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Abstract

Background: Mounting evidence in the cancer literature suggests that microRNAs (miRNAs) influence the
progression of human cancer cells by targeting protein-coding genes. How insulin-like growth factor 1(IGF1) and
miR-186-3p contribute to the development of cervical cancer (CC) remains unclear. This study examined the
regulatory roles of miR-186-3p and IGF1 in CC development.

Methods: Gene expression levels were determined by qRT-PCR. Proliferation, migration, and apoptosis of CC and
normal cells were determined by MTT, Transwell, and caspase-3 activity assays, respectively. Dual-luciferase reporter
activity and RNA pull-down assays were performed to identify the target gene of miR-186-3p.

Results: IGF1 was the target of miR-186-3p. The expression of miR-186-3p inhibited cell proliferation and migration
abilities of CC cell lines, but induced the apoptosis rate of CC cells. IGF1 could restore the inhibitory effects of miR-
186-3p on the proliferation, migration, and apoptosis abilities of CC cells. Experimental results revealed that miR-
186-3p could inhibit IGF1 expression, thereby reducing the viability of CC cells.

Conclusions: The data suggest that targeting of IGF1 by miR-186-3p could be crucial in regulating the progression
of CC.
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Background
Cervical cancer (CC) is a global threat with high mortal-
ity and incidence rates, and low survival rate [1]. Most
CC cases are caused by human papillomavirus (HPV) in-
fection. HPV screening and vaccination can effectively
prevent CC. Present-day CC treatments depend on a
clinical staging system. The standard clinical treatment
for patients with early stage CC is hysterectomy, lymph-
adenectomy, chemotherapy, or radiation therapy [2–4].
Patients at the advanced stage of CC are usually treated
with brachytherapy [5]. However, these clinical treat-
ment approaches are ineffective in preventing CC recur-
rence [6]. Hence, there is an urgent need to understand

the underlying molecular mechanisms of CC initiation
and progression.
MicroRNAs (miRNAs) are small non-coding RNA

molecules that bind to the 3'-untranslated region (UTR)
of target mRNAs and regulate the translation and ex-
pression of genes [7]. By changing the bioactivity of
cancer-promoting or tumor-suppressing genes, miRNAs
suppress or facilitate the progression of various cancer
types, including CC [8]. Previous studies have indicated
that the degradation or repression of CC could be influ-
enced by various miRNAs, such as miR-21, miR-29a,
miR-451a, and miR-106b-5p [9, 10]. A growing body of
research has also demonstrated that miR-186 partici-
pates in several cellular processes, including cell prolifer-
ation, migration, apoptosis, and the cell cycle [11–15].
For instance, miR-186 downregulates CC tumors and
contributes to tumor growth [16, 17]. miR-186 also can
promote or suppress CC cell development [16, 17].
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However, the role of miR-186-3p in CC has not yet been
explored.
The insulin-like growth factor 1 (IGF1) gene is located

on chromosome 12q23.2. The gene comprises seven
exons and encodes a protein that is functionally and
structurally similar to the insulin involved in cell growth
and development [18]. Accumulating evidence in the
past few decades has revealed that IGF1 is abnormally
expressed in various cancer types [19–22]. However,
only a few studies have shown the upregulation of IGF1
in CC cells [23–25]. The molecular mechanism of the
interaction of miR-186-3p with IGF1 during the progres-
sion of CC is still unknown.
This study investigated the regulatory roles of miR-

186-3p and IGF1 in CC development. We explored the
underlying mechanism of miR-186-3p and IGFI in CC
progression. The study hypothesis was that by targeting
IGF1, miR-186-3p might inhibit the development of CC.
The data provide insights into CC progression, treat-
ment, and diagnosis.

Materials and methods
Clinical tissue samples
CC tissue samples and adjacent normal tissues were ob-
tained from 35 patients. The collection was performed
with the approval of the ethics committee of our hos-
pital. All participants consented to participate in the sur-
vey. The samples collected from patients were stored in
liquid nitrogen until analysis. Table 1 shows patient
characteristics.

Cell culture and transfection
Normal cervical cells (HcerEpic) and three human CC
cell lines (HeLa, CaSKi, SiHa, and C33A) were pur-
chased from ATCC (USA). The HcerEpic cell line was
cultured in Dulbecco’s Minimum Essential Medium
(DMEM). The CaSKi cell line was cultured in RPMI-
1640 medium. The HeLa, SiHa, and C33A cell lines were
cultured in Eagle’s Minimum Essential Medium. All cells
were cultured with 10% fetal bovine serum (Gibco,
USA), 100 U/mL penicillin, and 100 μg/mL streptomycin
(cat# 15070063, Thermo Fisher Scientific, USA) in a hu-
midified atmosphere containing 5% CO2. HeLa or SiHa
cells (2 × 105) were inoculated into a 6-well plate and in-
cubated for 24 h. The cells were then transfected with
Lipofectamine 3000 (Thermo Fisher Scientific). The in-
hibitors and mimics of miR-186-3p were purchased from
Active Motif, Inc. (USA).

