PA-
exposed Leydig cells. Gaining a better understanding
regarding the protective effects of curcumin and its
mechanism of action against PA-induced injury in
Leydig cells may be instrumental for the design of novel
therapies for treating obesity-induced male infertility.

Materials and methods
Materials
Curcumin, TG, 4-PBA, ethylene diamine tetra acetic
acid (EDTA) and dimethyl sulfoxide (DMSO) were pro-
cured from Sigma-Aldrich (St Louis, Missouri, USA).
The murine Leydig tumor cell line MLTC-1 was ob-
tained from Cell Institute of Shanghai, Chinese Academy
of Sciences (Shanghai, China). Radioimmunoprecipitation
assay (RIPA) lysis buffer, phenylmethylsulfonyl fluoride
(PMSF), trypsin and Tris-buffered saline-Tween-20
(TBST) were purchased from Solarbio (Beijing, China).
RPMI 1640 medium was purchased from Hyclone (Utah,
USA). Fetal bovine serum (FBS) was procured from Gibco
(Grand Island, New York, USA). Caspase 3 Activity
Colorimetric Assay Kit, Total Protein Extraction Kit, and
bicinchoninic acid (BCA) Protein Assay Kit were pur-
chased from the Nanjing Jiancheng Bioengineering
Institute (Nanjing, China). Cell Counting Kit 8 (CCK 8)
and Annexin V-fluorescein isothiocyanate (FITC)/Propi-
dium Iodide (PI) Apoptosis Analysis Kit were obtained
from Beijing Zoman Biotechnology Co., Ltd. (Beijing,
China). Testosterone ELISA Kit was purchased from Ji
Yin Mei (Wuhan, China). Rabbit anti-mouse primary anti-
bodies against BAX (sc-4239) and β-actin (sc-517,582)
were obtained from Santa Cruz Biotechnology, Inc. (Santa
Cruz, California, USA). Rabbit anti-mouse primary anti-
bodies against CHOP (ab10444) and GRP78 (ab32618)
were purchased from Abcam (Cambridge, UK). The goat
anti-rabbit secondary antibodies were procured from
Proteintech (Wuhan, China).

Cell culture and treatment
In brief, MLTC-1 cells were cultured in RPMI 1640
medium supplemented with 10% FBS, penicillin (100
IU/mL), and streptomycin (100 μg/mL) and main-
tained at 37 °C in a humidified incubator containing
95% air and 5% CO2. Curcumin, 4-PBA, and TG were
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prepared in DMSO with a final DMSO concentration
of no more than 0.1% (v/v). After reaching 70–80%
confluency, cells were divided into four groups,
treated with various concentrations of PA (0, 50, 100,
200, and 400 μM), PA (400 μM) + curcumin (0, 5, 10,
20, and 40 μM), PA (400 μM) + 4-PBA (500 nM), and
TG (500 nM) + curcumin (20 μM), respectively,
followed by incubation for 24 h (Fig. 1). Cells were
then collected to detect viability, apoptosis, and
caspase 3 activity, and used to perform western blot
analysis (Fig. 1).

Estimation of cell viability
To explore the toxic effects of PA on Leydig cells,
MLTC-1 cells were treated with increasing concentra-
tions of PA (0–400 μM), and cell viability was deter-
mined by CCK-8 assay according to the manufacturer’s
instructions. Briefly, MLTC-1 cells were seeded at a
density of 2 × 104 cells per well in 96-well plates. After
the incubation of cells with different treatments for 24 h,
10 μL of CCK-8 solution was added to each well. Cells
were then incubated for 2 h at 37 °C, followed by meas-
urement of absorbance at 405 nm using a microplate
reader (Bio-Rad 680, CA, USA). All experiments were
performed in triplicate.

