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Abstract 

Background  Develop the best machine learning (ML) model to predict nonsentinel lymph node metastases 
(NSLNM) in breast cancer patients.

Methods  From June 2016 to August 2022, 1005 breast cancer patients were included in this retrospective study. Uni-
variate and multivariate analyses were performed using logistic regression. Six ML models were introduced, and their 
performance was compared.

Results  NSLNM occurred in 338 (33.6%) of 1005 patients. The best ML model was XGBoost, whose average area 
under the curve (AUC) based on 10-fold cross-verification was 0.722. It performed better than the nomogram, which 
was based on logistic regression (AUC: 0.764 vs. 0.706).

Conclusions  The ML model XGBoost can well predict NSLNM in breast cancer patients.
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Introduction
Cancer and cardiovascular diseases are the two main 
causes of death across the world and seriously harm 
people’s physical and mental health [1]. According to 
data from the World Health Organization (WHO), the 
number of newly diagnosed cancers in 2020 totaled 
19.29 million, of which 2.26 million were breast can-
cers, and approximately 685,000 died from breast can-
cer [2]. Breast cancer leads the world in morbidity and 
mortality rates in most countries [2]. At the same time, 
the treatment regimens of breast cancer are changing 

over time. In 1985, the results of the National Surgi-
cal Adjuvant Breast and Bowel Project (NSABP) B-06 
study demonstrated that breast-conserving surgery 
combined with radiotherapy led to no significant differ-
ence in overall survival (OS) and disease-free survival 
(DFS) of patients with early breast cancer compared 
with mastectomy, which raised the proportion of breast 
cancer patients treated with breast-conserving surgery 
[3], and the safety of breast-conserving surgery was 
confirmed in the following 20 years of follow-up [4]. In 
2010, the results of the NSABP B-32 study showed that 
for malignant breast tumor patients with negative axil-
lary lymph nodes, the success rate of axillary sentinel 
lymph node biopsy (SLNB) was 97.2%, and the false-
negative rate was only 9.8%. There were no significant 
differences in OS, DFS, or local recurrence rate (LRR) 
for patients with negative sentinel lymph nodes but 
without axillary lymph node dissection (ALND) com-
pared with those who underwent ALND [5, 6]. The risk 
of lymphedema and reduced range of motion in the 
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upper limbs associated with ALND is not negligible, 
and it seriously affects the quality of life of patients [7]. 
The AMAROS study showed that early breast cancer 
patients who underwent SLNB combined with radio-
therapy had similar axillary lymph node recurrence and 
DFS rates as those who underwent ALND, even if there 
were 1 or 2 sentinel lymph node metastases (SLNMs) 
[8]. In 2015, the American College of Surgeons Oncol-
ogy Group (ACOSOG) Z0011 study confirmed that 
SLNB combined with radiotherapy could exempt early 
breast cancer patients with 1 or 2 SLNMs from ALND 
[9, 10], which further promotes the clinical application 
of SLNB. However, ALND is required for breast-con-
serving surgery patients with more than three sentinel 
lymph node metastases or total mastectomy patients 
with more than one sentinel lymph node metasta-
sis. Studies have shown that 40–60% of breast can-
cer patients who undergo SLNB and further undergo 
ALND have no other lymph node metastases [11–13]. 
With the progress of individualized treatment of breast 
cancer and patients’ increasing demand for quality of 
life, axillary lymph node management is more inclined 
to include the evaluation of tumor staging and progno-
sis to accurately predict the risk of axillary lymph node 
metastasis, which can avoid surgical complications 
caused by overtreatment and thereby improve patients’ 
quality of life. It can also help reduce the recurrence 
risk for breast cancer patients with nonsentinel lymph 
node metastases (NSLNMs) who undergo SLNB but 
not ALND.

In recent years, machine learning (ML) has been used 
to manage different medical problems, such as pathologic 
diagnosis and treatment support, and ML models con-
structed in previous studies not only have better model 
performance but also have higher prediction accuracy 
[14–16]. Few models have been constructed to predict 
NSLNM. Guo Xu and his team constructed a deep learn-
ing model to predict NSLNM, but they failed to explain 
the impacts of different variables in their model [17]. 
Yang, ZB et  al. [18] developed a nomogram to predict 
NSLNM, which showed an area under the curve (AUC) 
of 0.718 in the training set and 0.742 in the validation set, 
but its performance had not been compared with that of 
ML models.

Lundberg et  al. first conceived the SHapley Additive 
exPlanations (SHAP) framework, which has been applied 
to machine learning [19]. It can assess the contributions 
of different features in different ML models, allowing the 
performance of each model to be reasonably compared 
[20].

The purpose of this study was to construct an opti-
mal ML model to predict the NSLNM of breast can-
cer patients by using preoperative and intraoperative 

clinicopathological and imaging features and to choose 
the best model by using the SHAP framework. This study 
also compared its performance with that of a nomogram.