RNA extraction
The miRNeasy FFPE Kit (50) (cat# 217504, Qiagen,
Germany) was used to extract mRNA from tissues. The
extraction was performed according to the manufac-
turer’s instructions. HcerEpic, HeLa, Ca SKi, SiHa, and

C33A cells (6 × 105) were collected, and total RNA was
obtained using TRIzol Reagent (Thermo Fisher
Scientific).

Quantitative real-time polymerase chain reaction (qRT-
PCR)
RNA was reverse-transcribed using the Reverse Tran-
scription Kit (Cat # 18090010, Invitrogen, USA). The
performance of qRT-PCR was then examined with
SYBR® Premix Ex Taq (cat# RR820A, TaKaRa Bio, Japan)
using the 7300 Real-Time PCR System (Applied Biosys-
tems, USA). The ΔΔCt method was used for relative
quantification. Glyceraldehyde 3-phosphate dehydrogen-
ase (GAPDH) or U6 was used as the reference gene. The
primers used are shown in Table 2.

Cell viability assessment
Cell viability was examined using the 3-(4,5-dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
Cell Viability Assay Kit (cat# AR1156, Boster Biological
Technology, USA). The cells were cultured and

Table 1 Clinical characteristics of patients with cervical cancer

Characteristic Number Proportion(%)

Total 35

Age (years)

< 45 12 34.29

≥ 45 23 65.71

Depth of cervical stromal invasion

≤ 1/2 9 25.71

> 1/2 26 74.29

LVSI

Negative 11 31.43

Positive 24 68.57

Tumor size (cm)

≤ 4 19 54.29

> 4 16 45.71

Histologic diagnosis

Adenocarcinoma 3 8.57

Squamous carcinoma 30 85.71

Others 2 5.71

FIGO stage

IB 22 62.86

IIA 13 37.14

Neoadjuvant chemotherapy

Yes 14 40.00

No 12 34.29

Unknown 9 25.71

LVSI lymphovascular space invasion, FIGO International Federation of
Gynecology and Obstetrics
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incubated for 4 h at 37 °C after the addition of MTT so-
lution (5 mg/mL). The optical density at 570 nm was de-
termined using a microplate reader (Thermo Fisher
Scientific).

BrdU cell proliferation assessment
This assessment was performed using the BrdU Cell
Proliferation Assay Kit (cat# 6831, Cell Signaling Tech-
nology, USA). The cells were seeded in 96-well plates (5
× 104 cells per well). A 1 × BrdU solution was added to
each well. The mixture was incubated for 4 h. After re-
moving the medium, fixing/denaturing solution was
added, and the cells were incubated at 25 °C for 30 min.
Then, both 1× detection antibody solution and 1 ×
horseradish peroxidase (HRP) labeled secondary anti-
body solution were added to the cells, and the mixture
was incubated with 3,3′,5,5′-tetramethylbenzidine
(TMB) substrate for 30 min. After 100 μL of STOP solu-
tion were added, the absorbance at 450 nm was mea-
sured using a microplate reader.

Cell migration assays
The cells (5 × 104 cells/well) were collected and seeded
in 96-well plates. After that, they were cultured in the
upper chambers of a Transwell device in serum-free
medium (200 μL). Next, 600 μL DMEM with 10% serum
were added to the lower chambers of the Transwell de-
vice. After incubation for 24 h, the cells that failed to
migrate were removed with a cotton swab, while those
that migrated were fixed with fixing solution (4% v/v for-
maldehyde in PBS). Subsequently, the cells were stained
with 0.1% crystal violet for 30 min. Images of the cells
were captured using the Evos FL Auto Cell Imaging Sys-
tem (Thermo Fisher Scientific).

Cell apoptosis assays
Caspase-3 activity was measured using a Human Active
Caspase-3 Ser29 ELISA Kit (Cat# ab181418, Abcam,
UK). Fifty microliters of standard or sample were added
to the wells. An antibody cocktail (50 μL) was added for
1 h. TMB Development Solution (100 μL) was added for
10 min. Stop solution (100 μL) was added and the ab-
sorbance was read at 450 nm.