Cell apoptosis assay
After various treatments, MLTC-1 cells were washed
with PBS, digested with 0.25% EDTA-free trypsin and
harvested. Thereafter, cells were centrifuged at 500×g
for 5 min, washed twice with cold PBS, and adjusted to a

final concentration of 1 × 105 cells/mL. Cells were ini-
tially re-suspended in 50 μL of binding buffer, after
which 5 μL of PI was added, and the mixture was then
incubated for 15 min at room temperature in the dark.
Finally, 450 μL of binding buffer and 1 μL of Annexin V-
FITC were added, and samples were further incubated
for 15 min in the dark. Apoptosis was detected by flow
cytometry (FACSCalibur™, BD Biosciences, CA, USA)
within 1 h of the last incubation. Measurements for each
sample were conducted in triplicate.

Western blot analysis
After different treatments, cells were harvested and total
protein was extracted using RIPA lysis buffer. Protein
concentrations were then determined by BCA Protein
Assay Kit. Each protein sample (30 μg) was separated on
12% sodium dodecyl sulfate (SDS)-polyacrylamide gels
and then electrotransferred onto polyvinylidene fluoride
(PVDF) membranes. Membranes were then blocked with
10% nonfat milk in TBST for 2 h and incubated over-
night with anti-β-actin, anti-BAX, anti-CHOP, and anti-
GRP78 primary antibodies at 4 °C. Thereafter, these
blots were incubated with horseradish peroxidase-
conjugated secondary antibodies (1:4000) for 30 min at
37 °C. The immunoreactive bands on membranes were
visualized using SuperSignal West Pico Kit (Proteintech,
Wuhan, China) and detected by Bio-Rad imaging system
(Bio-Rad, CA, USA), according to the manufacturer’s in-
structions. Densitometric analysis was performed using
ImageJ software 1.48 (Bethesda, MD, USA).

Fig. 1 Schematic of the experimental design. MLTC-1 cells were treated with PA, PA + curcumin, PA + 4-PBA or TG + curcumin to explore the
mechanism of curcumin that protects against PA induced cell apoptosis
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Caspase 3 activity measurement
Caspase 3 activity was measured using Caspase-3 Activ-
ity Colorimetric Assay Kit according to the manufac-
turer’s instructions. After different treatments, MLTC-1
cells were harvested by centrifugation and incubated in
lysis buffer on ice for 15 min. Cell lysates were then
centrifuged at 15,000 rpm for 15min at 4 °C. The protein
content was determined using the BCA Protein Assay
Kit. Sample aliquots were then incubated with the
caspase 3 substrate in a microplate at 37 °C for 4 h and
the absorbance was recorded at 405 nm using a micro-
plate reader (Bio-Rad 680, CA, USA).

Animal care and treatment
All the animal experiments performed in the present
study were approved by the Committee for the Ethics on
Animal Care and Experiments of Jiujiang University (ap-
proval No. SYXK(GAN)2019–0001). Male Sprague-
Dawley rats (n = 40, body weight: 220–240 g) were ob-
tained from the Experimental Animal Center of Jiujiang
University. All rats were housed under conditions of
controlled temperature (20–25 °C), humidity (50 ± 5%),
and lighting (12 h light/12 h dark cycle) with free access
to food and water. Curcumin was dissolved by olive oil
and administered orally by oral gavage. The rats were
randomly divided into four groups, including a control
group (n = 10), HFD group (n = 10), HFD + curcumin
group (n = 10) and a curcumin group (n = 10). All rats
were fed ad libitum with an HFD for 4 weeks, with the ex-
ception of those in the curcumin and control groups. The
rats in the curcumin group and HFD + curcumin group
were orally administered curcumin (100mg/kg/day) for 4
weeks, while those in the control and HFD groups were
administered an identical volume of the vehicle. Following
treatment, the rats were anaesthetized with an intraperito-
neal injection of sodium pentobarbital (45mg/kg), and
blood samples were obtained from the abdominal aorta.