Materials and methods
Patients
A total of 3658 malignant breast cancer patients under-
going surgery at Harbin Medical University Cancer Hos-
pital from June 2016 to August 2022 were retrospectively 
enrolled. This study was approved by the Ethics Com-
mittee of Harbin Medical University Cancer Hospi-
tal. It conforms to the 1964 Helsinki Declaration of the 
World Medical Association and its subsequent revisions. 
Informed consent from our hospital was signed by each 
patient before receiving treatment.

The inclusion criteria were as follows: no other breast 
cancer treatment prior to breast surgery and SLNB and 
ALND performed during breast surgery.

Exclusion criteria are as follows: Patients who received 
neoadjuvant therapy before breast surgery in our hos-
pital, patients who received SLNB without ALND or 
directly received ALND during breast surgery, the patho-
logical type was ductal carcinoma in situ, a distant metas-
tasis, and male breast cancer patient.

Finally, a total of 1005 breast cancer patients were 
included. Their details are shown in Fig. 1.

Axillary lymph node status management
Methylene blue dye was injected into the intradermal, 
subcutaneous, areolar, and glandular areas (peritumor, 
intratumor, subtumor) 10–15 min before breast can-
cer surgery (Jichuan Pharmaceutical Group, China), or 
a carbon nanosuspension was injected into the subse-
rous membrane along the peritumoral site at 4–6 points 
(Chongqing Lemei Pharmaceutical, China) during sur-
gery to facilitate the localization of SLNB. Sentinel and 
nonsentinel lymph nodes were evaluated in hematoxy-
lin-eosin (HE)-stained sections that were fixed with 10% 
formalin and embedded in paraffin. After fixation, suc-
cessive sections of the lymph nodes were obtained for 
definitive analysis of lymph node status.

Classification
An estrogen receptor (ER) immunohistochemical (IHC) 
detection degree of < 1% nuclear staining was interpreted 
as ER negativity, and an IHC-positive degree between 
1 and 10% nuclear staining was interpreted as ER weak 
positivity. An IHC-positive degree of > 10% nuclear 
staining was interpreted as ER positivity [21]. Progester-
one receptor (PR) was negative if its IHC-positive degree 
was < 1%, weakly positive if its IHC-positive degree 
was between 1 and 20%, and positive if its IHC-positive 
degree was > 20% [22]. A human epidermal growth factor 
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receptor-2 (HER-2) IHC result of 0 was defined as HER-2 
negative. Low HER-2 expression was defined as a HER-2 
IHC result of 1+ or a HER-2 IHC result of 2+ along 
with negative fluorescence in  situ hybridization (FISH). 
A HER-2 IHC result of 3+ or a HER-2 IHC result of 2+ 
with positive FISH was defined as HER-2 positivity [23]. 
The Ki-67 expression level was divided into the Ki-67 ≤ 
14% group and the Ki-67 > 14% group [24]. According to 
the results of IHC, all patients were divided into luminal 
A, luminal B, triple-negative breast cancer (TNBC), and 
HER-2 overexpression groups [22].

According to current American Joint Committee on 
Cancer (AJCC) standards [25], single tumor cells or max-
imum tumor diameter < 2 mm in axillary lymph nodes 
was defined as node negative, and tumor diameter ≥ 2 
mm was defined as node positive. Pathological lymph 
node staging (pN) was determined according to the num-
ber of positive axillary lymph nodes. The staging was as 
follows: pN0 meant no axillary lymph node metastasis, 
pN1 meant 1–3 axillary lymph node metastases, pN2 
meant 4–9 axillary lymph node metastases, and pN3 
meant more than 9 axillary lymph node metastases.

Since the patients included in this study were Chinese 
women with breast cancer, body mass index (BMI) was 

classified into different groups according to the standards 
of the Chinese Health Commission. BMI = weight (kg)/
height (m2), and the underweight group was defined as 
BMI < 18.5 kg/m2. BMI between 18.5 and 23.9 kg/m2 was 
the normal group, BMI between 24 and 27.9 kg/m2 was 
the overweight group, and BMI ≥ 28 kg/m2 was the obe-
sity group.

Considering the small number of patients with other 
types of breast cancer included, the patients were divided 
into infiltrating ductal carcinoma and other types of car-
cinoma according to pathological type, including invasive 
lobular carcinoma (18 patients), invasive micropapillary 
carcinoma (3 patients), ductal carcinoma in  situ with 
microinvasion (3 patients), and mucinous carcinoma (2 
patients).

Data preprocessing and feature selection
The k-nearest neighbor imputer (KNNImputer) was 
used to supplement parameters with missing values less 
than 30% [26]. Recursive feature elimination was applied 
to select the best variables (Fig. S1). The best number 
of variables was 12: age, BMI, pregnancy history, nip-
ple retraction, single/multiple tumors, cT stage, blood 
flow signal of tumor, cN stage, ultrasound (US) BI-RADS 

Fig. 1  The flow chart of patients selection and the flow chart for the development, evaluation, and explanation of models
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classification, mammography (MG) BI-RADS classifica-
tion, SLN group, and SLN-positive ratio.