Western blotting assay
Total protein from cells was isolated using RIPA buffer
(Sigma-Aldrich, USA). The protein concentration was
determined using a BCA protein assay kit (BioRad,
USA). The protein constituents in 20 μg of total protein
were separated by 12% SDS-PAGE. The proteins were
transferred to polyvinylidene fluoride membranes. The
membranes were blocked with 5% non-fat milk for 1 h
at room temperature and incubated with primary anti-
bodies, including Caspase-3 (Cat# ab184787, Abcam)
and GAPDH (Cat# ab9485, Abcam) overnight at 4 °C.
The next day, the membranes were incubated with the
secondary antibody (Cat#: ab6721, Abcam, USA) at
room temperature for 1 h. Finally, the protein bands
were visualized using a chemiluminescent substrate
(Thermo Fisher Scientific).

Luciferase activity assay
Wild-type or mutant IGF1 was synthesized and cloned
into the pGL3/Luciferase (Luc) vector. MiR-186-3p
mimic or negative control (NC) mimic was co-
transformed into HeLa cells or SiHa cells with wild-type
or mutant IGF1. After 48 h of transfection, cells were
treated with RIPA buffer. A dual-luciferase assay system
(Promega Corporation, USA) was used to detect lucifer-
ase activity.

RNA pull-down assay
MiR-186-3p and NC were biotin-labeled using a biotin
RNA labeling mix and T7/SP6 RNA polymerase. The
RNeasy Mini Kit (cat# 74104, Qiagen) was used to verify
IGF1 expression by qRT-PCR.

Statistical analyses
All statistical analyses were performed using SPSS soft-
ware (version 19.0; IBM SPSS, USA). Three repeats were
performed in each experiment. The data are presented
as the mean ± standard deviation. The differences be-
tween two groups were measured using Student's t test.
The differences among multiple groups were measured
using analysis of variance (ANOVA). Statistical signifi-
cance was set at P < 0.05.

Results
MiR-186-3p inhibits development of CC cells
We collected 35 paired CC tissue samples and adjacent
normal tissues to examine the miR-186-3p expression
levels. MiR-186-3p expression in tumor tissues was 60%
lower than that in normal tissues (Fig. 1A). MiR-186-3p
expression levels were further verified in HeLa, CaSKi,
SiHa, and C33A CC cells. A 50% decline in miR-186-3p
expression was evident in CC cell lines, compared with
the expression in the HcerEpic normal cervical epithelial
cell line (Fig. 1B). HeLa and SiHa cells were selected for

Table 2 The sequences of the primers in this study

Primer Sequences

IGF1 Forward: 5'-TCGCATCTCTTCTATCTGGCCCTGT-3'

Reverse: 5'-GCAGTACATCTCCAGCCTCCTCAGA-3'

GAPDH Forward: 5'-CAGCCTCAAGATCATCAGCA-3'

Reverse: 5'-GGCATGGACTGTGGTCATGAG-3'

U6 Forward: 5'-CTCGCTTCGGCACA-3'

Reverse: 5'-AACGCTTCACGAATTTGCGT-3'
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further analyses because their miR-186-3p expression
level was the lowest, compared with that of other CC
cells. MiR-186-3p expression in miR-186-3p mimics was
five times more than that in the control group. MiR-
186-3p expression in the miR-186-3p inhibitor was 0.6
times lower than that in the control group (Fig. 1C).
The functional effects of miR-186-3p mimics and miR-

186-3p inhibitors on CC cells were assessed. MTT assay
data indicated that miR-186-3p mimics inhibited cell
viability and that transfection of miR-186-3p inhibitor
increased cell viability (Fig. 1D). The MTT assays results
were similar to those of the BrdU assays. In the latter,
miR-186-3p mimics inhibited cell proliferation by 50%,
compared with the control group. Cell proliferation of

the miR-186-3p inhibitor group was 1.5-fold higher than
that of the control group (Fig. 1E). After transfection
with miR-186-3p mimics, cell migration was reduced by
50% compared with that of the control group. However,
cell migration increased after transfection with the miR-
186-3p inhibitor (Fig. 1F). Finally, cell apoptosis was ex-
amined by measuring caspase-3 activity. The caspase-3
activity of the miR-186-3p mimic group was 6-fold
higher than that of the control group but was reduced
by 70% after transfection with the miR-186-3p inhibitor
(Fig. 1G). The western blotting assay also proved that
the miR-186-3p mimic enhanced the expression of
cleaved caspase-3, whereas the miR-186-3p inhibitor
inhibited cleaved caspase-3 expression (Fig. 1H). These