Testosterone measurement
To evaluate the effects of curcumin on testosterone
production in PA-treated MLTC-1 cells, cells were
exposed to PA and/or curcumin, and testosterone levels
were then determined in the culture medium using
specific ELISA kits. In brief, the MLTC-1 cells were
treated with PA (400 μM) and/or curcumin (20 μM), and
co-incubated with 5 IU/mL hCG for 24 h, followed by
measurement of testosterone concentration in cell-
culture supernatants (100,000 cell/mL culture super-
natant) by employing a testosterone ELISA kit according
to the manufacturer’s instructions. Blood samples were
obtained from the abdominal aorta. After centrifuging
the samples at 1500 g and 4 °C for 10 min, the super-
natant sera were obtained for further detection. Serum
level of testosterone was measured using kits, according

to the manufacturer’s instructions. The minimum
detectable concentration of testosterone was 0.02 ng/
mL. The intra- and inter-assay coefficients of
variation were < 9 and < 15%, respectively. Assessment
for each sample was carried out in triplicate.

Statistical analysis
The data were analyzed by ANOVA, followed by Fisher’s
least significant difference test and independent samples
Student’s t test, with SPSS software, version 13.0 (SPSS,
Chicago, IL, USA). All the data are presented as a
mean ± standard error of the mean (SEM). For all
analysis, p values of < 0.05 were considered statistically
significant.

Results
PA induces apoptosis via the activation of ER stress in
MLTC-1 cells
As indicated in Fig. 2a, PA (100–400 μM) significantly
decreased cell viability. To investigate whether the
decreased cell viability was due to the induction of
apoptosis, PA-treated MLTC-1 cells were analyzed by
flow cytometry and western blotting. The results
demonstrated that treatment of cells with 100–
400 μM PA increased the expression of apoptosis-
related genes caspase 3 and BAX in a dose-dependent
manner (Fig. 2b-d). After treating cells for 24 h with
50–400 μM PA, we determined the expression of ER
stress marker genes (GRP78 and CHOP) by western
blot analysis. The results demonstrated a dose-
dependent increase in the expression of GRP78 and
CHOP upon exposure to 100–400 μM PA (Fig. 2c, e,
f). At 400 μM, the cell viability decreased to approxi-
mately 40%, and apoptosis-related genes and ER stress
marker genes showed elevated expression. We there-
fore used 400 μM in the subsequent PA treatments.

Curcumin attenuates PA-induced cytotoxicity and ER
stress in MLTC-1 cells
To determine the effect of curcumin on Leydig cell
viability, MLTC-1 cells were treated with different
curcumin concentrations (5–40 μM) for 24 h. As shown
in Fig. 3a, curcumin concentrations up to 20 μM did not
alter the viability of MLTC-1 cells, whereas 40 μM
curcumin significantly decreased cell viability compared
to that of the control group cells. Furthermore, reduced
cell viability due to treatment with 400 μM PA was
observed to be restored in response to 20 μM curcumin
(Fig. 3b). Meanwhile, 20 μM curcumin was shown to
effectively reduce caspase 3 activity and the expression
of BAX protein (Fig. 3c-e). In addition, 400 μM PA-in-
duced increase in GRP78 and CHOP expression was
inhibited by 20 μM curcumin (Fig. 3e-g). Interestingly,
we observed that the 40 μM curcumin group had lower
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cell viability than the 20 μM group and higher viability
than the PA-treated group (Fig. 3b). Similarly, the 40 μM
curcumin group had higher caspase 3 activity and
expression of BAX and GRP78 than the 20 μM group
(Fig. 3c-f). However, no significant difference was
observed in the CHOP expression between the 20 μM
group and 40 μM group (Fig. 3e, g).

4-PBA attenuates PA-induced cytotoxicity, apoptosis, and
ER stress in MLTC-1 cells
The CCK 8 assay and flow cytometric analysis revealed
that PA-exposure significantly reduced cell viability and

induced apoptosis, while treatment with 4-PBA
effectively restored cell viability and inhibited apoptosis
(Fig. 4a-c). In addition, it was observed that 4-PBA
treatment markedly reduced caspase 3 activity and the
expression of BAX, GRP78, and CHOP in the PA-
treated MLTC-1 cells (Fig. 4d-h).