Model development
This study introduced six ML algorithms, including 
extreme gradient boosting (XGBoost), logistic regression 
(LR), support vector machine (SVM), k-nearest neighbor 
(KNN), random forest (RF), and decision tree (DT).

The LR model is usually applied to explore how char-
acteristics influence binary variables [27]. In the face of a 
regression or classification problem, the cost function is 
established, the optimal model parameters are iteratively 
solved by the optimization method, and then the quality 
of the resulting model is verified by testing.

SVM is applied to classify things with multidimen-
sional attributes into two categories [28]. It is a super-
vised learning model that is commonly used for pattern 
recognition, classification, and regression analysis. Based 
on structural risk minimization theory, it constructs 
the optimal hyperplane in the feature space so that the 
learner is globally optimized, and the expectation of the 
whole sample space satisfies a certain upper bound with a 
certain probability.

KNN is one of the most commonly used nonpara-
metric classification techniques. Its working premise is 
that if most of the nearest k samples to a given sample 
belong to a certain class in the feature space, then they all 
must belong to the same class. The KNN method is only 
related to a very small number of adjacent samples in the 
class decision. Because the KNN method mainly depends 
on a few neighboring samples, rather than the method 
of discriminating the class domain to determine the cat-
egory, the KNN method is more suitable for dividing the 
sample with more crossover or overlap of class domains 
[29].

Classifiers that use multiple trees to train and predict 
samples are called RF classifiers, which reduces training 
variance and improves integration and generalization 
capabilities [30]. Its training can be highly parallelized, 
which has advantages for large-sample training speed 
in the era of big data. Since the decision tree nodes that 
divide the features can be randomly selected, the model 
can still be trained efficiently even when the sample fea-
ture dimension is very high.

The DT algorithm can be divided layer by layer 
according to the characteristics of the data until all the 
characteristics are divided, so it can be used to solve clas-
sification and regression problems [31]. It is a kind of 
nonparametric supervised learning that is easy to under-
stand, applicable to all kinds of data, and has good per-
formance in solving various problems, especially various 
integrated algorithms with tree models as the core. It is 
widely used in various industries and fields.

XGBoost is an ML technique that can process miss-
ing data and build accurate prediction models from weak 
prediction models [32]. It is good at capturing dependen-
cies between complex data, can obtain effective models 
from large-scale datasets, and supports multiple systems 
and languages in practical terms.

Statistical methods
All patients were randomly divided into training and test-
ing sets at a 7:3 ratio (Fig. 1). The ML prediction model 
was developed in the training set and optimized by using 
10-fold cross-validation. The AUC, accuracy, recall rate, 
F1 value, and precision were used to evaluate the ability 
of each ML model. Brier scores were applied to evaluate 
the overall performance of the model [33]. Pearson’s χ2 or 
Fisher’s exact test was used for intergroup analysis. Uni-
variate and multivariate analyses were performed using 
logistic regression. Based on multivariable logistic regres-
sion analysis, a nomogram was built, whose accuracy 
was determined by calculating its C-index. The internal 
verification was carried out by the bootstrap method, 
and the difference between the actual value and the pre-
dicted value obtained from the column chart was ana-
lyzed graphically. To more intuitively explain the optimal 
ML model, we introduce the SHAP framework, whose 
interpretability has been demonstrated in many can-
cers [18, 34–36]. It can demonstrate the contributions of 
various variables in any ML model to the outcome event 
[20]. All statistics were performed using Python 3.9 and 
R language 4.1.2. P< 0.05 was considered statistically 
significant.

Results
Clinicopathologic features of patients
A total of 1005 breast cancer patients with a median 
age of 51 years were enrolled in this study, of whom 829 
(82.5%) underwent mastectomy and 176 (17.5%) under-
went breast-conserving surgery. NSLNM occurred in 338 
cases and not in 667 cases (Table 1). Ninety-nine patients 
(9.9%) were classified as luminal A, 799 patients (79.5%) 
were classified as luminal B, 47 patients (4.7%) were clas-
sified as TNBC, and 60 patients (6.0%) were classified 
as HER-2 overexpressing. Most of the included patients 
were patients with stages T1 and T2 (cT1 and cT2), with 
a total of 466 patients (46.4%) at cT1 and 512 patients 
(50.9%) at cT2. Most cancers were pN1 (562 cases 
(55.9%)). There were 340 cases (33.8%) in the Ki-67 ≤ 
14 group and 665 cases (66.2%) in the Ki-67 ≥ 14 group. 
There were 609 cases (60.6%) without lymphatic vascular 
infiltration (LVI) and 396 cases (39.4%) with LVI. There 
were 789 (78.5%) patients with one or two sentinel lymph 
node metastases (SLNMs) and 113 (11.2%) patients with 
three or more SLNBs. Notably, 103 patients (10.2%) did 
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Table 1  The relationship between characteristics and non-SLN metastasis