(See figure on previous page.)
Fig. 1 MiR-186-3p inhibits the development of cervical cancer cells. A qRT-PCR detection of the relative expression of miR-186-3p in non-tumor
tissues and tumor tissues. P < 0.001 using Student’s t test. B qRT-PCR detection of the relative expression of miR-186 in HcerEpic, HeLa, CaSKi,
SiHa, and C33A cells. ** P < 0.001 compared with HcerEpic cells using ANOVA. C qRT-PCR detection of the relative expression of miR-186-3p in
HeLa and SiHa cells transfected with miR-186-3p mimic and inhibitor and NC. D MTT assay detection of the viability of HeLa and SiHa cells
transfected with miR-186-3p mimic and inhibitor and NC. E BrdU assay determination of the proliferation of HeLa and SiHa cells transfected with
miR-186-3p mimic and inhibitor and NC. F Transwell assay measurement of the migration ability of HeLa and SiHa cells transfected with miR-186-
3p mimic and inhibitor and NC. G Caspase-3 activity assay detection of cell apoptosis of HeLa and SiHa cells transfected with miR-186-3p mimic
and inhibitor and NC. H Western blotting detection of the expression of cleaved caspase-3 and total caspase-3 in HeLa and SiHa cells transfected
with miR-186-3p mimic and inhibitor and NC. C–H **, P < 0.001 compared with blank control (CON) group using ANOVA. Other abbreviations: NC,
negative control; miR-mimic, miR-186-3p mimic; miR-inhibitor, miR-186-3p inhibitor
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results suggest that miR-186-3p can restrain the growth
and development of CC cells.

Identification of IGF1 as the key gene of interest
TargetScan was used to predict the miR-186-3p target
genes. The GSE9750 mRNA microarray from GEO
DataSets was used to screen the upregulated genes in
CC with an adjusted p < 0.05 and log2FC > 2. Venny
2.1.0 analysis revealed a total of 77 upregulated genes
that overlapped with the TargetScan and GSE9750
databases (Fig. 2A). These overlapping genes were subse-
quently uploaded to STRING to observe the protein–
protein interactions. IGF1 was identified as the central
gene because its encoded protein was connected with
five other proteins (Fig. 2B). Subsequent CC experiments
focused on IGF1. Moreover, TargetScan predicted that
the IGF1 3' untranslated repeat (UTR) had two binding
sites for miR-186-3p (Fig. 2C). The relationship between
IGF1 and miR-186-3p was further explored.

MiR-186-3p directly targets and inhibits IGF1
Based on the results of bioinformatics analysis, we de-
signed a mutant of IGF1 that cannot bind to miR-186-
3p. In HeLa and SiHa cells co-transfected with miR-186-
3p mimics, the relative luciferase activity of the IGF1

wild-type was reduced by half, compared with the con-
trol group. Nonetheless, the luciferase activity of the
mutant-IGF1-3'UTR reporter gene was not affected (Fig.
3A). RNA pull-down experiments revealed that biotinyl-
ated miR-186-3p could pull down IGF1 in HeLa and
SiHa cells (Fig. 3B). IGF1 expression in tumor tissues
was 3-fold higher than that in normal tissues (Fig. 3C).
Moreover, miR-186-3p expression was negatively corre-
lated with IGF1 expression in tumor tissues (Fig. 3D).
Comparison of IGF1 expression between normal cervical
cells and CC cells, revealed that the relative expression
of IGF1 in HeLa and CaSKi cells was 6-fold higher than
that in the HcerEpic cells (Fig. 3E). These data suggest
that IGF1 could be highly expressed in cancer tissues
and that miR-186-3p could bind to the 3'UTR of IGF1
and inhibit IGF1 expression.

IGF1 knockdown eliminates the effect of miR-186-3p
inhibitor
To investigate the impact of IGF1 and miR-186-3p on
CC cell proliferation and metastasis, we explored the re-
lationship between miR-186-3p and IGF1. After knock-
down of IGF1, the levels of miR-186-3p in HeLa and
SiHa cells were consistent with those in the control
group. MiR-186-3p expression in the miR-186-3p
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inhibitor decreased by 60%. The same result was ob-
served after co-transfection with small interfering IGF1
and miR-186-3p inhibitor. Evaluation of the expression
levels of IGF1 showed that the relative expression level
of IGF1 was twice that of the control group after trans-
fecting with the miR-186-3p inhibitor, while IGF1 ex-
pression in the cells transfected with Si-IGF1 decreased
by 60% compared to that in control cells. After knocking
down IGF1 and transfecting the miR-186-3p inhibitor,
IGF1 expression returned to the same level as that in the
control group (Fig. 4A).
In the MTT assay, cell proliferation decreased when