Curcumin protects MLTC-1 cells against TG-induced
cytotoxicity, ER stress, and apoptosis in MLTC-1 cells
As expected, TG induced reduction in MLTC-1 cell
viability, increased ER stress markers GRP78 and CHOP,
and activated caspase 3 and BAX, while treating cells

Fig. 2 PA induces apoptosis and ER stress in MLTC-1 cells. Cells were treated with increasing concentrations of PA (50–400 μM) for 24 h, and cell
viability was measured by CCK 8 assay (a). Caspase-3 activity was measured using the Caspase-3 Activity Colorimetric Assay (b). Western blot
analysis (c) was performed to detect the relative expression of apoptosis-related BAX (d) and ER stress marker GRP78 (e) and CHOP (f). The
proteins expression levels were normalized to β-actin. The statistical analysis results are shown in the bar graphs. The data are represented as the
mean ± SEM of three independent experiments. Bars with different letters are significantly different (p < 0.05)

Fig. 3 Curcumin attenuates the PA-induced apoptosis and ER stress in MLTC-1 cells. Cells were treated with different concentrations of curcumin
(5–40 μM) in the absence (a) and presence (b) of PA (400 μM) for 24 h and then processed for cell activity analysis CCK 8 assay. Caspase-3 activity
was measured using the Caspase-3 Activity Colorimetric Assay (c). Western blot analysis (e) was performed to detect the relative expression of
apoptosis-related BAX (d) and ER stress marker GRP78 (f) and CHOP (g). The proteins expression levels were normalized to β-actin. The statistical
analysis results are shown in the bar graphs. The data are represented as the mean ± SEM of three independent experiments. Bars with different
letters are significantly different (p < 0.05)
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with 20 μM curcumin significantly restored viability and
inhibited TG-induced ER stress and apoptosis (Fig. 5).

Curcumin restores PA-mediated inhibition of testosterone
secretion in MLTC-1 cells
Testosterone secretion was stimulated in MLTC-1 cells
by the addition of hCG to PA-containing culture
medium in which cells were incubated for 24 h. As
shown in Fig. 6a, in 400 μM PA-treated cells, concentra-
tion of testosterone was significantly decreased
compared to that in untreated control cells, whereas
curcumin significantly attenuated the reduction of
testosterone secretion in MLTC-1 cells exposed to PA.
Subsequently, we explored the effect of curcumin on
testosterone production in HFD-fed rats. We found that
rats fed an HFD exhibited abnormal serum hormone
levels, manifested as reduced serum levels of testosterone.

Serum testosterone levels were observed to be restored
following treatment with curcumin (Fig. 6b).

Discussion
Curcumin, a natural diphenolic compound, possesses
numerous health beneficial effects such as anti-
inflammatory, anti-obesity, and antioxidant properties
[15–19]. Due to its pharmacological efficacy, curcumin
has been studied widely in various research areas. In this
work, we demonstrated that PA reduced Leydig cell via-
bility, activated caspase 3, and enhanced the expression
levels of apoptosis-related protein BAX and ER stress
markers GRP78 and CHOP. Curcumin significantly
suppressed PA-induced decrease in cell viability and the
expression levels of apoptosis-related protein and ER
stress markers. In addition, curcumin could restore PA-

Fig. 4 4-PBA attenuates the PA-induced apoptosis and ER stress in MLTC-1 cells. Cells were treated with PA (400 μM) in the absence and
presence of 4-PBA (500 nM) for 24 h and then processed for cell activity analysis CCK 8 assay (a). Apoptosis analysis was detected by flow
cytometry (b, c). Western blot of BAX, GRP78, and CHOP expression are shown (d). The Caspase 3 activity of the MLTC-1 cells is shown (e). The
relative BAX expression (f), GRP78 expression (g), and CHOP expression (h) are depicted. The proteins expression levels were normalized to
β-actin. The statistical analysis results are shown in the bar graphs. The data are represented as the mean ± SEM of three independent
experiments. Bars with different letters are significantly different (p < 0.05)
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Fig. 5 Curcumin attenuates the TG-induced apoptosis and ER stress in MLTC-1 cells. Cells were treated with TG (500 nM) in the absence and
presence of curcumin (20 μM) for 24 h and then processed for cell activity analysis CCK 8 assay (a). Apoptosis analysis was detected by flow
cytometry (b, c). Western blot of BAX, GRP78, and CHOP expression are shown (d). The Caspase 3 activity of the MLTC-1 cells is shown (e). The
relative BAX expression (f), GRP78 expression (g), and CHOP expression (h) are depicted. The proteins expression levels were normalized to
β-actin. The statistical analysis results are shown in the bar graphs. The data are represented as the mean ± SEM of three independent
experiments. Bars with different letters are significantly different (p < 0.05)