Characteristics Overall Without non-SLN metastasis With non-SLN metastasis p

N = 1005 n = 667 n = 338

Age (median [IQR]) 51.00 (45.00, 59.00) 51.00 (45.00, 60.00) 51.00 (46.00, 59.00) 0.951

Position (%) 0.592

  Left 498 (49.6) 326 (48.9) 172 (50.9)

  Right 507 (50.4) 341 (51.1) 166 (49.1)

BMI (%) 0.004
  < 18.5 23 (2.3) 13 (1.9) 10 (3.0)

  18.5–23.9 465 (46.3) 332 (49.8) 133 (39.3)

  24–27.9 385 (38.3) 248 (37.2) 137 (40.5)

  ≥ 28 132 (13.1) 74 (11.1) 58 (17.2)

Pregnant (%) 0.901

  0 48 (4.8) 33 (4.9) 15 (4.4)

  1 652 (64.9) 430 (64.5) 222 (65.7)

  ≥ 2 305 (30.3) 204 (30.6) 101 (29.9)

Menopause (%) 0.828

  No 488 (48.6) 326 (48.9) 162 (47.9)

  Yes 517 (51.4) 341 (51.1) 176 (52.1)

Nipple retraction (%) 0.104

  No 954 (94.9) 639 (95.8) 315 (93.2)

  Yes 51 (5.1) 28 (4.2) 23 (6.8)

Nipple discharge (%) 1

  No 972 (96.7) 645 (96.7) 327 (96.7)

  Yes 33 (3.3) 22 (3.3) 11 (3.3)

Number of tumor (%) 0.487

  Single focal 900 (89.6) 601 (90.1) 299 (88.5)

  Multi-focal 105 (10.4) 66 (9.9) 39 (11.5)

cT (%) 0.042
  1 466 (46.4) 328 (49.2) 138 (40.8)

  2 512 (50.9) 321 (48.1) 191 (56.5)

  3 19 (1.9) 14 (2.1) 5 (1.5)

  4 8 (0.8) 4 (0.6) 4 (1.2)

Aspect ratio (%) 0.867

  < 1 924 (91.9) 615 (92.2) 309 (91.4)

  > 1 63 (6.3) 41 (6.1) 22 (6.5)

  = 1 18 (1.8) 11 (1.6) 7 (2.1)

US tumor borderline (%) 0.200

  Clear 101 (10.0) 75 (11.2) 26 (7.7)

  Lack of clarity 246 (24.5) 163 (24.4) 83 (24.6)

  Blurring 658 (65.5) 429 (64.3) 229 (67.8)

US tumor form (%) 0.080

  Rule 57 (5.7) 42 (6.3) 15 (4.4)

  Underrule 54 (5.4) 42 (6.3) 12 (3.6)

  Irregularity 894 (89.0) 583 (87.4) 311 (92.0)

US tumor blood (%) 0.164

  No 183 (18.2) 130 (19.5) 53 (15.7)

  Yes 822 (81.8) 537 (80.5) 285 (84.3)

cN (%) 0.001
  0 371 (36.9) 272 (40.8) 99 (29.3)

  1 562 (55.9) 348 (52.2) 214 (63.3)
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Table 1  (continued)

Characteristics Overall Without non-SLN metastasis With non-SLN metastasis p

  2 3 (0.3) 3 (0.4) 0 (0.0)

  3 69 (6.9) 44 (6.6) 25 (7.4)

US BI-RADS (%) < 0.001
  3 24 (2.4) 21 (3.1) 3 (0.9)

  4 811 (80.7) 554 (83.1) 257 (76.0)

  5 163 (16.2) 87 (13.0) 76 (22.5)

  6 7 (0.7) 5 (0.7) 2 (0.6)

MG calcification (%) 0.653

  No 257 (25.6) 174 (26.1) 83 (24.6)

  Yes 748 (74.4) 493 (73.9) 255 (75.4)

MG BI-RADS (%) 0.016
  3 97 (9.7) 75 (11.2) 22 (6.5)

  4 741 (73.7) 485 (72.7) 256 (75.7)

  5 133 (13.2) 80 (12.0) 53 (15.7)

  6 34 (3.4) 27 (4.0) 7 (2.1)

pT (%) 0.026
  1 629 (62.6) 433 (64.9) 196 (58.0)

  2 361 (35.9) 228 (34.2) 133 (39.3)

  3 7 (0.7) 2 (0.3) 5 (1.5)

  4 8 (0.8) 4 (0.6) 4 (1.2)

pN (%) < 0.001
  0 82 (8.2) 82 (12.3) 0 (0.0)

  1 734 (73.0) 577 (86.5) 157 (46.4)

  2 130 (12.9) 8 (1.2) 122 (36.1)

  3 59 (5.9) 0 (0.0) 59 (17.5)

SLNs group (%) 0.004
  Negative 103 (10.2) 82 (12.3) 21 (6.2)

  Positive 902 (89.8) 585 (87.7) 317 (93.8)

SLNM (%) < 0.001
  0 103 (10.2) 82 (12.3) 21 (6.2)