IGF1 was knocked down, and the cell activity increased
after transfection with miR-186-3p inhibitor. However,
the cell activity was the same as that of the control
group when IGF1 was knocked down and the miR-186-
3p inhibitor was transfected simultaneously (Fig. 4B).
BrdU assay results similarly indicated that compared
with the control group, IGF1 knockdown decreased the
cell proliferation level, and the miR-186-3p inhibitor ac-
celerated the cell proliferation level by 1.5-fold. How-
ever, the level of cell proliferation was the same as that
in the control group when IGF1 was knocked down and
the miR-186-3p inhibitor was transfected simultaneously
(Fig. 4C).
We further examined the effects of IGF1 and miR-

186-3p on the migration ability of HeLa and SiHa cells.
When IGF1 was knocked down, the number of migrat-
ing cells was reduced by half compared to that in the
control group, and cell migration increased significantly
after cells were transfected with the miR-186-3p inhibi-
tor. However, when IGF1 was knocked down and the
miR-186-3p inhibitor was transfected simultaneously,
the number of migrating cells was similar to that in the
control group (Fig. 4D). Finally, we performed caspase-3
activity analysis to verify the apoptosis of HeLa and SiHa
cells. Caspase-3 activity decreased after cells were trans-
fected with the miR-186-3p inhibitor. We also noticed
that caspase-3 activity significantly increased by 6-fold,
compared with the control group after IGF1 knockdown.
However, the caspase-3 activity of the cells returned to
the level of the control group after knockdown of IGF1
and transfection with the miR-186-3p inhibitor (Fig. 4E).
The cleaved caspase-3 protein was enhanced after
knockdown of IGF1, and co-transfection with si-IGF1
and miR-186-3p inhibitor relieved the promotive effect
of si-IGF1 on cleaved caspase-3 protein (Fig. 4F). The
collective results indicate that IGF1 knockdown could
eliminate the effect of the miR-186-3p inhibitor in CC
cells.

Discussion
Although numerous studies have documented the
tumorigenic effects of miRNAs on CC cells, the

molecular mechanisms underlying these effects are still
unclear. The biological function of miR-186 in cancer
involves different cellular processes, including prolifera-
tion, migration, apoptosis, and cell cycle regulation [26].
MiR-186 can downregulate various cancer types, such as
acute myeloid leukemia, non-small cell lung cancer, oral
squamous cell carcinoma, and hepatocellular carcinoma
[27–30]. In one study, miR-186-3p restrained the devel-
opment of breast tumors [31]. In another study, miR-
186-3p reduced the expression of cyclin-dependent kin-
ase 1 (CDK1) and influenced the cell cycle regulation of
cancer cells [32]. However, the characteristics of miR-
186-3p in CC and its relationship with CC development
are unclear. The present study is the first examination of
the regulatory roles of miR-186-3p and IGF1 in CC
development.
We hypothesized that miR-186-3p inhibits IGF1 and

regulates the proliferation and metastasis of CC cells. To
confirm this hypothesis, we performed bioinformatics
analysis to identify the target gene (IGF1) for miR-186-
3p. Previous studies confirmed the vital role of IGF1 in
the development of cancer by regulating cell prolifera-
tion and apoptosis [33]. IGF1 participates in the growth
and invasiveness of breast cancer [34, 35]. IGF1 expres-
sion regulates the proliferation, migration, and invasion
abilities of CC cells [36, 37]. The results of our research
are consistent with the results of these studies. We dem-
onstrated the importance of IGF1 in the development of
CC cells, and showed that miR-186-3p can target IGF1.
The data suggest that miR-186-3p could target and regu-
late the function of IGF.
Furthermore, by targeting IGF1 and inhibiting its ex-

pression, miR-186-3p decreased the proliferation and
migration abilities of CC cells and increased the apop-
tosis ability of CC cells. The migration, proliferation,
and apoptosis of CC cells returned to normal levels
when they were transfected with miR-186-3p and
knocked down with IGF1 simultaneously. These obser-
vations indicated that miR-186-3p and IGF1 have oppos-
ite effects on CC cells. Thus, miR-186-3p can reduce the
incidence of CC by targeting IGF1.
Our research only involved study and verification

through in vitro experiments. However, cancer is a com-
plex process. In the future, a deeper understanding will
be provided by focusing on the downstream mechanism
of miR-186-3p targeting IGF1, and the use of two animal
models.

Conclusions
The data provide the first demonstration that targeting
IGF1 by miR-186-3p can regulate CC progression. More
specifically, by targeting IGF1, miR-186-3p can inhibit
the proliferation and migration of CC cells, and induce
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apoptosis of CC cells. The data will provide more in-
sights into the progression and treatment of CC.
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