Fig. 6 Effects of curcumin on testosterone generation in PA-treated MLTC-1 cells. MLTC-1 cells were treated with hCG for 24 h and the
concentration of testosterone in the culture supernatants was then measured employing the ELISA assay (a). The rats were orally administered
curcumin for 4 weeks, and serum level of testosterone was measured using the ELISA assay (b). The statistical analysis results are shown in the bar
graphs. Data are presented as the mean ± SEM of three independent experiments. Bars with different letters are significantly different (p < 0.05)
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or HFD-mediated inhibition of testosterone secretion by
Leydig cells in vitro and in vivo.
The increase in the male infertility rates has been

reported to be in parallel with the increasing rates of
obesity [23]. Studies have shown that increased weight
in men is correlated with lower testosterone levels and
reduced fertility. Moreover, the odds of infertility have
been reported to increase by approximately 10% for
every 9 kg (20 pounds) a man is overweight [23, 24]. In
addition to reduced plasma testosterone levels, obesity
has also been associated with chronic elevation of
plasma FFAs [9]. PA is a common type of saturated FFA
and is known to increase in obese individuals. Recently,
PA has been reported to cause toxicity in various types
of cells, including Leydig cells. PA-mediated cytotoxicity
was observed to occur via reduction of cell viability and
induction of apoptosis [9, 25–28]. However, the molecu-
lar mechanism underlying PA-induced apoptosis in
Leydig cells is still not well understood. To investigate
the possible PA-induced apoptotic mechanisms in
Leydig cells, we first determined the cytotoxicity of PA
in MLTC-1 cells. In the present study, PA was found to
activate caspase 3 and upregulate BAX protein expres-
sion in a dose-dependent manner in order to induce
apoptosis in MLTC-1 cells, which is in agreement with a
previous study [9]. Earlier reports have suggested that PA
induces apoptosis in different types of cells by activating
ER stress-mediated apoptotic pathways [27, 29, 30]. To
confirm the role of ER stress in PA-induced MLTC-1 cell
apoptosis, we checked the expression of ER stress marker
genes GRP78 and CHOP. Our data showed a significant
dose-dependent increase in the expression of GRP78 and
CHOP proteins in PA-treated MLTC-1 cells. These
results indicate that inhibition of ER stress in Leydig cells
might effectively ameliorate the toxic effects of PA.
Curcumin is a phenolic compound that has been

shown to play a significant protective role in inhibition
of ER stress-mediated apoptosis [20, 31, 32]. In the
current study, MLTC-1 cells were used as a suitable
model to investigate the effects of curcumin on PA-
induced cell injury and its underlying protective
mechanism. Initially, the effects of curcumin on the
viability and apoptosis of MLTC-1 cells were exam-
ined. Our data indicated that low concentrations of
curcumin (5–20 μM) ameliorated the PA-induced de-
crease in cell viability and reduced the expression of
apoptosis-associated genes, including BAX and cas-
pase 3, which is consistent with a previous study [22].
Based on these results, it was concluded that curcu-
min inhibits PA-induced apoptosis in Leydig cells.
Interestingly, in this study, curcumin at 40 μM was
observed to show a negative impact on cell viability,
indicating that curcumin may have cytotoxic effect at
certain high concentrations. Although the reason for

this cytotoxic effect has never been fully elucidated,
we suspect that an exposure time of 24 h may be long
enough for 40 μM curcumin to accumulate in MLTC-
1 cells to cause apparent cell damage.
In this study, we have used 400 μM PA and 20 μM