  1/2 789 (78.5) 549 (82.3) 240 (71.0)

  ≥ 3 113 (11.2) 36 (5.4) 77 (22.8)

Ratio of no. of positive SLNs to 
total no. of SLNs (%)

< 0.001

  ≤ 0.5 738 (73.4) 561 (84.1) 177 (52.4)

  > 0.5 267 (26.6) 106 (15.9) 161 (47.6)

Grade (%) 0.114

  1 18 (1.8) 16 (2.4) 2 (0.6)

  2 768 (76.4) 504 (75.6) 264 (78.1)

  3 219 (21.8) 147 (22.0) 72 (21.3)

Pathological type (%) 0.345

  Invasive ductal carcinoma 979 (97.4) 647 (97.0) 332 (98.2)

  Others 26 (2.6) 20 (3.0) 6 (1.8)

Subtype (%) 0.650

  Luminal A 99 (9.9) 68 (10.2) 31 (9.2)

  Luminal B 799 (79.5) 523 (78.4) 276 (81.7)

  TNBC 47 (4.7) 34 (5.1) 13 (3.8)

  HER-2 overexpression 60 (6.0) 42 (6.3) 18 (5.3)

ER (%) 0.118

  Negative 153 (15.2) 108 (16.2) 45 (13.3)
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not develop SLNM, but 21 of them (20.4%) did develop 
NSLNM. There were 738 patients (73.4%) with a senti-
nel node-positive ratio (the number of positive SLNs to 
the total SLN ratio) ≤ 0.5 and 267 cases (26.6%) with an 
SLN-positive ratio > 0.5. BMI, cT, cN, ultrasonic (US) 
BI-RADS classification, mammography (MG) BI-RADS 
classification, pT, pN, SLN status, number of SLNMs, 
sentinel lymph node-positive ratio, and LVI were corre-
lated with NSLNM (p < 0.05, Table 1).

Univariate and multivariate logistic regression analysis 
in the training set
A total of 1005 patients were randomly classified into the 
training set (703 patients) and the test set (302 patients) 
in a ratio of 7:3. In the training set, univariate analysis 
showed that cN1/cN2/cN3 was more prone to NSLNM 
than cN0 (OR = 1.5, 95% CI: 1.07–2.09, p = 0.018). 
NSLNM was more likely to occur in MG BI-RADS 4 
than in MG BI-RADS 3 (OR = 1.77, 95% CI: 1.02–3.05, 
p = 0.041). Compared with patients with negative SLNs, 
patients with positive SLNs were more likely to develop 
NSLNM (OR = 2.38, 95% CI: 1.3–4.36, p = 0.005). Com-
pared with patients with an SLN-positive ratio ≤ 0.5, 
patients with an SLN-positive ratio > 0.5 were more likely 
to develop NSLNM (OR = 3.82, 95% CI: 2.69–5.43, p < 

0.001). A variance inflation factor (VIF) < 10 indicates 
that there is no multicollinearity among different param-
eters [37]. Parameters with p < 0.05 from the univariate 
analysis were included in the multivariate analysis, and 
the results showed that the SLN-positive rate was an 
independent predictor of NSLNM (OR = 3.51, 95% CI: 
2.43–5.05, p < 0.001) (Table 2).

Machine learning model construction and performance 
comparison
Twelve variables were selected to develop ML models. 
The relationships between different variables are shown 
in Fig. 2. Based on the above 12 variables, six ML models 
were developed on the training set, and learning curves 
showed that there was no overfitting of these six machine 
learning models (Fig. 3). Therefore, we further compared 
the performance of different ML models using the AUC 
value, accuracy, precision, F1 value, and Brier score. The 
results show that in the training set with 10-fold cross-
validation, the average AUC value of the XGBoost model 
was the largest (0.722, Fig. 4a), and its accuracy was the 
highest (0.673, Fig.  4b). Moreover, in both the train-
ing set and the test set, the AUC value of the XGBoost 
model was the largest, at 0.781 (Fig.  4c) and 0.764 
(Fig. 4d), respectively. The Brier score was the smallest in 

Table 1  (continued)

Characteristics Overall Without non-SLN metastasis With non-SLN metastasis p

  Low 19 (1.9) 16 (2.4) 3 (0.9)

  High 833 (82.9) 543 (81.4) 290 (85.8)

PR (%) 0.105

  Negative 211 (21.0) 150 (22.5) 61 (18.0)

  Low 138 (13.7) 83 (12.4) 55 (16.3)

  High 656 (65.3) 434 (65.1) 222 (65.7)

HER2 (%) 0.610

  Negative 307 (30.5) 197 (29.5) 110 (32.5)

  Low 539 (53.6) 362 (54.3) 177 (52.4)

  Positive 159 (15.8) 108 (16.2) 51 (15.1)

Ki-67 (%) 0.051

  ≤ 14 340 (33.8) 240 (36.0) 100 (29.6)

  > 14 665 (66.2) 427 (64.0) 238 (70.4)