curcumin, which seem to be higher than that in vivo, to
perform in vitro experiments. In fact, PA and curcumin
can achieve 20 and 400 μM in vivo by oral supplementa-
tion, respectively. Although curcumin’s low oral bioavail-
ability limited its application, many efforts have been
carried out to improve its solubility and oral bioavailabil-
ity in the past years. Nowadays, it has been transformed
into a variety of different formulations, peak plasma con-
centration of curcumin in vivo is about 50–20,000 ng/
mL depending on the formulation [33–39]. The physio-
logical concentration of PA in vivo is about 100 μmol/L.
Interestingly, in obese patients, plasmatic PA concentra-
tion rises up to three- to fivefold when compared with
matched healthy subjects [40–42].
Curcumin was reported to inhibit ER stress caused by

cerebral ischemia-reperfusion injury in rats [32]. In-
creased apoptosis was observed in the hearts of diabetic
mice, which was attenuated by curcumin, ultimately im-
proving cardiac function [43]. In the current study, our
data revealed that the PA-induced increase in GRP78
and CHOP protein expression was suppressed by curcu-
min. These data indicate that curcumin might attenuate
PA-induced cytotoxicity and ER stress in MLTC-1 cells.
Additionally, to check the involvement of ER stress in
apoptosis induced by PA, 4-PBA was used as an ER
stress inhibitor, and as expected, it was observed that in-
hibition of ER stress by 4-PBA attenuated the PA-
induced cell apoptosis. However, curcumin was shown
to protect MLTC-1 cells against reduction of viability,
apoptosis and ER stress caused by the ER stress inducer
TG. These results further confirmed that ER stress was
indeed involved in PA-induced MLTC-1 cell apoptosis
and that curcumin can indeed protect Leydig cells
against TG- or PA-induced damage through inhibition
of ER stress response.
Realizing the importance of Leydig cells in testoster-

one secretion, we subsequently explored the effects of
PA and/or curcumin on testosterone secretion in
MLTC-1 cells. As expected, PA treatment significantly
decreased the production of testosterone in MLTC-1
cells, while curcumin restored testosterone levels effect-
ively. We then investigated the effects of curcumin on
testosterone production in diet-induced obesity male
rats. Rats fed an HFD were treated with or without
curcumin for 4 weeks. We found that the testosterone
levels were decreased in rats fed an HFD, and treatment
with curcumin upregulated the decreased levels of serum
testosterone. The results of the present study suggested
that curcumin treatment may ameliorate diet-induced
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reduction of testosterone levels. Similar to this, an earlier
study showed that curcumin ameliorated HFD-induced
decrease in serum testosterone and reduced HFD-
induced spermatogenesis dysfunction and apoptosis [16].
These findings suggest that PA may play an important
role in male infertility and that curcumin can be used as
a promising therapeutic agent for treating obesity-
associated male infertility.
A critical factor considered to affect serum and/or

intratesticular testosterone levels is the number of
Leydig cells. Physiologically, in a normal testis, a certain
degree of apoptosis can be observed, which plays an
important role in discarding decrepit and abnormal cells,
thereby maintaining the population of Leydig cells and
testosterone levels [44]. Excessive Leydig cell apoptosis
caused by testis impairment could result in decreased
testosterone levels, leading to apoptosis of spermato-
genic cells, causing infertility. Interestingly, in a study by
Mu et al., excessive activation of autophagy was ob-
served in sperm samples from obese male patients, and
inhibition of autophagy was observed to improve the
decreased fertility of obese male mice [8]. Therefore, in
the present study, PA was shown to decrease the num-
ber of MLTC-1 cells and compromise the normal endo-
crine function of these cells, thereby suppressing the
secretion of testosterone. Although curcumin restored
testosterone production in PA-treated MLTC-1 cells,
the precise mechanism through which it regulates the
synthesis of testosterone in Leydig cells remains unclear
and needs further investigation.

Conclusions
In summary, our results suggest that PA induces
apoptosis in testicular Leydig cells through the ER stress
signaling pathway. Furthermore, curcumin could poten-
tially protect these cells from PA-induced apoptosis and
restored testosterone production. These findings reflect
the potential of natural compounds in the development
of future therapeutic approaches for the treatment of
obesity-related male infertility.
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