P53 (%) 0.106

  Negative 351 (34.9) 245 (36.7) 106 (31.4)

  Positive 654 (65.1) 422 (63.3) 232 (68.6)

LVI (%) < 0.001
  No 609 (60.6) 444 (66.6) 165 (48.8)

  Yes 396 (39.4) 223 (33.4) 173 (51.2)

Surgical method (%) 0.818

  BCS 176 (17.5) 115 (17.2) 61 (18.0)

  Mastectomy 829 (82.5) 552 (82.8) 277 (82.0)

Abbreviations: BMI Body mass index, US Ultrasound, MG Mammography, SLN Sentinel lymph node, SLNM Sentinel lymph node metastasis, ER Estrogen receptor, PR 
Progesterone receptor, HER2 Human epidermal growth factor receptor 2, LVI Lymphatic vascular infiltration, BCS Breast-conserving surgery
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Table 2  Relationship between training set characteristics and NSLNM

Characteristics Univariate Multivariate

OR (95% CI) P OR (95% CI) P

Age (median [IQR]) 1 (0.98–1.02) 0.935

Position (%)
  Left 1

  Right 1.03 (0.75–1.41) 0.856

BMI (%)
  < 18.5 1

  18.5–23.9 0.59 (0.22–1.61) 0.306

  24–27.9 0.77 (0.28–2.11) 0.608

  ≥ 28 0.95 (0.34–2.62) 0.917

Pregnant (%)
  0 1

  1 1.02 (0.48–2.17) 0.961

  ≥ 2 0.85 (0.39–1.87) 0.691

Menopause (%)
  No 1

  Yes 1.1 (0.81–1.51) 0.542

Nipple retraction (%)
  No 1

  Yes 1.41 (0.7–2.84) 0.338

Nipple discharge (%)
  No 1

  Yes 0.45 (0.13–1.59) 0.216

Number of tumor (%)
  Single focal 1

  Multi-focal 1.51 (0.92–2.49) 0.104

cT (%)
  1 1

  2 1.31 (0.95–1.81) 0.095

  3 1.04 (0.35–3.07) 0.942

  4 2.29 (0.32–16.49) 0.411

Aspect ratio (%)
  < 1 1

  > 1 1.35 (0.7–2.59) 0.369

  = 1 1.26 (0.41–3.91) 0.684

US tumor borderline (%)
  Clear 1

  Lack of clarity 1.46 (0.79–2.68) 0.228

  Blurring 1.46 (0.84–2.56) 0.181

US tumor form (%)
  Rule 1

  Underrule 0.82 (0.3–2.26) 0.699

  Irregularity 1.45 (0.71–2.94) 0.308

US tumor blood (%)
  No 1

  Yes 1.03 (0.69–1.54) 0.895

cN
  cN0 1

  cN1/cN2/cN3 1.5 (1.07–2.09) 0.018 1.22 (0.86–1.74) 0.269
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Table 2  (continued)

Characteristics Univariate Multivariate

OR (95% CI) P OR (95% CI) P

US BI-RADS (%)
  3 1

  4 2.02 (0.57–7.18) 0.277

  5 3.4 (0.92–12.57) 0.067

  6 2.89 (0.32–25.7) 0.341

MG calcification (%)
  No 1

  Yes 1.15 (0.8–1.65) 0.453

MG BI-RADS (%)
  3 1

  4 1.77 (1.02–3.05) 0.041 1.68 (0.95–2.97) 0.077

  5 1.88 (0.97–3.66) 0.063 1.92 (0.96–3.86) 0.067

  6 1.03 (0.36–2.95) 0.955 0.9 (0.3-2.7) 0.849

SLNs group (%)
  Negative 1

  Positive 2.38 (1.3–4.36) 0.005 1.64 (0.88–3.05) 0.119

Ratio of no. of positive SLNs to total no. 
of SLNs (%)
  ≤ 0.5 1

  > 0.5 3.82 (2.69–5.43) < 0.001 3.51 (2.43–5.05) < 0.001

Abbreviations: BMI Body mass index, US Ultrasound, MG Mammography, SLN Sentinel lymph node

Fig. 2  The relationship between different variables
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the training set and the second smallest in the test set, 
at 0.196 (Fig. 4e) and 0.191 (Fig. 4f ). In the test set, the 
accuracy and precision of the XGBoost model were the 
second largest, at 0.752 and 0.723, respectively. The recall 
rate and F1 value of the XGBoost model were the high-
est, at 0.728 and 0.726, respectively (Table 3). The posi-
tive predictive value and negative predictive value of the 
XGBoost model were highly consistent with the real val-
ues (Fig. 5). In conclusion, of the six ML models tested, 
the XGBoost model demonstrated the best performance.

Establishment of the nomogram and performance 
comparison with the XGBoost model

Based on multivariate logistic regression analysis, 
the SLN-positive ratio was an independent predictor of 
NSLNM. In a previous study, SLN status was also cor-
related with NSLNM [38]. Therefore, these two variables 
were applied to develop the nomogram. The C-index of 
the nomogram in the training set and test set was 0.706 
and 0.647, respectively. After internal verification by the 
bootstrap method, the C-index in the training set and 
test set was similar, at 0.706 and 0.646, respectively. Fig-
ure S2a shows a nomogram for predicting NSLNM based 
on the SLN-positive ratio and SLN group. Based on the 
scores from the different states of the nomogram’s vari-
ables, the probability of NSLNM for a certain patient can 
be obtained. The AUC values of this model in the training 
set and the test set were 0.647 (Fig. S2b) and 0.706 (Fig. 
S2c), respectively. The deviation between the predicted 
value and the actual value in the training set and the test 
set was somewhat large (Fig. S2d, e). In the training and 

test sets, the AUC value of XGBoost was larger than that 
of the nomogram (0.781 vs. 0.647; 0.764 vs. 0.706; Table 
S1). These results showed that the XGBoost model was 
superior to the nomogram in predicting NSLNM.

Interpretability of the XGBoost model
Based on the above results, XGBoost was the best model 
to predict NSLNM. To make this model and its predic-
tion easier to understand, this study makes use of the 
SHAP framework. Figure  6a shows the first ten char-
acteristic parameters affecting NSLNM: SLN-positive 
ratio, BMI, MG BI-RADS classification, SLN group, cT, 
number of births, age, cN, US blood flow signal of tumor, 
and US BI-RADS classification. To explore how these 
characteristics affect NSLNM, SHAP values are further 
used for interpretation (Fig. 6b). The SHAP value (X-axis) 
represents the degree to which the feature influenced 
NSLNM, and the feature ranking (Y-axis) represents the 
size of the feature values. Red dots represent higher val-
ues, and blue dots represent lower values. The results 
show that compared with an SLN-positive ratio ≤ 0.5, a 
sentinel node-positive ratio > 0.5 was more likely to be 
found along with NSLNM. Compared with the low-BMI 
group and the normal-BMI group, the overweight and 
obesity group was more likely to develop NSLNM. Com-
pared with the lower class of MG BI-RADS, the higher 
class of MG BI-RADS was more likely to be found with 
NSLNM. NSLNM was more likely to occur in the SLN-
positive group than in the SLN-negative group. NSLNM 

Fig. 3  Learning curves of different machine learning models
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was more likely to occur with higher clinical T stage than 
with lower clinical T stage.

This study also individualized the interpretation of 
the model and took two typical examples to verify the 
accuracy of XGBoost: one patient with actual NSLNM 
(Fig.  7a) and one patient without NSLNM (Fig.  7b). 

Arrows demonstrate the effects of different variables 
on the outcome prediction. Red and blue arrows show 
whether the variable was likely to occur (red) or not 
(blue). The combined effects of all variables provided the 
final SHAP value, corresponding to the predicted score. 
The patient with NSLNM had a high SHAP value of 1.57 

Fig. 4  Performance comparison of different machine learning models
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Table 3  Results of NSLNM predicted by different ML

Abbreviations: LR Logistic regression model, DT Decision tree model, SVM Support vector machine model, KNN K-nearest neighbor model, RF Random forest model, 
XGB Extreme gradient boosting model

Indicators LR DT SVM KNN RF XGB

Accuracy 0.702 0.682 0.596 0.623 0.772 0.752

Precision 0.673 0.650 0.611 0.617 0.754 0.723

Recall 0.681 0.657 0.623 0.631 0.712 0.728

F1 score 0.676 0.653 0.590 0.610 0.724 0.726

Fig. 5  The confusion matrix of different ML models

Fig. 6  SHAP summary of XGBoost model
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and a high prediction score of 0.83. The patient without 
NSLNM had a low SHAP value of −2.05 and a low pre-
diction score of 0.11.

Discussion
In this study, we constructed six ML models to predict 
NSLNM using preoperative and intraoperative clinico-
pathological features and compared their performance. 
The XGBoost model showed the best performance, and 
its predictive ability was also superior to that of the nom-
ogram. The XGBoost model was well explained through 
the SHAP framework.

In previous studies, LVI, grade, pathological tumor 
size, and molecular typing of breast cancer were often 
included in prediction model to predict NSLNM [39–42]. 
Although the inclusion of these postoperative parameters 
improved the prediction accuracy, the difficulty in obtain-
ing these parameters preoperatively and intraoperatively 
may limit their clinical application. A previous study used 
clinical tumor size to establish predictive models [43]. 
Therefore, clinical tumor size was put into the predic-
tive models in this study. Murata, T et  al. included 804 
patients with operable primary breast cancer and showed 
that NSLNM was more likely to occur with an SLN-
positive ratio of ≥ 0.5 than with an SLN-positive ratio of 
< 0.5 (p = 0.024) [44]. Wang Nana et  al. retrospectively 
analyzed 495 patients and found that patients in the SLN-
positive group were more likely to develop NSLNM than 
those in the SLN-negative group (p < 0.001) [41]. This 
study also demonstrated that the SLN-positive rate was 
an independent predictor of NSLNM.

Some scholars [45] have found that NSLNM was 
closely related to the ultrasound tumor boundary and 
blood flow signal (p = 0.038, p = 0.036). This study had 
similar results, 26 patients (7.7%) with clear ultrasound 
tumor boundaries had NSLNM, while 83 patients (24.6%) 
with ambiguous ultrasound tumor boundaries and 229 
patients (67.8%) with unclear ultrasound tumor bounda-
ries had NSLNM. Patients with ambiguous or unclear 
tumor boundaries were more likely to develop NSLNM. 
In the patients with NSLNM, most patients (84.3%) 
showed a blood flow signal. The above parameters were 
not independent predictors of NSLNM, which may be 
attributed to the fact that SLN-negative patients were 
also included in this study.

Kuo YL et al. retrospectively analyzed 1496 malignant 
breast cancer patients and established a nomogram to 
predict NSLNM. The model showed good predictive 
performance, and the AUC value of the model was 0.738 
[46], but it is not clear whether it was better than the ML 
model. Mi DU et al. developed an ML model to predict 
3-year and 5-year disease-specific survival for oral and 
pharyngeal cancers and compared its performance with 
conventional Cox regression, showing that the ML model 
had better predictive performance [47]. However, no 
such comparison has been made in breast cancer for pre-
dicting NSLNM. In this study, for the first time, the pre-
diction performance of NSLNM was compared between 
the ML model and nomogram. The results demonstrated 
that the AUC value of the XGBoost model was larger 
than that of the traditional nomogram (0.781 vs. 0.647; 
0.764 vs. 0.706). Compared with traditional regression 

Fig. 7  NSLNM prediction of two typical patients
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models, ML models can more accurately identify and 
analyze the potential relationships between different 
variables, and their predictive accuracy is particularly 
suitable for achieving individualized therapy and predic-
tive medicine [48], which will help us better solve clinical 
problems.

A deep learning radiomics model has been developed 
to predict the risk of NSLNM. Its sensitivity for NSLNM 
was 98.4% (95% CI: 95.6–99.9%), and its negative predic-
tive value was 91.7% (95% CI: 88.8–97.9%) in the valida-
tion set [17]. This model has good predictive ability, but 
the lack of explanation of the model makes it impossi-
ble for readers to intuitively understand the prediction 
results of the ML model, and its complex region of inter-
est (ROI) drawing also limits its application for clinical 
breast surgeons. In this study, six powerful ML models 
were developed using clinicopathological features that 
are easy to obtain, and their predictive performance for 
NSLNM was compared. All models showed good predic-
tive performance; the XGBoost model is the best. We vis-
ualized the optimal model with SHAP values and graphs. 
The summary charts show the effects of different vari-
ables on NSLNM, among which the SLN-positive ratio 
had the greatest impact on NSLNM. Compared with an 
SLN-positive ratio ≤ 0.5, an SLN-positive ratio > 0.5 was 
more likely to produce NSLNM. Two typical patients 
(one with NSLNM and one without NSLNM) were also 
explained using force diagrams.

Some studies [11–13] showed that 40–60% of breast 
cancer patients with SLNB further underwent ALND, 
even if no other lymph node metastasis was found. Some 
breast cancer patients chose to directly undergo ALND 
due to poor finances condition. With ALND comes the 
problem of lymphedema, which limits the upper limb 
function of breast cancer patients, leading to worse 
working ability and lower income, creating a vicious 
cycle. On the other hand, some patients were found to 
have NSLNM with negative SLNs (6.2% in this study), 
which could lead to a second surgery of the axilla. There-
fore, accurate prediction of NSLNM is necessary. The 
XGBoost model in this study showed powerful predic-
tive ability, which could help us avoid overtreatment or 
undertreatment. There is still a long way to go before 
this model can be applied to real-world medical settings 
because it still needs to be tested in different populations. 
In addition, developing a software application (APP) 
based on this model will be a difficult and time-consum-
ing project.

Although the XGBoost model developed here can 
well predict NSLNM, this study has some limitations. 
First, this is a retrospective study conducted at a sin-
gle institution. The inclusion of multicenter data would 

be more conducive to model validation. Second, with 
the exception of the group with breast invasive ductal 
carcinoma, few patients had other pathological types of 
breast cancer. If the sample size of patients with other 
pathological types of breast cancer can be increased, 
the probability of occurrence of NSLNM in different 
pathological types can be better compared, and the 
ML model developed will be more suitable for clinical 
practice.

Conclusion
The optimal ML model XGBoost was developed using 
preoperative and intraoperative clinicopathological fea-
tures and was superior to the traditional nomogram in 
predicting NSLNM. The SHAP framework can explain 
how the best model works, intuitively display the influ-
ence of characteristic variables on NSLNM, realize the 
clinical translation of machine learning technology, 
and assist clinicians in making more individualized and 
accurate diagnosis and treatment plans.
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